
Using Gauss for Econometrics

Carter Hill and Lee Adkins

August 30, 2001

Contents

1 Introduction 2
1.1 Using the On-line Help . 2

1.1.1 Functions, Operators, and Categories 3
1.1.2 Run-Time Library and User-Defined Functions 4
1.1.3 Item Selection . 4
1.1.4 Entering Requests . 4

1.2 Getting Started . 9
1.2.1 Starting and Exiting GAUSS 9
1.2.2 Creating a Data File Using the GAUSS Editor 9
1.2.3 Matrices . 11
1.2.4 Concatenation . 11
1.2.5 Special Matrices . 11
1.2.6 Indexing Matrices and Extracting Submatrices 12

2 The Editor 14
2.1 COMMAND Mode . 14
2.2 EDIT mode . 15

3 Operators 20
3.1 Relational Operators . 20
3.2 Matrix Relational Operators . 21
3.3 Scalar Relational Operators . 22
3.4 Matrix Logical Operators . 22

4 GAUSS Fundamentals 23
4.1 Precision and Rounding . 23
4.2 Conditional Branching . 23
4.3 Unconditional Branching . 24
4.4 Looping . 24
4.5 Subroutines . 25
4.6 Procedures . 25

1

CONTENTS 2

5 Linear Statistical Models 27
5.1 Introducton . 27
5.2 Linear Statistical Model 1 . 27
5.3 Linear Statistical Model 2 . 27
5.4 The General Linear Statistical Model

Model 3 . 29
5.4.1 Point Estimation . 30

5.5 Sampling Properties of the Least Squares Rule 30
5.5.1 Sampling Properties–The Gauss-Markov Result 31
5.5.2 Estimating the Scale Parameter σ2 31
5.5.3 Prediction and Degree of Explanation 31
5.5.4 OLS Proc . 32

5.6 A Monte Carlo Experiment to Demonstrate the Sampling Per-
formance of the Least Squares Estimator 33

6 The Normal General Linear Model 38
6.1 Maximum Likelihood Estimation 38
6.2 Restricted Maximum Likelihood Estimation 41
6.3 Interval Estimation . 42

6.3.1 Single Linear Combination of the Beta Vector 42
6.3.2 Two or More Linear Combinations of the Beta Vector . . 43
6.3.3 Interval Estimation of σ2 44
6.3.4 Prediction Interval Estimator 44

6.4 Hypothesis Testing . 45
6.4.1 The Likelihood Ratio Test Statistic 45
6.4.2 A Single Hypothesis . 46
6.4.3 Testing a Hypothesis about σ2 47

6.5 Summary Statement . 47
6.6 Asymptotic Properties of the Least Squares Estimator 48

7 Bayesian Inference: II 53
7.1 Introduction . 53
7.2 A Simple Model . 53
7.3 Bayesian Inference for the General Lineral Model with Known

Disturbance Variance . 55
7.4 An Example . 55
7.5 Point Estimation . 59
7.6 Comparing Hypotheses and Posterior Odds 60
7.7 Bayesian Inference for the General Linear Model with Unknown

Disturbance Variance . 61

8 General Linear Statistical Model 64
8.1 The Statistical Model and Estimators 64
8.2 The Normal Linear Statistical Model 69
8.3 Sampling distributions of the Maximum Likelihood Estimators . 69
8.4 Interval Estimators . 70

CONTENTS 3

8.5 Hypothesis Testing . 70
8.6 The Consequences of Using Least Squares 70
8.7 Prediction . 71

9 General Linear Model with Unknown Covariance 72
9.1 Background . 72
9.2 Estimated Generalized Least Squares 72
9.3 Heteroskedasticity . 72

9.3.1 The Estimated Generalized Least Squares Estimator . . . 75
9.4 Exercises on Heteroskedasticity 76
9.5 Autocorrelation . 76
9.6 Exact Durbin-Watson Statistic 82

10 Varying Parameter Models 84
10.1 Introduction . 84
10.2 Use of Dummy Variables in Estimation 84
10.3 The Use of Dummy Variables to Test for a Change in the Location

Vector . 86
10.4 Systematically Varying Parameter Models 87
10.5 Hildreth-Houck Random Coefficient Models 88

11 Sets of Linear Statistical Models 90
11.1 Introduction . 90
11.2 Seemingly Unrelated Regression Equations 90
11.3 Pooling Time Series and Cross-Sectional Data Using Dummy

Variables . 100
11.4 Pooling Time Series and Cross-Sectional Data Using Error Com-

ponents . 103
11.5 The Choice of Model for Pooling 105

12 Estimating Nonlinear Models 106
12.1 Introduction . 106
12.2 Principles of Nonlinear Least Squares 106
12.3 Estimation of Linear Models with General Covariance Matrix . . 115
12.4 Nonlinear Seemingly Unrelated Regression Equations 132
12.5 Functional Form – The Box-Cox Transformation 135

13 Stochastic Regressors 140
13.1 Independent Stochastic Regressor Model 140
13.2 Partially Independent Stochastic Regressors 140
13.3 General Stochastic Regressor Models 140
13.4 Measurement Errors . 141

CONTENTS 4

14 Simultaneous Linear Statistical Models: I 145
14.1 Introduction . 145
14.2 Specification of the Sampling Model 145
14.3 Least Squares Bias . 146
14.4 The Problem of Going from the Reduced-Form Parameters to the

Structural Paramaters . 147

15 Simultaneous Linear Statistical Models: II 150
15.1 Estimating the Parameters of an Overidentified Equation 150
15.2 The Search for an Asymptotically Efficient Estimator 150
15.3 Asymptotic and Finite Sampling Properties of the Alternative

Estimators . 151
15.4 An Example . 151
15.5 On Using the Results of Econometric Models for Forecasting and

Decision Purposes . 156

16 Time-Series Analysis and Forecasting 157
16.1 Introduction . 157
16.2 A Mathematical Model for Time-Series and Its Characteristics . 157
16.3 Autoregressive Processes . 157
16.4 Moving Average Processes . 159
16.5 ARIMA Models . 162
16.6 The Box-Jenkins Approach . 162
16.7 Forecasting . 163

17 Distributed Lags 165
17.1 Introduction . 165
17.2 Unrestricted Finite Distributed Lags 165
17.3 Finite Polynomial Lags . 168
17.4 Infinite Distributed Lags . 170

18 Multiple-Time Series 177
18.1 Background . 177
18.2 Vector Autoregressive Processes 177
18.3 Estimation and Specification of VAR Processes 178
18.4 Forecasting Vector Autoregressive Processes 181
18.5 Granger Causality . 182
18.6 Innovation Accounting and Forecast Error Variance Decomposition183

19 Qualitative and Limited Dependent Variable Models 186
19.1 Introduction . 186
19.2 Binary Choice Models . 186
19.3 Models with Limited Dependent Variables 190

CONTENTS 5

20 Biased Estimation 194
20.1 Statistical Decision Theory . 194
20.2 Combining Sample and Nonsample Information 194
20.3 Pretest and Stein Rule Estimators 201
20.4 Model Specification . 201

21 Multicollinearity 204
21.1 Introduction . 204
21.2 The Statistical Consequences of Multicollinearity 205
21.3 Detecting the Presence, Severity, and Form of Multicollinearity . 205
21.4 Solutions to the Multicollinearity Problem 207

22 Robust Estimation 211
22.1 The Consequences of Nonnormal Disturbances 211
22.2 Regression Diagnostics . 211
22.3 Estimation Under Multivariate-t Errors 211
22.4 Estimation Using Regression Quantiles 211

A Linear Algebra and Matrix Methods 217
A.1 Definition of Matrices and Vectors 217
A.2 Matrix Addition and Subtraction 218
A.3 Matrix Multiplication . 219
A.4 Trace of a Square Matrix . 220
A.5 Determinant of a Square matrix 220
A.6 The Rank of a Matrix and Linear Dependency 220
A.7 Inverse Matrix and Generalized Inverse 220
A.8 Solutions for Systems of Simultaneous Linear Equations 221
A.9 Characteristic Roots and Vectors of a Square Matrix 222
A.10 Orthogonal Matrices . 222
A.11 Diagonalization of a Symmetric Matrix 223
A.12 Idempotent Matrices . 223
A.13 Quadratic Forms . 224
A.14 Definite Matrices . 224
A.15 Kronecker Product of Matrices 224
A.16 Vectorization of Matrices . 225
A.17 Vector and Matrix Differentiation 225
A.18 Normal Vectors and Multivariate Normal Distribution 225
A.19 Linear, Quadratic, and Other Nonlinear Functions of Normal

Random Vectors . 225
A.20 Summation and Product Operators 225

Chapter 1

Introduction

This manual is to be used by econometrics students who are trying to do their
homework using GAUSS. Much of the introductory material is taken either
from the GAUSS documentation or from GAUSS’s on-line help. The purpose
of the introductory material is to get you started using GAUSS and to make
it easier to use the much-improved on-line help system. It is not intended to
replace the GAUSS documentation, but we realize that such documentation
is not always readily available even when the GAUSS site you are using is
properly licence’s (like ours at OSU).
The second portion of the manual consists of chapters written by Carter Hill and
formerly published by John Wiley and Sons under the title, Learning Econo-
metrics Using Gauss. The book once sold as a supplement to Judge, et al.
Introduction to the Theory and Practice of Econometrics. Wiley (mistakenly,
we believe) allowed Learning Econometrics to go out of print and has no inten-
tion of reviving the product at this time.
The combination of Learning Econometrics Using GAUSS and the introduc-
tory material on using GAUSS that you are holding in your hands has been
rapidly thrown together; the project is in its preliminary stages and this man-
ual is being offered ‘as is’ with the hope that further refinements will make it a
usable supplement to econometrics courses.

1.1 Using the On-line Help

The focus of the first part of this manual is to enable you to get started using
GAUSS. The GAUSS commands are effectively documented in the on-line
help system. From what we can tell, the documentation from the on-line help is
nearly identical to that in the printed documentation. Hence, one of the things
you need to learn is how to use the on-line help to get the information you need.
GAUSS’s on-line HELP system can provide help on all GAUSS functions and
operators, and all user-defined functions. It can also be used to display text
files.

6

CHAPTER 1. INTRODUCTION 7

To get into the Help system, press Alt-H. The following screen will be shown:

TO GET: TYPE

Help on HELP (this screen) HELP

A Listing of Categories @CATS

A Listing of GAUSS Intrinsic Functions @CMDS

A Table of GAUSS Operators @OPERS

A Table of Command Mode Keys @CKEYS

A Table of Edit Mode Keys @EKEYS

===

Help PgDn PgUp Home Esc

From here, type H to get the "Help on:" prompt:

===
Help on:

Now type the name desired at the prompt. For instance, to get a list of GAUSS
intrinsic functions type @cmds, i.e.,

===
Help on: @cmds

You can also use the ‘*’ and ‘?’ wildcards when entering requests; ‘*’ stands
for 0 or more instances of any character, and ‘?’ stands for 1 instance of any
character. GAUSS will display a window of all items that match your request,
from which you can make selections.
If you specify a path when asking for help on a file, GAUSS will look only in
the directory specified. If you do not specify a path, GAUSS will search for
the file first in the current directory, then along the source path. If the file has
a .LCG extension, GAUSS will search for it in the library path. This makes it
easy to get help on source code and library files. Note, you cannot use wildcards
in filenames.
After exiting HELP, you can press F9 from COMMAND or EDIT mode to
return to the last HELP screen you viewed.

1.1.1 Functions, Operators, and Categories

GAUSS refers to GAUSS’s canned functions and operators as intrinsics. In
using the on-line help on intrinsics and categories the following keystroke com-
mands are available:

H(elp), Alt-H Request help on new subject
Pg Dn Page down through intrinsics/categories
Pg Up Page up through intrinsics/categories
Home Go to first HELP screen (”About Help”)
Esc Exit HELP

CHAPTER 1. INTRODUCTION 8

1.1.2 Run-Time Library and User-Defined Functions

The following commands are available when viewing help on Run-Time Library
or user-defined functions, or displaying a text file:

H(elp),Alt-H Request help on new subject
G(oto),Alt-G Go to line number
S(earch),F5 Search for text
Pg Dn Page down through file
Pg Up Page up through file
Up,Down Scroll up/down in file
Left,Right Pan left/right in file
Home Go to top of file
End Go to end of file
Esc Exit HELP

The following commands are also available, although they are not on the menu:

Alt-S,Shift-F5 Search again, same text
Ctrl-S,Ctrl-F5 Toggle text search case sensitivity

1.1.3 Item Selection

When you use wildcards in a request, GAUSS compiles a list of all items that
match and displays them in a window. The following commands are available
when selecting an item from the window:

Tab Request help on new subject
Pg Dn Page down through list
Pg Up Page up through list
Up,Down Scroll up/down in list
Home Go to top of list
End Go to end of list
chars... Construct speed search pattern
Backspace Delete last speed search char
Enter Select highlighted item
Esc Exit HELP

You can do a speed search through the list by typing the beginning characters
of an item. The highlight will move to the first item that matches what you
type. (This is why Tab is used instead of ‘H’ to get the “Help on:” prompt.)
Valid characters are added to the search pattern; characters that don’t match
are ignored. Backspace deletes the last character in the pattern. Moving the
highlight up or down with the cursor keys deletes the entire pattern.

1.1.4 Entering Requests

The following commands are available when entering Help, Goto, and Search
requests:

CHAPTER 1. INTRODUCTION 9

Home Go to beginning of entry
End Go to end of entry
Left,Right Move cursor left/right within entry
Backspace Delete character to left of cursor
Del Delete character under cursor
Up,Down Scroll up/down through previous entries
Enter Accept entry
Esc Abort entry, return to HELP

Note that GAUSS remembers previous requests. You can scroll up and down
through them and modify or reuse old entries.
Below you will find a summary of the categories that on-line help covers. To
obtain help on a particular topic, type the expression found on the right-hand-
side of the table.

TO GET HELP ON: TYPE

HELP.. HELP

BASIC MATHEMATICAL/SCIENTIFIC OPERATIONS

Rounding, Truncating and Precision Control @PRC

Mathematical and Scientific Functions @MATH

Differentiation and Integration Routines @DI

Root Finding, Polynomial Multiplication and Interpolation .. @POLY

Frequency Transforms - FFT’s @FREQ

Random Number Generators and Seeds @RND

Complex Number Operations @COMPLEX

Fuzzy Comparison Operators @FUZZY

DATA TRANSFORMATIONS .. @DATALOOP

STATISTICS

Cumulative Distribution Functions @CDF

Descriptive Statistics @STAT

Linear Regression .. @REG

MATRIX CREATION AND MANIPULATION

Creating Matrices .. @CREATE

Rank and Size of Matrices @SIZE

Submatrix Extraction @XTRCT

Basic Row, Column and Set Operations @RC

Matrix Element Manipulation @MAN

DATA HANDLING (see also DATA TRANSFORMATIONS above)

Working with Data Sets @DATA

Working with Variables in Data Sets @VAR

Loading, Saving, and Editing Matrices, Procs, etc. @LSE

Coding Data Matrices and Vectors @CODE

Working with Missing Values @MISS

Sorting Routines ... @SORT

CHAPTER 1. INTRODUCTION 10

LINEAR ALGEBRA

Eigenvalue and Eigenvector Routines @EIG

Matrix Decompositions @DEC

Matrix Inversions and Linear System Solutions @INV

PROGRAMMING STATEMENTS

Program Execution Control - RUN, STOP, etc. @EXE

Branching, Conditional and Unconditional @BRANCH

Looping Control .. @LOOP

Writing Subroutines .. @SUB

Compiler Directives .. @DIRECTIVES

EXTENDING \Gauss

Writing Procedures ... @PROCEDURE

Using External Functions @EXT

Using the Library System @LIB

Using the Foreign Language Interface @FLI

PUBLICATION QUALITY GRAPHICS @PQG

OTHER

DOS Shell Commands ... @SHELL

Workspace Management @SPACE

Error Handling and Debugging @ERR

String Handling Routines @STR

String Arrays .. @STRARRAY

Time and Date Functions @TIME

General File I/O ... @FILEIO

Console Operations ... @CON

Printer Operations ... @PRTR

Printing, Plotting and Screen Output @DISPLAY

Compiling Programs ... @COMPILE

Below is a list of intrinsic commands available in GAUSS . Specific information
on how to use these commands is available using the on-line help. For instance,

Help on: abs

yields the following information

ABS
Purpose: Returns the absolute value of its argument.

Format: y = ABS(x);

Input: x NxK matrix.

Output: y NxK matrix containing the absolute values of x.

The other commands available are:

CHAPTER 1. INTRODUCTION 11

ABS CDFNC COMPILE DET ENDP FILES

ATAN CDFNI COMPLEX DETL ENVGET FLOOR

ATAN2 CDFTC CON DFREE EOF FMOD

BALANCE CDFTCI CONJ DIAG ERF FN

BAND CDFTVN CONS DIAGRV ERFC FOPEN

BANDCHOL CDIR CONTINUE DISABLE ERROR FORMAT

BANDCHOLSOL CEIL CONV DO ERRORLOG FPUTS

BANDLTSOL CHOL CORELEFT DOS EXEC FPUTST

BANDRV CHOLDN COS ED EXP FSEEK

BANDSOLPD CHOLSOL COUNTS EDIT EXTERNAL FSTRERROR

BESSELJ CHOLUP CREATE EDITM EYE FTELL

BESSELY CHRS CROUT EIG FCHECKERR FTOCV

BREAK CLEAR CROUTP EIGH FCLEARERR FTOS

CALL CLEARG CSRCOL EIGHV FFLUSH GAMMA

CALLEXE CLOSE CSRLIN EIGV FFT GETF

CDFBETA CLOSEALL CSRTYPE ELSE FFTI GETNAME

CDFBVN CLS CVTOS ELSEIF FFTN GOSUB

CDFCHIC COLOR DATE ENABLE FGETS GOTO

CDFFC COLS DEBUG END FGETSA GRAPH

CDFGAM COLSF DECLARE ENDIF FGETSAT HASIMAG

CDFN COMLOG DELETE ENDO FGETST HESS

HSEC LOADEXE MINC PRINT RFFTP SEEKR

IF LOADF MININDC PRINTDOS RNDCON SEQA

IMAG LOADK MISS PRINTFM RNDMOD SEQM

INDCV LOADM MISSRV PROC RNDMULT SETVMODE

INDNV LOADP MOMENT PRODC RNDN SHIFTR

INT LOADS MSYM PUSH RNDNS SHOW

INV LOCAL NDPCHK RANKINDX RNDSEED SIN

INVPD LOCATE NDPCLEX RCONDL RNDU SLEEP

INVSWP LOG NDPCNTRL READR RNDUS SOLPD

ISCPLX LOWER NEW REAL ROTATER SORTC

ISCPLXF LPOS ONES RECSERAR ROUND SORTCC

ISMISS LPRINT OPEN RECSERCP ROWS SORTHC

KEY LPWIDTH OUTPUT RESHAPE ROWSF SORTHCC

KEYW LSHOW OUTWIDTH RETP RUN SORTIND

KEYWORD LTRISOL PACKR RETURN SAVE SORTINDC

LET LU PDFN REV SAVEALL SQRT

LIB LUSOL PI RFFT SCALERR STDC

LIBRARY MATRIX PLOT RFFTI SCALMISS STOCV

LINE MAXC PLOTSYM RFFTIP SCHUR STOF

LN MAXINDC POP RFFTN SCREEN STOP

LOAD MEANC PRCSN RFFTNP SCROLL STRINDX

STRING TYPECV

STRLEN TYPEF

STRRINDX UNION

STRSECT UNIQINDX

SUBMAT UNIQUE =====================================

SUMC UNTIL = % == EQ $== AND

SVDCUSV UPPER + [.== .EQ .$== .AND

SVDS USE $+] >= GE $>= EQV

CHAPTER 1. INTRODUCTION 12

SVDUSV UTRISOL - : .>= .GE .$>= .EQV

SYSSTATE VALS * , > GT $> NOT

SYSTEM VARGET .* . .> .GT .$> .NOT

TAB VARGETL / | <= LE $<= OR

TAN VARPUT ./ $| .<= .LE .$<= .OR

TEMPNAME VARPUTL *~ ~ < LT $< XOR

TIME VEC .*. $~ .< .LT .$< .XOR

TRACE VECH ^ ’ /= NE $/= {

TRAP VECR ! .’ ./= .NE .$/= }

TRAPCHK WHILE

TRIM WRITER

TRIMR XPND

TRUNC ZEROS

TYPE

CHAPTER 1. INTRODUCTION 13

1.2 Getting Started

In this section we will briefly tell you how to start GAUSS , load an ascii data
file, and to perform basic operations on the data.

1.2.1 Starting and Exiting GAUSS

GAUSS is started from a DOS prompt by typing

gaussi

At this point you should see a screen that looks like:

D:\GAUSS32>
GAUSS-386i VM Version 3.2.13 (Jul 20 1995)
(C) Copyright 1984-1995 Aptech Systems, Inc. Maple Valley, WA.
All Rights Reserved.
2547688 bytes workspace

>>

===
Alt-H for help L=16 C=3 Path=D:\GAUSS32

The prompt ‘>>’ is called the start prompt and is where you may begin typing
GAUSS statements. The amount of GAUSS workspace that is available is
given (in bytes). This is the basic memory used by GAUSS to hold matrices
in memory and to perform GAUSS operations. This amount can be controlled
by the user in standalone installations. Consult the GAUSS documentation
for details if you receive an error message denoting a lack of workspace.
Note also that Alt-H can be pressed to obtain on-line help. You also given in-
formation about which disk drive and directory you are using. To exit GAUSS
, press Esc. You will be asked <y/n> whether you want to exit GAUSS .
Answering y sends you back to the DOS prompt.

1.2.2 Creating a Data File Using the GAUSS Editor

More information about how to use the GAUSS editor is given in a later
chapter. At this point we will give you simple instructions about how to create,
edit, and save a file containing data that GAUSS can use.
At the prompt

CHAPTER 1. INTRODUCTION 14

>>

type edit data1.dat. You will receive a message indicating that this is a new
file that will disappear in a few seconds. After the screen clears you will be in
EDIT mode and ready to type data into the file called data1.dat. Type in the
following data

659 504 11785 12.2
44 72 22432 12.7

296 419 13569 12.6
499 268 10106 12.2
3742 3882 15069 13.2
460 584 14992 12.8
648 719 16244 12.6
123 110 15732 12.5

Note, there are spaces between each number, making 8 rows and 4 columns.
GAUSS will disregard extra spaces between the numbers. To save your work
and return to the COMMAND mode, type F1.
Now you will create a new file called first.prg. From the start prompt type
edit first.prg. This will open a new file. Type in the following simple
program using the editor.

/* This is my first Gauss Program */

load mat[8,4] = data1.dat; /* loads the ascii data */

"Data Matrix = " mat; /* prints the matrix, mat */

x1 = mat[.,1]; /* puts all rows of column 1 into x1 */

x2 = mat[.,2:4]; /* puts all rows of columns 2,3,4 in x2 */

x1tx1 = x1’*x1; /* inner product of x1 */

"X1 transpose X1 = " x1tx1;

Press F2 to save and execute the program. The output will look like this.

Data Matrix =

659.00000 504.00000 11785.000 12.200000

44.000000 72.000000 22432.000 12.700000

296.00000 419.00000 13569.000 12.600000

499.00000 268.00000 10106.000 12.200000

3742.0000 3882.0000 15069.000 13.200000

460.00000 584.00000 14992.000 12.800000

648.00000 719.00000 16244.000 12.600000

123.00000 110.00000 15732.000 12.500000

X1 transpose X1 = 15422031.

>>

Note that comments can be printed to the screen by enclosing the comment in
" " as in "Data Matrix = ". The number of digits printed can be controlled
using the format command (type format at the Help on: prompt).
If changes need to be made to the program, type edit first.prg and you will
be returned to the program.

CHAPTER 1. INTRODUCTION 15

1.2.3 Matrices

You can create matrices from within a program using the let statement. Reopen
first.prg and type the following line in at the end of the program

let x = {1 2 3, 4 5 6, 7 8 9};

This creates a 3x3 matrix called x. To print it out type:

print x;

As in most programming languages the = is the assignment operator. It assigns
what’s to its right to the symbol on its left. In this case the 3x3 matrix is
assigned to the symbol x.
The let statement can be omitted when a symbol is assigned to a matrix enclosed
in curly braces. For example:

x = {1 2 3, 4 5 6, 7 8 9};

1.2.4 Concatenation

Concatenation is a way to join matrices and vectors together either horizontally
or vertically. Of course, in order to do this then the matrices you are trying
to join must be conformable. To illustrate, type in and execute the following
program.

a = { 2.2 1.7 };
b = { -3.2 3.9 };

hc = a~b;
print hc;

vc = a|b;
print vc;

The horizontal concatenation operator is ~. The result of a~b is

2.2000000 1.7000000 -3.2000000 3.9000000

The vertical operator is | which stacks conformable matrices and vectors one
on top of the other. The result for a|b is

2.2000000 1.7000000
3.2000000 3.9000000

1.2.5 Special Matrices

There are a number of special matrices you can generate in GAUSS .

CHAPTER 1. INTRODUCTION 16

Zeros

To create a nxm matrix of zeros use the command:

z = zeros(n,m);

Ones

To create a nxm matrix of ones use the command:

z = ones(n,m);

Normal Random Numbers

To create a nxm matrix of normal random deviates use the command:

z = rndn(n,m);

Note that z ∼ N(0, 1).

Identity Matrix

To create an nxn identity matrix use the command:

z = eye(n);

Additive Sequence

To create an additive sequence of numbers (for instance if you were creating a
vector for a time trend) use the following command:

z = seqa(1,1,n);

The result will be an nx1 vector that begins with 1 and increments by 1 until
it reaches n.

1.2.6 Indexing Matrices and Extracting Submatrices

This section describes how to index individual elements of a matrix and extract
submatrices. Returning to the example in first.prg, recall that we were able
to extract a column from the matrix x using the command

x1 = x[.,1];

Similarly, we could have extracted the second row using

x3 = x[2,.];

The pattern should be apparent. The notation x[n,m] refers to the nth row
and mth column of x. A period . in either the row or column position tells
GAUSS to take all rows or columns, respectively.
Consecutive columns can be extracted using a colon. The following statement
extracts all rows of columns 2, 3, and 4 of x and puts them into a matrix called
w.

CHAPTER 1. INTRODUCTION 17

w = x[.,2:4];

Sets of rows or columns can be extracted by creating and index using the let
statement. For instance, to extract rows 2, 5, and 8 you could use

idx = { 2 5 8 };
rr = x[idx,.];

Note that the let statement can be omitted in creating idx since it is assigned
to numbers enclosed in curly brackets.

Chapter 2

The Editor

In order to run programs in GAUSS you’ll need a way to send your programs
to GAUSS for processing. To facilitate this, GAUSS includes a full-screen
editor that can be used for interactive programming or for submitting batch
programs. By default, the GAUSS editor is active whenever a program is not
being executed. The COMMAND mode is used to create short interactive
programs. In COMMAND mode you may enter a single line of code at a time
and have it execute by pressing ENTER. EDIT mode is used to create longer
programs that are saved to your disk as files.
Whenever you start GAUSS without a command line argument, you are au-
tomatically in COMMAND mode. If you Include a command line argument,
GAUSS assumes that the argument is the name of the file you want to execute.
When the program finishes, GAUSS returns you to COMMAND mode.

2.1 COMMAND Mode

The COMMAND mode can be used to write short, interactive programs or to
submit batch files created in EDIT mode for processing by GAUSS . You will
know that you are in the COMMAND mode whenever you are greeted by the
prompt:

>>

The prompt ‘�’ is referred to as the start (program) character. The end pro-
gram character is ‘�’; any statements between these prompts are treated as a
program.
Pressing the ENTER key causes a program to begin executing. CTRL-ENTER
can be used to drop to the line below without executing the current line. It is
possible to toggle off this feature of the editor using the Alt-F4 key combination.
If Enter execute is off, then a program is defined as the first block of code,
enclosed between the command start and stop characters. For example

18

CHAPTER 2. THE EDITOR 19

>>
x=rndn(4,4);
y=sumc(x);
<<

The command stop character ‘�’ is inserted using F4. Pressing F2 begins
execution of the program. Before pressing F2 make sure that your cursor is to
the right of or below the stop command ‘�’.
Pressing the F10 key loads the command log file into the editor and places the
system in EDIT mode. Previous commands can be executed using Ctrl-X or
can be cut and pasted to the COMMAND mode screen using block commands.
Pressing F1 restores the screen as it was before the last interactive program
was run.
In the tables below are lists of the various key commands available in COM-
MAND and EDIT modes. Table 2.1 summarizes the commands needed to access
on-line help, to select various system options, to access a DOS-shell, and to exit
the program and return to DOS. These keyboard commands are available in
either the EDIT or COMMAND modes.
In Table 2.2 you will find various commands that enable you to execute pro-
grams, edit files, and to toggle various compiler and execute options are sum-
marized. These commands only apply to the COMMAND mode.
The delete, copy, and insert commands found in Table 2.3 can be used in either
the COMMAND mode or in the EDIT mode. It is recommended that you learn
these in order to save yourself a lot of unnecessary typing.
The search and replace commands are also very useful. These appear in Table
2.4. Although these commands work in the COMMAND mode, you will find
them to be most useful when you are editing long programs in the EDIT mode.

2.2 EDIT mode

Files can be created and edited by typing Edit followed by the name of the file
to be edited. If the file exists, it will be displayed and is ready to edit. If the
file does not exist, a message ‘New File’ will be displayed for a second or two
and a blank screen will then appear. The new file can then be edited using the
edit commands.
To exit the EDIT mode, press Alt-X. A menu will appear and selections can
be made by pressing the capitalized letter from one of the following options.

CHAPTER 2. THE EDITOR 20

Write Write the edited file to disk, making a backup hav-
ing the .BAK extension. Return to COMMAND
mode.

Quit Quit EDIT mode and return to COMMAND mode
without saving the file.

eXecute Saves the file and then executes it.
Debug Save the file and then execute it using the debug-

ger.
Run Options Set options for program execution.
Compile Options Set options for the compiler.

In Table 2.5 various commands are summarized that enable one to execute
programs, edit files, and to toggle various compiler and execute options from
the EDIT mode.

CHAPTER 2. THE EDITOR 21

Alt 1-7 Option menus direct
Alt-C Option menu tree
Alt-H Help
Alt-Z DOS Shell
F7 View error log file
F9 Review last help screen
F10 Edit command log file
Escape Exit GAUSS
F1 Recall previous screen

Table 2.1: HELP, MENUS, and Miscellaneous Commands

F2 Run command
Enter Execute command on screen
Alt-F2 Execute last run file, lines off
Ctrl-F2 Execute last run file, lines on
Shift-F2 Execute last edited file
Ctrl-F1 Edit last run file
Ctrl-F3 Edit last output file
Shift-F1 Edit last edited file
Alt-F1 Edit with alternate editor
Ctrl-E Save screen to file
Ctrl-A Toggle autoload
Ctrl-L Toggle GAUSS.LCG on/off
Ctrl-X Execute block
Ctrl-O Trace off
Alt-L Toggle block
Ctrl-V Toggle compiler trace
Ctrl-W Toggle DECLARE warnings
Alt-F4 Toggle ENTER execute
Shift-F7 Reset error log file
F3, F4 Command start, stop character

Table 2.2: Command Mode FILE, EXECUTE, and COMPILE Commands

CHAPTER 2. THE EDITOR 22

Delete Delete character, block
Insert Insert (paste) scrap at cursor
Grey + Copy line, block to scrap
Grey - Cut line, block to scrap
Alt-D Delete line
Alt-K Delete from cursor to end of line
Ctrl-R Delete word right
Ctrl-PgDn Delete all text below cursor
Ctrl-PgUp Delete all text above cursor
Alt-W Write block
Alt-P Print block
Alt-I Toggle insert mode
Ctrl-N Insert hard linefeed
Alt-R Read in file at cursor
Ctrl-Enter Carriage return, no execute

Table 2.3: DELETE, INSERT, COPY Commands

Alt-G Go to line
Ctrl-Left Word left
Ctrl-Right Word right
Alt-S Search
Shift-F5 Search next
Alt-T Translate (replace)
Shift-F6 Translate again
Ctrl-F5 Toggle case sensitivity for search/translate
Ctrl-F6 Toggle escape character recognition for

search/translate
Home Beginning of line-screen
End End of line-screen
Ctrl-Home Clear screen
Ctrl-T Toggle translator

Table 2.4: SEARCH, CURSOR POSITION Commands

CHAPTER 2. THE EDITOR 23

Alt-X Normal editor exit
F1 Save file and exit
F2 Save and execute file, lines on
Alt-F2 Save and execute file, lines off
Alt-O Rename file
Ctrl-X Execute block
Alt-F4 Toggle ENTER execute
Ctrl-O Trace off
Ctrl-V Toggle compiler trace
Ctrl-W Toggle DECLARE warnings
Ctrl-A Toggle autoload
Ctrl-L Toggle GAUSS.LCG on/off

Table 2.5: Edit Mode FILE, EXECUTE, and COMPILE Commands

Chapter 3

Operators

In this chapter, a brief summary of the GAUSS operators is given. Consult
the GAUSS documentation or the on-line help for additional details.
The basic mathematical, matrix, string array, and string operators are:

MATHEMATICAL OPERATORS MATRIX AND STRING ARRAY OPERATORS
+ addition | matrix vertical concatenation
- subtraction or unary minus ~ matrix horizontal concatenation
* multiplication $| string array vert concatenation
.* ExE multiplication $~ string array horiz concatenation
^ ExE exponentiation ’ transpose
! factorial .’ bookkeeping transpose
./ ExE division
/ division or linear equation solution of Ax = b, for example: x = b/A;
% modulo division
.*. Kronecker product
*~ horizontal direct product

STRING OPERATORS
$+ string concatenation

Symbols used for indexing matrices are: “[”, “]”, “.” and “:”. For example,

x[1 2 5] returns the 1st, 2nd and 5th elements of x.
x[2:10] returns the 2nd through 10th elements of x.
x[.,2 4 6] returns all rows of the 2nd, 4th, and 6th columns of x.

The braces ‘{’ and ‘}’ are used to create matrices. For example, x = { 1 2 3 }.

3.1 Relational Operators

The scalar-returning relational operators are:

24

CHAPTER 3. OPERATORS 25

Less than: Not equal:
z = x < y; z = x /= y;
z = x LT y; z = x NE y;
z = x $< y; z = x $/= y;

Greater than: Greater than or equal to:
z = x > y; z = x >= y;
z = x GT y; z = x GE y;
z = x $> y; z = x $>= y;

Equal to: Less than or equal to:
z = x == y; z = x <= y;
z = x EQ y; z = x LE y;
z = x $== y; z = x $<= y;

The result is a scalar 1 or 0, based upon a comparison of all elements of x and
y. ALL comparisons must be true for a result of 1 (TRUE).
The ”$” is used for comparisons between character data and other nonnumeric
data, e.g. NANs.

3.2 Matrix Relational Operators

The matrix-returning relational operators are:

Less than: Not equal:
z = x .< y; z = x ./= y;
z = x .LT y; z = x .NE y;
z = x .$< y; z = x .$/= y;

Greater than: Greater than or equal to:
z = x .> y; z = x .>= y;
z = x .GT y; z = x .GE y;
z = x .$> y; z = x .$>= y;

Equal to: Less than or equal to:
z = x .== y; z = x .<= y;
z = x .EQ y; z = x .LE y;
z = x .$== y; z = x .$<= y;

The above operators all produce a matrix of 0’s and 1’s, with a 1 where the
corresponding comparison is TRUE.
The “$” is used for comparisons between character data and other nonnumeric
data, e.g. NANs.

CHAPTER 3. OPERATORS 26

3.3 Scalar Relational Operators

The logical operators perform logical or Boolean operations on numeric values.
On input, a nonzero value is considered TRUE and a zero value is considered
FALSE. The logical operators return a 1 if TRUE and a 0 if FALSE.
These operators require scalar arguments. These are the ones to use in If and
DO statements:

* Complement * Disjunction * Equivalence
z = NOT x; z = x OR y; z = x EQV y;

* Conjunction * Exclusive OR
z = x AND y; z = x XOR y;

3.4 Matrix Logical Operators

The matrix logical operators perform logical or Boolean operations on numeric
values. On input, a nonzero value is considered TRUE and a zero value is
considered FALSE. The logical operators return a 1 if TRUE and a 0 if FALSE.

* Complement * Disjunction * Equivalence
z = .NOT x; z = x .OR y; z = x .EQV y;

* Conjunction * Exclusive OR
z = x .AND y; z = x .XOR y;

If the logical operator is preceded by a dot ”.”, the result will be a matrix of 1’s
and 0’s based upon an element-by-element logical comparison of x and y. For
example, if

x = { 0 1 0 1 } and y = { 1 1 0 0 }

then (x .OR y) will be the vector 1 1 0 1 . Do not use the ”.” operators in IF
or DO...WHILE statements.

Chapter 4

GAUSS Fundamentals

4.1 Precision and Rounding

All calculations in GAUSS are done in double precision, with the exception of
some of the intrinsic functions, which may use extended precision (18-19 digits
of accuracy). Use PRCSN to change the internal accuracy used in these cases.
ROUND, TRUNC, CEIL and FLOOR convert floating point numbers into inte-
gers. The internal representation for the converted integer is still 64-bit (double
precision).
Each matrix element in memory requires 8 bytes of workspace. See the function
CORELEFT to determine availability of workspace.

--
BASE10 Convert number to #.### and a power of 10.
CEIL Round up towards +INF.
FLOOR Round down towards -INF.
PRCSN Set computational precision for matrix operations.
ROUND Round to the nearest integer.
TRUNC Truncate decimal portion of number.

--

4.2 Conditional Branching

Conditional branching is done with the IF statement:

if x > 0;
rv = 1;
print "Positive";

elseif x < 0;
rv = -1;
print "Negative";

else;

27

CHAPTER 4. GAUSS FUNDAMENTALS 28

rv = 0;
print "Zero";

endif;

The expression after the IF or the ELSEIF must be a scalar-returning expression.
Use the relational and logical operators without the dot.
ELSEIF and ELSE are optional. There can be multiple ELSEIF’s.

4.3 Unconditional Branching

Unconditional branching is done with GOTO.

Examples:
/* coin toss... */ /* file check... */
toss: open f1 = mydat for read;

coin = rndu(1,1); if f1 == -1;
if coin > .49 and coin < .51; goto errout("File not found", -1);

goto edge; endif;
elseif coin >= .51; .

heads = heads + 1; .
endif; errout:
t = t + 1; pop rv;
goto toss; pop msg;

edge: errorlog msg;
print "It’s on edge!"; _errval = rv;
print "H " heads " T " t-heads; end;

The target of a GOTO is called a label. Labels must begin with ‘ ’ or an
alphabetic character and are always followed by a colon.
GOTO, like GOSUB, can pass arguments via the stack. If arguments are passed,
they are retrieved (POPed) in the reverse order they are passed.

4.4 Looping

Looping is controlled with the DO statement.

do while st > tol; /* loop if true */
.
.
.

endo;

do until st <= tol; /* loop if false */
.
.

CHAPTER 4. GAUSS FUNDAMENTALS 29

.
endo;

BREAK; Jump to the statement following ENDO.
CONTINUE; Jump to the top of a DO loop.

4.5 Subroutines

Subroutines are marked by labels. GOSUB branches to a subroutine label and
begins execution. RETURN returns from a subroutine to the line following the
GOSUB. Arguments can be passed to and from the subroutine via the stack.
They are retrieved (POPed off the stack) in the reverse order they are passed.

gosub fopen("MYFILE", "r");
pop fp;
.
.

fopen:
pop _fmode;
pop _fname;
if _fmode $== "r";

open _fp = ^_fname for read;
elseif _fmode $== "w";

create _fp = ^fname with x,1,8;
elseif _fp $== "a";

open _fp = ^_fname for append;
else;

_fp = -1;
endif;
return(_fp);

4.6 Procedures

A procedures in GAUSS is a user-defined function that can be used as if it
were an intrinsic part of the language. They can be small and simple or large
and complicated and can be used to modularize your GAUSS programs. You
can build your own procedures to compute Least Squares, do Seemingly Unre-
lated Regression, or any other econometric procedure that you use repeatedly.
In order to write and use procedures effectively, you will need to consult the
Procedures and Keywords chapter in the GAUSS documentation. To give you
some idea of what is involved, we present the basic elements and give an example
below.
The key elements of a procedure are:

• A procedure declaration

CHAPTER 4. GAUSS FUNDAMENTALS 30

• Local variable declarations

• Body of the procedure

• Return from procedure

• End of procedure

There is always one PROC statement and one LOCAL statement in a proce-
dure. Any statements that come between these two statements are part of the
procedure. An example of a procedure is:

PROC (3) = crosprod(x,y);
LOCAL r1, r2, r3;
r1 = x[2,.].*y[3,.]-x[3,.].*y[2,.];
r2 = x[3,.].*y[1,.]-x[1,.].*y[3,.];
r3 = x[1,.].*y[2,.]-x[2,.].*y[1,.];
RETP(r1,r2,r3);

ENDP;

The “(3) = ” indicates that the procedure returns three arguments. All local
variables, except those listed in the argument list, must appear in the LO-
CAL statement. The local variables cannot be carried out of the procedure.
The RETP statement captures the computations that can be carried out of
the procedure. The ENDP is necessary and must appear at the end of the
procedure definition. Procedure definitions cannot be nested.
To use the PROC, it must first be compiled. This is accomplished by pressing
F2 while in EDIT mode (assuming you have the file containing the procedure
open) or by issuing the run command from the COMMAND mode. That is

run my.prc;

where my.prc is the name of the file in which you saved the procedure.
The procedure may now be used by your GAUSS programs. The syntax for
using this example function is:

{ a1,a2,a3 } = crosprod(u,v);

The results are assigned to the variables called a1, a2, and a3 which are the
crossproducts computed in the procedure.

Chapter 5

Linear Statistical Models

5.1 Introducton

In this Chapter the fundamentals of the Classical Linear Regression Model
(CLRM) are considered. The chapter begins with a simple linear model for
the mean of a population, evolves into a 2-variable regression model and then
to the Multiple regression model. This handbook will present the GAUSS
commands that replicate numerical examples, and thus providing a basis for all
linear model estimation.

5.2 Linear Statistical Model 1

In this section it is noted that the model given in (3.2.2a), in which a random
variable has a mean and varinace, is a linear model. Familiar assumptions are
put into vector and matrix notation. It is important to master this notation, as
it will be the basis for all future work.

5.3 Linear Statistical Model 2

In this section computations associated with the Example in Chapter 5.3.6 of
ITPE2 will be carried out. The data on Consumption and Income in Table 5.1
in the text is contained in the file TABLE5.1 on the disk available with this
book. The regression model relates consumption to income.
First, LOAD the data, which is in an ASCII file. Insert a column of ones in the
first column to represent the “intercept” variable. Print and examine the data
to confirm it is identical to that in the text.

load dat[20,2] = table5.1;
y = dat[.,1];
x = dat[.,2];
x = ones(20,1)~x;

31

CHAPTER 5. LINEAR STATISTICAL MODELS 32

format 8,4;
y~x;

You now have the data set represented by the vector y and the matrix X but
you do not know the true parameters, beta, or the variance of the error term,
σ2. We need to solve the system of linear equations (5.3.8b) represented by
x′x ∗ b = x′y. Use Equation (5.3.11). There are several GAUSS functions that
invert matrices. See your GAUSS manual for a description of INV, INVPD
and SOLPD.
To show the intermediate results follow the sequence of steps outlined in Equa-
tions (5.3.22c and 5.2.23. First form the inverse of X ′X and X ′y and print.

ixx = inv(x’x);
xty = x’y;
format 14,10;
ixx~xty;

Note that X ′y is named XTY instead of XY to avoid confusion with the GAUSS
QUICK GRAPHICS proc. Now compute the least squares estimates.

b = ixx*xty;
format 8,5;
b’; /* Eq. 5.2.23 */

The most efficient way to solve the equations in GAUSS is to use the matrix
/ operator. That is, b = inv(x′x) ∗ (x′y) = (x′y)/(x′x) = y/x.

b = y/x;
b’;

Compute the least squares residuals and the sum of squared errors.

ehat = y - x*b;
sse = ehat’ehat;
sse;

Next compute the degrees of freedom. In general, T is the number of rows in
the matrix x and k is the number of columns in x. The degrees of freedom is
the difference.

t = rows(x);
k = cols(x);
df = t - k;
df;

The estimate of the error variance σ2 is sse/df .

sighat2 = sse/df;
sighat2; /* Eq. 5.3.25 */

CHAPTER 5. LINEAR STATISTICAL MODELS 33

Estimate the variance-covariance matrix of the LS estimator. The function
invpd takes the inverse of a positive definite matrix, and is more efficient than
inv for these types of matrices.

ixx = invpd(x’x);
covb = sighat2*ixx;
covb; /* Eq. 5.3.26 */

Let x0 represent a matrix of subsequent values of explanatory variables that we
would like to use for prediction purposes. It contains 1 observation.

let x0[1,2] = 1 22;

The predicted values for y using those values of x are:

y0 = x0*b;
y0; /* Eq. 5.3.28 */

The estimated covariance matrix for the prediction error is

y0var = sighat2*(x0*ixx*x0’ + 1);
y0var; /* Eq. 5.3.17b */

The square roots of the diagonal elements are the standard errors for the pre-
diction errors.

std = sqrt(diag(y0var)); std;

The coefficient of determination R2 can be computed using the sum of squared
errors (SSE computed above) and the total sum of squares (SST).

ybar = meanc(y);
sst = y’y - t*ybar^2;
r2 = 1 - (sse/sst);
r2;

The adjusted R2, R̄2, is:

rbar2 = 1 - (t-1)*(1-r2)/(t-k);
rbar2;

5.4 The General Linear Statistical Model
Model 3

In this Section of ITPE2 the notation for the CLRM with K explanatory vari-
ables is presented. Carefully analyze all the variations on this basic notation.

CHAPTER 5. LINEAR STATISTICAL MODELS 34

5.4.1 Point Estimation

In this Section we repeat many of the steps taken in Chapter 5.3. The data on
a poultry production function is given in Table 5.3 in ITPE2. The dependent
variable, y, is the average weight of the chickens at a point in time and the
explanatory or independent variables are cumulative food consumption and its
square.
Create the y vector and X matrix and print the data.

load dat[15,2] = table5.3;
y = dat[.,1];
xvec = dat[.,2];
x = ones(15,1)~xvec~(xvec^2);
y~x;

Compute the cross-product matrices between x and itself and x and y and print.
These matrices appear in Equation (5.5.22b)

xx = x’x;
xty = x’y;
xx~xty;

Compute and print the matrix inverse of x’x. Compare to (5.5.23)

ixx = invpd(x’x);
ixx;

Compute the sample estimates using (5.5.24)

b = ixx*xty;
b’;

Note again that computationally it is more efficient to use “ / ”

b = y/x;
b’;

Now plot the estimated production function for the sample values of X.

yhat = x*b;
library qgraph;
xy(xvec,yhat);

5.5 Sampling Properties of the Least Squares
Rule

In this Section the mean and covariance matrix of the least squares estimator
are determined. In Section 5.10 a Monte Carlo Experiment is carried out that
explores these properties.

CHAPTER 5. LINEAR STATISTICAL MODELS 35

5.5.1 Sampling Properties–The Gauss-Markov Result

In this Section it is proved that the least squares estimator is the Best Linear
Unbiased Estimator (BLUE) under the assumptions of the CLRM.

5.5.2 Estimating the Scale Parameter σ2

In order to estimate the error variance σ2 calculate the sum of squared least
squares residuals. Note that an alternative computational form is given in Equa-
tion (5.8.7)

ehat = y - x*b;
sse = ehat’ehat;
sse;

Calculate the degrees of freedom.

t = rows(x);
k = cols(x);
df = t - k;
df;

Calculate the parameter estimate using (5.8.7)

sighat2 = sse/df;
sighat2;

Calculate the estimate of the covariance matrix of b.

cov = sighat2*ixx;
cov;

5.5.3 Prediction and Degree of Explanation

Specify the following X0 matrix, as in Section 5.9.2 of ITPE2.

let x0[1,3] = 1 10 100;
t0 = rows(x0);

The corresponding predicted value of y is

y0hat = x0*b;
y0hat’;

The sampling variance of the forecast error for y0hat as an estimator of y0 is
given in (5.9.3a)

y0var = sighat2*(x0*ixx*x0’ + eye(t0));
y0var;

CHAPTER 5. LINEAR STATISTICAL MODELS 36

The sampling variance of y0hat as an estimator of E(y0) is given in (5.9.4a)

Ey0var=sighat2*(x0*ixx*x0’);
Ey0var;

The degree of explanation by the linear model is given by R2 in (5.9.9). The
total sum of squares SST is

ybar = meanc(y);
sst = y’y - t*(ybar^2);
sst;

The value of R2 is

r2 = 1 - (sse/sst);
r2;

and the Adjusted-R2 is

rbar2 = 1 - (t-1)*(1-r2)/(t-k);
rbar2;

5.5.4 OLS Proc

For future reference, and use, combine all that you have learned into an Ordinary
Least Squares (OLS) procedure. Save this procedure in a separate file MYOLS.G
in the \SRC subdirectory so that you may call it later and it will be LOADed
automatically. GAUSS’s PROC OLS can also be used. See your GAUSS
manual for details

proc(2) = myols(x,y);
local *;

b = y/x;
t = rows(x);
k=cols(x);
df = t - k;
ehat = y - x*b;
sse = ehat’ehat;
sighat2 = sse/df;
covb = sighat2*invpd(x’x);
ybar = meanc(y);
sst = y’y - T*(ybar^2);
r2 = 1 - (sse/sst);
rbar2 = 1 - (t-1)*(1-r2)/df;

format 8,2;
"Number of observations: " T;

CHAPTER 5. LINEAR STATISTICAL MODELS 37

"Degrees of freedom: " df;

format 10,5;
"Sum of Squared Errors: " sse;
"Total Sum of Squares: " sst;
"R-squared: " r2;
"R-bar-squared: " rbar2;
"Sigmahat^2: " sighat2;
"Standard Error: " sqrt(sighat2);
?;
"Estimated coefficients: " b’;
?;
"Variance-Covariance Matrix for b: ";
covb;

retp(b,covb);
endp;

The beauty of this OLS program is that you understand every step of its work-
ings, unlike some “canned” programs you may use.
After you have created the file containing the PROC run it using the F2 key
which will compile the program and check for errors. Then you may use it as

{b,covb} = myols(x,y);

5.6 A Monte Carlo Experiment to Demonstrate
the Sampling Performance of the Least Squares
Estimator

To better understand the properties of the estimators, run a series of Monte
Carlo experiments. To do this, write a procedure to simulate the data gener-
ation process of a linear statistical model. Create many data sets that follow
this process, the only difference being the values of the random disturbances.
Then estimate the parameters of the model for each data set and observe how
the parameter estimates are distributed. They should agree closely with the
theoretical properties that have been derived.
The sampling experiment will use the parameter values in Equation (5.10.1)
and the design matrix X in (5.10.2), which is in the data file JUDGE.X on the
data disk. In these simulations, assume that the random errors have a uniform
distribution with mean zero and variance 2. While the GAUSS random num-
ber generators could be used to create the values of the random disturbances,
use instead the “official” uniform random numbers contained in the data file
URANDOM.DAT. This data set is a GAUSS data file and may be read using
the READR command. It contains 10,000 uniform random numbers falling in

CHAPTER 5. LINEAR STATISTICAL MODELS 38

the (0,1) interval. Since these random numbers have mean 1/2 and variance
1/12 we must transform them to mean 0 and variance 2 by subtracting 1/2 and
multiplying by sqrt(24).
Start “small” and create NSAM = 10 samples of size T = 20 and obtain the least
squares estimates of β and σ2. First create a (T x NSAM) matrix E containing
the random errors.

t = 20; /* sample size */

k = 3; /* number of regressors */

nsam = 10; /* number of samples */

nr = t*nsam; /* number obs. to read */

open f1 = urandom.dat; /* open data set */

e = readr(f1,nr); /* read nr obs. */

f1 = close(f1); /* close file */

The uniform random disturbances are now in a (NR x 1) vector. To create
the desired (T x NSAM) matrix E use the RESHAPE function. RESHAPE
stores the data in “row major” form so form an (NSAM x T) matrix and then
transpose it.

e = (reshape(e,nsam,t))’;

Now correct the mean and variance.

e = sqrt(24)*(e - 0.5);

Now LOAD x and define beta.

load x[t,k]=judge.x;
let beta = 10.0 0.4 0.6;

The matrix of error terms created, e, has T rows — the size of each separate
sample, and NSAM columns — the number of samples. Because of the special
features of matrix addition in GAUSS, when this matrix is added to the vector
x*beta, a matrix of y’s is created. The first column is equal to x*beta plus the
first column of e, the second column is equal to x*beta plus the second column
of e, etc.
The same formula for computing the estimated coefficients, y/x can still be used.
The first column will contain the estimated coefficients for the first sample,
the second column the second sample, etc. The sighat2 is a column vector
containing the estimated variances for each sample. Since we will use it several
times, create PROC MC to carry out the calculations. The arguments are x,
beta and a (T x NSAM) matrix of random disturbances e.

proc (2) = mc(x,beta,e);
local *;

y = x*beta + e;

CHAPTER 5. LINEAR STATISTICAL MODELS 39

t = rows(x);
k = cols(x);
b = y/x;

ehat = y-x*b;
sighat2 = sumc(ehat^2)/(t-k);
retp(b,sighat2);

endp;

The arguments of PROC MC are the design matrix x, the beta vector, and the
matrix of random disturbances e. The procedure will return the (K x NSAM)
matrix of estimated coefficients and (NSAM x 1) vector of estimated variances.
Run the procedure to compile it and then use it to carry out the Monte Carlo
exercise.

{b,sighat2} = mc(x,beta,e);
b’~sighat2;

Compare the values of the estimated parameters to those in Table 5.4. They
should be identical. Note that the parameter estimates vary from sample to
sample.
Now carry out the Monte Carlo experiment on a grander scale. Use NSAM
= 500 samples of size T = 20. Unfortunately, due to limits on the abilities of
personal computers, a matrix in GAUSS can only hold 8190 elements. Thus
the 10,000 random numbers cannot all be read into a single matrix. Thus we will
divide the computations into two steps, using NSAM = 250 each time. First,
construct the matrices of uniform random errors with zero mean and variance
one. SAVE them for future use. They will be given the extension .FMT and
can be LOADed when needed.

t = 20;

k = 3;

nsam = 250;

nr = t*nsam;

open f1 = urandom.dat;

e1 = readr(f1,nr); /* read 1st 5000 obs. */

e2 = readr(f1,nr); /* read 2nd 5000 obs. */

f1 = close(f1);

e1 = (reshape(e1,nsam,t))’; /* 250 random vectors */

e2 = (reshape(e2,nsam,t))’; /* 250 random vectors */

e1 = sqrt(12)*(e1-0.5); /* adjust to U(0,1) */

e2 = sqrt(12)*(e2-0.5);

save e1uni = e1; /* SAVE to E1.FMT */

save e2uni = e2; /* SAVE to E2.FMT */

CHAPTER 5. LINEAR STATISTICAL MODELS 40

Now, assuming x, beta, and PROC MC are still in memory, transform the errors
to have variance 2 and execute the Monte Carlo.

e1 = sqrt(2)*e1;
e2 = sqrt(2)*e2;

{b1,s1} = mc(x,beta,e1);
{b2,s2} = mc(x,beta,e2);

Stack all the parameter estimates into a matrix and clear unneeded matrices.

est=(b1|s1’)~(b2|s2’);
e1=0; e2=0; b1=0; b2=0; s1=0; s2=0;

Next write another procedure to summarize the results of the Monte Carlo
experiment. Call it MCSUM. It takes as its arguments param, which is the
matrix of parameter estimates, the matrix of explanatory variables, x, the vector
of true coefficients, beta, and the true variance of the error terms, sigma2.

proc mcsum(param,x,beta,sigma2);
local *;

format 8,5;
"True parameters: " beta’;; sigma2;
"Mean of estimates: " meanc(param’)’;
"Max of estimates: " maxc(param’)’;
"Min of estimates: " minc(param’)’;
"True variances: " diag(sigma2*inv(x’x))’;
"Estimated variances:" (stdc(param’)^2)’;

format 8,2;
"Sample Size: " rows(x);
"Number of Samples: " cols(param);
retp("");

endp;

Print out a summary of the results of your Monte Carlo experiment.

mcsum(est,x,beta,2);

If you don’t get a nice table of results check to make sure everything is typed as
it should be, including the transpose operators. Your results should be identical
to those reported in Chapter 5.10.2 in ITPE2.
Use PROC HISTP to obtain histograms for each set of parameter estimates.

{ c1,m1,freq1 } = histp(est[1,.]’,30);
{ c2,m2,freq2 } = histp(est[2,.]’,30);
{ c3,m3,freq3 } = histp(est[3,.]’,30);
{ c4,m4,freq4 } = histp(est[4,.]’,30);

CHAPTER 5. LINEAR STATISTICAL MODELS 41

Increase the sample size to T=40, and the number of samples to NSAM = 250
and repeat the exercise. What happens to the average parameter estimates and
their variances?

Chapter 6

The Normal General Linear
Model

In this Chapter of ITPE2 the linear statistical model of Chapter 5 is analyzed
with the additional assumption that the random disturbances follow a normal
distribution.

6.1 Maximum Likelihood Estimation

The maximum likelihood estimators of the parameters β and σ2 of the normal
linear model are presented in Sections 6.1-6.1.4. We begin by examining the
Monte Carlo results in Section 6.1.5. These simulations will use the 10,000
random numbers in the GAUSS data file NRANDOM.DAT. In the experiments
the variance of the disturbance term is to be .0625. Thus the N(0,1) random
numbers will be multiplied by sqrt(.0625). The X matrix is the same one used
in Chapter 5 and is in the file JUDGE.X. The true betas are 10.0, 0.4 and 0.6
as in Chapter 5.
First, create one sample of size T = 20, print out the sample values y, the N(0,1)
deviates and X, as in Equation 6.1.27.

t = 20; /* number of obs. */

k = 3; /* number of regressors */

nsam = 1; /* number of samples */

nr = t*nsam; /* total obs. to read */

open f1 = nrandom.dat; /* open file */

e = readr(f1,nr); /* read nr obs. */

f1 = close(f1); /* close file */

u1 = (reshape(e,nsam,t))’; /* u1 is (T x NSAM) */

e1 = sqrt(.0625)*u1; /* adjust variance */

load x[t,k] = judge.x; /* load X */

let beta = 10.0 0.4 0.6; /* true beta */

y1 = x*beta + e1; /* create y */

42

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 43

format 9,6; /* print */

y1~u1~x; /* Eq. 6.1.27 */

Now carry out a Monte Carlo experiment using NSAM = 10 samples. Do the
Monte Carlo experiments using PROC MC written for Chapter 5. You must
place the proc in memory or it must be in a file (MC.G) that can be found by
the GAUSS auto-loading feature.

nsam = 10; /* number of samples */

nr = t*nsam; /* number of obs. */

open f1 = nrandom.dat; /* open file */

e = readr(f1,nr); /* read nr obs. */

f1 = close(f1); /* close file */

u = (reshape(e,nsam,t))’; /* u is (T x 10) */

e = sqrt(.0625)*u; /* adjust variance */

{b,sighat2} = mc(x,beta,e); /* execute monte carlo */

Print out the estimates and compare them to Table 6.1 in ITPE2.

format 8,5;
b’~sighat2;

Calculate the true covariance matrix and examine it.

ixx = invpd(x’x);

ixx; /* Eq. 6.1.28 */

truecov = .0625 * ixx;

truecov; /* Eq. 6.1.30 */

Calculate the estimated variances of the parameter estimators for these samples
and compare the true and estimated variances to those in Table 6.2.

truevar = diag(truecov);

estvar = diag(ixx) .* sighat2’;

truevar’;

?;

estvar’; /* Table 6.2 */

Now carry out the experiment using NSAM = 500 samples, breaking the com-
putations into two parts as we did in Chapter 5. First construct, and SAVE,
the matrices of N(0,1) random numbers in this convenient form for later use.
They will be given a .FMT extension and can be LOADed when needed in later
chapters.

nsam = 250; /* number of samples */

nr = t*nsam; /* obs. to read */

open f1 = nrandom.dat; /* open file */

e1 = readr(f1,nr); /* read 250 samples */

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 44

e2 = readr(f1,nr); /* read 250 samples */

f1 = close(f1); /* close file */

e1 = (reshape(e1,nsam,t))’; /* e1 is (T x 250) */

e2 = (reshape(e2,nsam,t))’; /* e2 is (T x 250) */

save e1nor = e1; /* saved to e1nor.fmt */

save e2nor = e2; /* saved to e2nor.fmt */

Transform the errors to have the desired variances

e1 = sqrt(.0625)*e1; /* change variances */

e2 = sqrt(.0625)*e2;

Execute the Monte Carlo.

{b1,s1} = mc(x,beta,e1); /* execute monte carlo */

{b2,s2} = mc(x,beta,e2);

Stack the regression parameter estimates into one (K x NSAM) matrix and the
estimates of the error variance into a (1 x NSAM) vector for use throughout the
rest of this chapter.

b = b1~b2; /* b is (K x 500) */

sighat2 = s1’~s2’; /* sighat2 is (1 x 500) */

Stack all the estimates into one matrix and clear memory of unneeded matrices.

param = b|sighat2;

e1 = 0; e2 = 0; /* clear memory */

b1 = 0; b2 = 0;

s1 = 0; s2 = 0;

Print out a summary of the Monte Carlo results using PROC MCSUM written
in Chapter 5, and compare the results to those on page 232 of ITPE2.

mcsum(param,x,beta,.0625); /* summarize results */

Use GAUSS’s QUICK GRAPHICS to construct histograms similar to Figures
6.1 - 6.4 in ITPE2. Use 30 intervals. Your graphs will not look exactly like
those in text as GAUSS will form partitions of the data that are not the same
as those in the text.

library qgraph;

{ c1,m1,freq1 } = histp(b[1,.]’,30); /* Figure 6.1 */

{ c2,m2,freq2 } = histp(b[2,.]’,30); /* Figure 6.2 */

{ c3,m3,freq3 } = histp(b[3,.]’,30); /* Figure 6.3 */

The histogram for the estimated variances uses the Chi-squared random variable
(T −K) ∗ σ̂2/.0625.

chi2var = (t - k)*(sighat2’)/.0625;

{ c4,m4,freq4 } = histp(chi2var,30); /* Figure 6.4 */

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 45

6.2 Restricted Maximum Likelihood Estimation

In this Section exact linear restrictions are imposed on the Maximum Likelihood
or Least Squares estimators and the consequences studied. Write a procedure,
PROC RLS, that computes the restricted least squares parameter estimates
given b, the least squares estimates, r the (J x K) information design matrix,
rr a (J x 1) vector of known constants (the right-hand-side of Equation 6.2.1,
and the design matrix x.

proc rls(b,r,rr,x);
local *;
ixx = invpd(x’x);
q = invpd(r*ixx*r’);
bstar = b + ixx*r’*q*(rr-r*b);
retp(bstar);

endp;

Use PROC RLS to calculate restricted least squares estimates for the example
in Section 6.2.3 in ITPE2 using the NSAM = 500 ML/LS estimates b from the
Monte Carlo experiment in Section 6.1.

let r[1,3] = 0 1 1;
rr = 1;
bstar = rls(b,r,rr,x);

Calculate the mean values of the RLS estimates and compare them to the true
values. The average value of the restricted intercept in the text is incorrect due
to a typographical error.

format 8,4;
meanc(bstar’);

Calculate the average value of the estimated RLS covariance matrices. As an
estimator of the error variance used the unbiased estimates sighat2. Use a
DO-LOOP to carry out the computations. To speed up execution compute the
“fixed” part of the covariance matrix (See Equation 6.2.17) outside the loop.

c = ixx - ixx*r’*invpd(r*ixx*r’)*r*ixx;
ind = 1;
covbstar = zeros(k,k);

do while ind le 500;
covbstar = covbstar + (sighat2[1,ind] .* c)/500;
ind = ind+1;
endo;

Print out the average covariance matrix and compare it to (6.2.22).

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 46

covbstar;

Compute the true covariance matrix of the restricted least squares estimator
and compare it to the average.

covrls = .0625 * c;

Finally compute the “empirical” estimator variances and compare them to the
true and average values.

stdc(bstar’)^2;

6.3 Interval Estimation

6.3.1 Single Linear Combination of the Beta Vector

For interval estimation the inverse of the cumulative distribution function is
typically needed. Write a function to estimate the inverse of the Student’s-
t distribution. Within the function a sequence of t-values will be computed,
and the value closest to the specified alpha will be found using the MININDC
function. The corresponding t-value is then computed.

fn invt(df,alpha) = .995 +
.005*minindc(abs(cdftc(seqa(1,.005,500),df) - alpha));

Use the function to compute the t-statistic for α level = 0.025 and T - K degrees
of freedom with T = 20 and K = 3, and check it using CDFTC.

tstat = invt(t - k,.025);
tstat cdftc(tstat,t - k);

Compute the 95(6.1.26) using the estimates b from the 500 Monte Carlo samples.
See Equation 6.3.7b. Note that these statements compute the intervals for all
500 samples but can be used for a single sample as well.

akk = sqrt(diag(ixx));
width = (tstat * akk) .* sqrt(sighat2);
lb = b - width;
ub = b + width;

Print out the point estimates and confidence intervals for β1 and β2 for the first
10 samples, as in Table 6.3

((b[1,1:10]|lb[1,1:10]|ub[1,1:10])’); /* table 6.3 */

((b[2,1:10]|lb[2,1:10]|ub[2,1:10])’);

Compute the percent of the 500 samples in which the true value of the parameter
is contained within the interval for each parameter.

within = (lb .<= beta) .and (ub .>= beta);
meanc(within’)’;

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 47

6.3.2 Two or More Linear Combinations of the Beta Vec-
tor

We will compute and graph a joint confidence interval for β2 and β3 using PROC
CONFID written in Chapter 3.
To compute the necessary F-statistic write a function to compute the inverse of
the F-distribution c.d.f.

fn invf(df1,df2,alpha) = 0.95 + 0.05*
minindc(abs (
cdffc(seqa(1,.05,2000),df1,df2)

- alpha));

Use the function to compute the .05 critical value for 2 and T - K degrees of
freedom, and check it using CDFFC.

fstat = invf(2,t - k,.05);
fstat cdffc(fstat,2,t - k);

Use the estimates from the first Monte Carlo sample and compute the values
needed for the joint confidence interval for β2 and β3.

b1 = b[.,1];
sig1 = sighat2[1,1];
cov1 = sig1*ixx;

let pos = 3 2;
d = confid(b1,cov1,fstat,pos);

So that the scale of the graph will be consistent with that in the text use the
QUICK GRAPHICS function SCALE.

library qgraph;
let xx = 0 1.1;
let yy = 0 1.1;
scale(xx,yy);

Graph the confidence ellipse.

xy(d[.,1],d[.,2]);

Reset the default QUICK GRAPHICS parameter values using GRAPHSET.

graphset;

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 48

6.3.3 Interval Estimation of σ2

Write a function to compute the inverse of the Chi-square distribution.

fn invchi(df,alpha) = 0.95 + 0.05*
minindc(abs(
cdfchic(seqa(1,.05,2000),df)

- alpha));

Compute the critical values of the Chi-square distribution with T - K degrees
of freedom for alpha = .025 and .975 and check them.

chi1 = invchi(t - k,.025);
chi2 = invchi(t - k,.975);
chi1 chi2;
cdfchic(chi1,t - k) cdfchic(chi2,t - k);

Compute the confidence intervals for σ2 (See Equation 6.3.15) and print out the
point estimates and intervals for the first 10 samples, as in Table 6.4.

lb = (t - k)*sighat2/chi1;

ub = (t - k)*sighat2/chi2;

(sighat2[1,1:10]|lb[1,1:10]|ub[1,1:10])’; /* table 6.4 */

Compute the percent of the 500 intervals that contain the true value of σ2.

within = (lb .<= .0625) .and (ub .>= .0625);
meanc(within’);

6.3.4 Prediction Interval Estimator

Compute the 95% prediction interval for y0 if x1 = x2 = x3 = 1. See Equation
6.3.21 in the text. Use the first Monte Carlo sample.

let x0 = 1 1 1;
tstat = invt(t - k,.025);
width = tstat*sqrt(x0’ixx*x0 + 1) .* sqrt(sighat2[1,1]);
y0hat = x0’b[.,1];

Print out the lower bound, point estimate and upper bound.

(y0hat-width)~y0hat~(y0hat+width);

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 49

6.4 Hypothesis Testing

6.4.1 The Likelihood Ratio Test Statistic

Test the joint hypotheses that β2 = 0.4 and β3 = 0.6. First construct the matrix
r and the vector rr that describe the constraint to test.

let r[2,3] = 0 1 0
0 0 1;

let rr = 0.4 0.6;

Write the function LAMBDA to compute the F-statistic for a given r, rr, b and
ixx (the inverse of X ′X). See Equation 6.4 7 in the text.

fn lambda(r,rr,b,ixx,sighat2) =
(r*b - rr)’inv(r*ixx*r’)*(r*b - rr)/(rows(rr)*sighat2);

Compute the F-statistic and its significance level for the first Monte Carlo sam-
ple.

lam = lambda(r,rr,b[.,1],ixx,sighat2[1,1]);
j = rows(rr);
lam cdffc(lam,j,t - k);

What conclusion about the hypothesis would you make on the basis of this
sample of data?
The function LAMBDA computes the value of the likelihood ratio test statistic
for a single sample of data. In order to calculate the values of the test statistic
for all 500 Monte Carlo samples use a DO-LOOP.

lam = zeros(500,1); /* storage matrix */

ind = 1; /* begin loop */

do while ind le 500;

lam[ind,1] = lambda(r,rr,b[.,ind],ixx,sighat2[1,ind]);

ind = ind + 1;

endo;

Print out the values for the first 11 samples and compare with the 5value of a
F(2,17) distribution, 3.59.

lam[1:11,1]’;

Compute the percent of test statistic values that are less than or equal to 3.59

meanc(lam .<= 3.59);

Plot the histogram for the test statistics as in Figure 6.9.

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 50

v = seqa(1,1,7);
{ c,m,freq } = histp(lam,v);

Compute the percent of test statistic values that fall in the intervals [0,1], (1,2],
..., (6,7]. The percentages reported in the text appear to be incorrect.

(freq’/500);

6.4.2 A Single Hypothesis

A t-test is used to test a single hypothesis. Write a function to compute the
test statistic given in Equation 6.4.25.

fn ttest(r,rr,b,ixx,sighat2) =

(r*b - rr)./sqrt(sighat2*r*ixx*r’);

Test the hypothesis that β1 is 10 using the first Monte Carlo sample.

let r[1,3] = 1 0 0 ;
rr = 10;
ts = ttest(r,rr,b[.,1],ixx,sighat2[1,1]);
ts cdftc(ts,t - k);

Test the hypothesis that the sum of β2 and β3 is one.

let r[1,3] = 0 1 1 ;
rr = 1;
ts = ttest(r,rr,b[.,1],ixx,sighat2[1,1]);
ts cdftc(ts,t - k);

Do you reject, or not, the hypothesis?
Perform t-tests for the hypotheses that each of the parameters are equal to their
true values for the 500 Monte Carlo samples.

stderr = sqrt(diag(ixx) .* sighat2);
tval = (b - beta) ./ stderr;

Print out the t-values for the first 10 samples.

tval[.,1:10]’;

Compute the percent of test values that exceed the 5% critical value, 2.11.

meanc((abs(tval) .>= 2.11)’)’;

Graph a histogram of the test statistic values for each parameter and compare
to Figures 6.10 - 6.12. Once again your graphs will not be exactly the same as
those in the text due to different partitioning of the horizontal axis.

{ c1,m1,freq1 } = histp(tval[1,.]’,30);
{ c2,m2,freq2 } = histp(tval[2,.]’,30);
{ c3,m3,freq3 } = histp(tval[3,.]’,30);

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 51

6.4.3 Testing a Hypothesis about σ2

Test the hypothesis that σ2 = .0625, using Equation 6.4.28 in the text for the
first Monte Carlo Sample.

chistat = (t - k)*sighat2[1,1]/.0625;
chistat cdfchic(chistat,t - k);

Repeat the test for all the Monte Carlo samples and print out the test statistic
values for the first 10 samples.

chistat = (t - k)*sighat2’/.0625;
chistat[1:10,1];

Compute the fraction of the sample values in which the hypothesis is not re-
jected.

meanc((chistat .> 7.56) .and (chistat .< 30.19));

Graph the empirical distribution of the test statistic.

{ c4,m4,freq4 } = histp(chistat,30);

6.5 Summary Statement

Section 6.5 contains a summary of the contents of Chapter 6. It is a convenient
place to update PROC MYOLS written in Chapter 5. Add t-statistics to test
the hypotheses that the parameters, individually, are zero.
Your program should look something like the following.

proc(2) = myols(x,y);
local *;

t = rows(x);
k=cols(x);
df = t - k;

b = y/x;
ehat = y - x*b;
sse = ehat’ehat;
sighat2 = sse/df;

covb = sighat2*invpd(x’x);
stderr = sqrt(diag(covb));
tstat = b./stderr;

ybar = meanc(y);

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 52

sst = y’y - t*(ybar^2);
r2 = 1 - (sse/sst);
rbar2 = 1 - (t - 1)*(1 - r2)/df;

format 8,2;
"Number of observations: " t;
"Degrees of freedom: " df;

format 10,5;
"Sum of Squared Errors: " SSE;
"Total Sum of Squares: " SST;
"R-squared: " R2;
"R-bar-squared: " Rbar2;
"Sigmahat^2: " sighat2;

"Standard Error: " sqrt(sighat2);
?;
"Coeffs Std. Errs. T-Stats P-value ";
b~stderr~tstat~cdftc(tstat,df);

?;
"Variance-Covariance Matrix for b: ";
covb;

retp(b,covb);
endp;

6.6 Asymptotic Properties of the Least Squares
Estimator

In this Section the asymptotic or large sample distributions of the Least Squares
estimator are studied. Under certain conditions the least squares estimator has
a normal distribution in large samples no matter what the distribution of the
original population.
To examine this phenomenon we will use the Monte Carlo design from Chap-
ter 5.10 which was based on uniform random disturbances with mean zero and
variance 2. Create T = 500 Monte Carlo samples and the least squares esti-
mates from Equation 5.10.1 using PROC MC. Recall that uniform (0,1) random
numbers have been SAVEed to the files E1UNI.FMT and E2UNI.FMT.

t = 20; /* define parameters */

k = 3;

nsam = 500;

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 53

let beta = 10.0 0.4 0.6;

load x[t,k] = judge.x; /* create X */

load e1 = e1uni.fmt; /* create errors */

load e2 = e2uni.fmt;

e1 = sqrt(2)*e1;

e2 = sqrt(2)*e2;

{b1,s1} = mc(x,beta,e1); /* execute Monte Carlo */

{b2,s2} = mc(x,beta,e2);

b = b1~b2; /* stack parameters */

sighat2 = s1’~s2’;

b1 = 0; b2 = 0; /* clear */

s1 = 0; s2 = 0;

Compute the means of the parameter estimates and compare them to the results
in Section 5.10 to verify that they are the same.

meanc(b’) meanc(sighat2’);

The asymptotic distribution result for b in Equation 6.6.21 is made operational
by dropping the “limit” from Q and simplifying. The result is that b is “approx-
imately” normal in large samples with the usual mean and covariance matrix.
Consider the asymptotic distribution of the estimator for β2. Standardize the
random variable by subtracting beta2 from its estimator and dividing by the
true standard error.

ixx = invpd(x’x);
z2 = (b[2,.]’ - beta[2,1])/(sqrt(2*ixx[2,2]));

Calculate the mean and standard deviation of the standardized variable.

meanc(z2) stdc(z2);

Now the question is, what is the probability distribution of z2? If the asymptotic
theory “works” the distribution should be N(0,1), if T = 20 is sufficiently large.
Write a procedure PROC ZGOF to carry out a simple Chi-square “goodness-
of-fit” test, which you studied in your basic statistics course. It compares the
observed to expected frequencies. The test statistic has a Chi-square distribu-
tion if the observed values come from the distribution used to form the expected
frequencies. The hypothesis is rejected if the test statistic is too large. The
PROC ZGOF takes as argument the vector of observed values and prints the
value of the Chi-square statistic (21 degrees of freedom) and the p-value of the
test for a N(0,1) distribution.

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 54

proc zgof(z);

local *;

nsam = rows(z);

v = seqa(-3,.3,21); v = -5|v|5; /* define intervals */

freq = counts(z,v); /* observed freq. */

freq = freq[2:23,.];

cdfval = cdfn(v); /* calc. expected freq. */

prob = cdfval[2:23,.] - cdfval[1:22,.];

expected = nsam * prob;

/* test statistic */

gof = sumc(((freq - expected)^2) ./ expected);

pval = cdfchic(gof,21); /* p-value */

"chi-square statistic : " gof; /* print */

"p-value : " pval;

retp("");

endp;

Place PROC ZGOF in memory and use it to test the distribution of z2, and
clear memory.

zgof(z2);
b = 0; z2 = 0; sighat2 = 0;

As the sample size increases the asymptotic approximation to the distribution
should get better. Try the experiment again for T = 40. Construct the larger x
by stacking x on top of itself. Larger vectors of errors are obtained by stacking
as well.

t = 40;

x = x|x; /* construct X */

e1 = e1[.,1:125]|e1[.,126:250]; /* construct errors */

e2 = e2[.,1:125]|e2[.,126:250];

{b1,s1} = mc(x,beta,e1); /* run Monte Carlo */

{b2,s2} = mc(x,beta,e2);

b = b1~b2; /* stack */

b1=0; b2=0; s1=0; s2=0; /* clear */

ixx = invpd(x’x);

z2 = (b[2,.]’-beta[2,1])/ /* create z2 */

sqrt(2*ixx[2,2]);

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 55

zgof(z2); /* carry out test */

b = 0; z2=0; /* clear */

Repeat for T = 10.

t = 10;

x=x[1:10,.]; /* use 10 rows of X */

load e1 = e1uni.fmt; /* create errors */

load e2 = e2uni.fmt;

e1 = sqrt(2)*e1;

e2 = sqrt(2)*e2;

e1 = e1[1:10,.]~e1[11:20,.];

e2 = e2[1:10,.]~e2[11:20,.];

{b1,s1} = mc(x,beta,e1);

{b2,s2} = mc(x,beta,e2); /* run Monte Carlo */

b = b1~b2; /* stack */

b1 = 0; b2 = 0; s1 = 0; s2 = 0; /* clear */

ixx = invpd(x’x);

z2 = (b[2,.]’ - beta[2,1])/

sqrt(2*ixx[2,2]); /* create z2 */

zgof(z2);

b = 0; z2 = 0; /* carry out test */

At this point you may be questioning how big the sample must be before the
asymptotic distribution starts to take effect. When the errors are independent
and identically distributed uniform random numbers it doesn’t take a very large
sample. But be assured that in most situations you will encounter “asymptotic
normality” does not occur in such small samples. To convince yourself that the
distribution is not approximately normal in samples of all sizes, let T = 5.

t = 5;
x = x[1:5,.];

load e1 = e1uni.fmt;
load e2 = e2uni.fmt;

e1 = sqrt(2)*e1;
e2 = sqrt(2)*e2;

e1 = e1[1:5,.]~e1[6:10,.]~e1[11:15,.]~e1[16:20,.];
e2 = e2[1:5,.]~e2[6:10,.]~e2[11:15,.]~e2[16:20,.];

CHAPTER 6. THE NORMAL GENERAL LINEAR MODEL 56

{b1,s1} = mc(x,beta,e1);
{b2,s2} = mc(x,beta,e2);

b = b1~b2;
b1 = 0; b2 = 0; s1 = 0; s2 = 0;

ixx = invpd(x’x);
z2 = (b[2,.]’-beta[2,1])/

sqrt(2*ixx[2,2]);

zgof(z2);

Chapter 7

Bayesian Inference: II

7.1 Introduction

In this chapter the Bayesian framework of Chapter 4 is extended to the normal
linear statistical model. First, a simple model of the consumption function
with only one coefficient is analyzed. Second, an example of a normal linear
model with more coefficients but a known variance is used. There is a short
digression to consider Bayes’ point estimation before returning to the standard
model with unknown variance. Prior, posterior, and posterior distributions with
non-informative priors are examined.

7.2 A Simple Model

LOAD the data from file TABLE7.1. The first column represents consumption
(Y) and the second column represents income (X). Check the data.

load dat[15,2] = table7.1;
y = dat[.,1];
x = dat[.,2];
format 8,5;
y~x;

Compute the least squares estimate of the marginal propensity to consume, β.

b = y/x; /* Eq. 7.2.2 */
b;

Construct a 95% confidence interval for β, assuming that the variance of the
error term is known and equal to 2.25.

sigma2 = 2.25;
interval = 1.96*sqrt(sigma2/(x’x));
(b - interval)~(b + interval); /* Eq. 7.2.3 */

57

CHAPTER 7. BAYESIAN INFERENCE: II 58

In Section 7.2.1 Bayesian inference with an informative prior is illustrated using
the consumption function model. Suppose that there is a 90% probability that
beta lies between 0.75 and 0.95, as in Equation 7.2.4. Simultaneously solve the
system of equations, below (7.2.5), β̄−1.645∗ σ̄β = .75 and β̄ +1.645∗ σ̄β = .95
for the mean, β̄ and the standard deviation, σ̄β , of the prior distribution.

let a[2,2] = 1 -1.645
1 1.645;

let c = .75 .95;
p = c/a;
bbar = p[1,1];
sigbar = p[2,1];
bbar sigbar; /* Eq. 7.2.6 */

Given the estimates of β̄ and σ̄, compute the probability that β > 1.

z = (1-bbar)/sigbar;
cdfnc(z);

Compute the probability that β < 0. (You answer here differs somewhat from
text because of rounding error.)

z = (0 - bbar)/sigbar;
cdfn(z);

Compute the mean and variance of the posterior distribution, where ho is the
precision of the prior information, hs is the precision of the sample information,
and h1 is the precision of the posterior information. See Equations 7.2.11 and
7.2.12 in the text. Compare your results to those on page 280 of the text.

h0 = 1/(sigbar^2);
h0;

hs = (x’x)/sigma2;
hs;

bdb = (hs*b + h0*bbar)/(hs + h0); /* Eq. 7.2.11 */
bdb;

h1 = h0 + hs;
h1;

sdb2 = 1/h1; /* Eq. 7.2.12 */
sdb = sqrt(sdb2);
sdb;

Examine the prior and posterior distributions. See Figure 7.1 in the text. First
write a function to compute the p.d.f. for the normal distribution using the
standard normal p.d.f.

CHAPTER 7. BAYESIAN INFERENCE: II 59

fn pdfnorm(mean,std,b) = pdfn((b-mean)./std)./std;

Create a sequence of βs in the relevant range, and compute the prior p.d.f., and
graph.

bvec = seqa(.6,.005,101);
library qgraph;
pdfprior = pdfnorm(bbar,sigbar,bvec); /* Eq. 7.2.9 */
xy(bvec,pdfprior);

Compute the posterior p.d.f. and graph it with the prior.

pdfpost = pdfnorm(bdb,sdb,bvec); /* Eq. 7.2.13 and */
xy(bvec,pdfprior~pdfpost); /* Eq. 7.2.15 */

Bayesian inference with a noninformative prior is treated in Section 7.2.2. Graph
the posterior distribution with a noninformative prior, in addition to the distri-
butions graphed above. (See Figure 7.2 in the text.)

varx = sigma2/(x’x);
pdfnon = pdfnorm(b,sqrt(varx),bvec); /* Eq. 7.2.21 */
xy(bvec,pdfprior~pdfpost~pdfnon); /* Eq. 7.2.22 */

7.3 Bayesian Inference for the General Lineral
Model with Known Disturbance Variance

In this Section the posterior distribution for vector of linear model parameters
is derived under the assumption that the error variance σ2 is known. If the prior
distribution for the regression parameters is multivariate normal the posterior
distribution is also shown to be multivariate normal. If the prior distribution
is noninformative the posterior distribution is proportional to the likelihood
function and again multivariate normal.

7.4 An Example

To illustrate the use of a natural conjugate prior a Cobb-Douglas production
function is hypothesized. See Equations 7.4.1 and 7.4.2.
Prior information is such that P (.2 < β2 < .8) = P (.2 < β3 < .8) = .9.
Compute the implied mean and variance using the following equations: β̄2 −
1.645σ̄β2 = 0.2 and β̄2 + 1.645σ̄β2 = 0.8. These equations are a representation
of Equation 7.4.9.

let a[2,2] = 1 -1.645
1 1.645;

let c = 0.2 0.8;
p = c/a;

CHAPTER 7. BAYESIAN INFERENCE: II 60

bbar2 = p[1,1];
sbar2 = p[2,1];
sbar22 = sbar2^2;
bbar2 sbar2 sbar22; /* See Eq. 7.4.10 */

Prior information also implies that P (−10 < β1 < 20) = .9. Solve these two
equations simultaneously: β̄1 − 1.645σ̄β1 = −10 and β̄1 + 1.645σ̄β1 = 20. These
equations come from Equation 7.4.6.

let c = -10 20;
p = c/a;
bbar1 = p[1,1];
sbar1 = p[2,1];
sbar11 = sbar1^2;
bbar1 sbar1 sbar11; /* See Eq. 7.4.12 */

To compute the covariance for β2 and β3 use the prior information that P (.9 <
β2+β3 < 1.1) = .9. First, solve these two equations: β2 + β3−1.645σ̄β2+β3 = 0.9
and β2 + β3 + 1.645σ̄β2+β3 = 1.1

let c = 0.9 1.1; /* See Eq. 7.4.4 */
p = c/a;
bbar23 = p[1,1];
sbar23 = p[2,1];
bbar23 sbar23;

Use the definition of the variance of a sum to compute the covariance:

cov23 = (sbar23*sbar23 - 2*sbar2*sbar2)/2;
cov23; /* Eq. 7.4.14 */

Create the variance-covariance matrix for β, noting that β2 and β3 are assumed
to have the same prior distribution. See Equation 7.4.15 in the text.

vcbar = sbar11~ 0~ 0
|0~ sbar22~ cov23
|0~ cov23~ sbar22;

vcbar;

Construct a vector of prior means.

bbar = bbar1|bbar2|bbar2;
bbar;

Now LOAD the data in file TABLE7.2, define ypf to be the vector of observa-
tions on the dependent variable and xpf to be the matrix of regressor values.

CHAPTER 7. BAYESIAN INFERENCE: II 61

load dat[20,4] = table7.2;
ypf = dat[.,1];
xpf = dat[.,2:4];
ypf~xpf;

Compute the least squares estimator and its covariance matrix. Assume that
σ2 is known and equal to .09.

b = ypf/xpf;
b’; /* Eq. 7.4.16 */

sigma2 = 0.09;
sigma = sqrt(sigma2);
varcov = sigma2*invpd(xpf’xpf); /* Eq. 7.4.17 */

Compute the mean and covariance matrix for the posterior distribution. See
Equations 7.4.18 and 7.4.19 in the text.

vcdb = inv(invpd(vcbar) + (xpf’xpf)/sigma2);
vcdb;
?;
bdb = vcdb* (invpd(vcbar)*bbar + ((xpf’xpf)/sigma2)*b);
bdb’;

Graph the marginal prior and posterior parameter distributions. Begin with the
prior distribution for β2, as in Figure 7.3 in the text.

bvec = seqa(0,.01,101);
pdfprior = pdfnorm(bbar2,sbar2,bvec);
xy(bvec,pdfprior);

Now add the posterior distribution.

pdfpost = pdfnorm(bdb[2,1],sqrt(vcdb[2,2]),bvec);
xy(bvec,pdfprior~pdfpost);

Repeat the exercise for β3. Recall that the prior distributions for β2 and β3 are
identical.

pdfpost = pdfnorm(bdb[3,1],sqrt(vcdb[3,3]),bvec);
xy(bvec,pdfprior~pdfpost);

Compute the 90% HPD interval for β2 using the prior and posterior densities.

(bbar2 - 1.645*sbar2)~(bbar2 + 1.645*sbar2);
interv = 1.645*sqrt(vcdb[2,2]);
(bdb[2,1] - interv)~(bdb[2,1] + interv);

CHAPTER 7. BAYESIAN INFERENCE: II 62

In Chapter 3.6 the relationship between confidence intervals and hypothesis tests
is explored. Here a PROC is given that provides a basis for graphing Figure
3.19 in ITPE2. It can be used to plot confidence ellipses for two means, β2 and
β3, of a joint normal distribution. PROC CONFID takes four arguments: (1) b,
the estimates of the means; (2) varcov, the variance- covariance matrix of the
parameter estimates; (3) fstat, the relevant test statistic value, which here is
the chi-square value divided by 2; and (4) pos, a (2 x 1) vector containing the
positions of values of β2 and β3 in the vector of estimates β. The procedure
returns a matrix with two columns–the values to be used in plotting the confi-
dence ellipse. Store the PROC for later use, perhaps in the SRC subdirectory
as file confid.g so that it can be automatically “loaded” when called. See your
GAUSS manual about automatic loading of procedures.

proc CONFID(b,varcov,fstat,pos);
local *;

b1 = b[pos[1,1],1];
b2 = b[pos[2,1],1];
R = zeros(2,rows(b));
R[1,pos[1,1]] = 1;
R[2,pos[2,1]] = 1;

A = inv(R*varcov*R’);

q = a[1,1]*a[2,2] - a[1,2]*a[1,2];
lb = b2 - sqrt(2*fstat*a[1,1]/q);
ub = b2 + sqrt(2*fstat*a[1,1]/q);
beta2 = seqa(lb,(ub-lb)/100,101);

csq = (b2 - beta2)^2*(- q/a[1,1]^2)
+ fstat*2/a[1,1];

c = sqrt(abs(csq));

beta1a = b1 + (b2-beta2)*a[1,2]/a[1,1] + c;
beta1b = b1 + (b2-beta2)*a[1,2]/a[1,1] - c;

retp((beta2|rev(beta2))~(beta1a|rev(beta1b)));
endp;

\

Compute and graph the joint 95% HPD region for β2 and β3 and again compare
the prior with the posterior results. You will need to load the procedure PROC
CONFID into memory. Or it must be in file that can be found by GAUSS’S
autoloading feature. The procedure takes four arguments. The first is the

CHAPTER 7. BAYESIAN INFERENCE: II 63

entire vector of means of the coefficients. The second argument is the variance-
covariance matrix, the third the statistic value, which in this case is χ2/2. Last
is a vector containing the positions of the parameters to use, in this case 2 and
3. Begin with the confidence region from he prior distribution. Compare to
Figure 7.4.

let pos = 2 3;
d = confid(bbar,vcbar,5.99/2,pos);
xy(d[.,1],d[.,2]);

Now add the confidence region for the posterior distribution.

d1 = confid(bdb,vcdb,5.99/2,pos);
d = d~d1;
xy(d[.,1 3],d[.,2 4]);

7.5 Point Estimation

Simulate data to compute the empirical Bayes’ estimation. (See Section 7.5.2
of the text.) First create a (20 x 4) matrix of normally distributed error terms
with a variance equal to 2.

k = 4;
n = 20;
ssq = 2;
e = sqrt(ssq)*rndn(n,k);

Assume that the (K x 1) vector of βs has a mean of µ and variance τ2. Create
a vector beta. See Equation 7.5.19 in the text.

tau2 = 4;
mu = 2;
beta = mu + sqrt(tau2)*rndn(4,1);
beta’;

Use the vector beta and matrix e to create a matrix of observations, y.

y = beta’ + e;

The least squares estimator is the vector of sample means. See Equation 7.5.12.

ybar = meanc(y);
ybar’;

How do these values compare with the true βs?
The estimate for µ is the sample mean of ȳ. See the discussion following Equa-
tion 7.5.21 in the text.

CHAPTER 7. BAYESIAN INFERENCE: II 64

ydb = meanc(ybar);
ydb;

How does ydb compare with the true value of µ = 2?
An estimate of the weight attached to µ when computing the posterior mean is:
(See Equation 7.5.24 in the text.)

wt = ((k-3)*sigma2/n)/(sumc((ybar - ydb)^2));
wt;

The empirical Bayes’ estimator is computed from Equation 7.5.25 in the text.

bdb = wt*ydb + (1-wt)*ybar;
bdb’;

7.6 Comparing Hypotheses and Posterior Odds

Here we continue the production function example. Make sure YPF, XPF, B,
BBAR, VCBAR, and SIGMA2 from Section 7.4 above are in memory.

ypf; xpf; b; bbar; vcbar; sigma2;

From the discussion following Equation 7.6.10 in the text, compute the matrix
a.

a = invpd(vcbar/sigma2);

Compute rss1 and q1 from Equations 7.6.13 and 7.6.14.

rss1 = (ypf - xpf*b)’(ypf - xpf*b);

q1 = (b-bbar)’(inv(inv(A)+inv(xpf’xpf)))*(b-bbar);

Define q and z using Equation 7.6.17.

q = ypf - xpf[.,3];
z = xpf[.,1]~(xpf[.,2] - xpf[.,3]);

Define gbar, ghat, and bb (B in the text). See the discussion following Equation
7.6.18 and before 7.6.21.

gbar = bbar[1 2,.];
bb = invpd(vcbar[1 2,1 2]/sigma2);
ghat = z’q/z’z;

From Equations 7.6.21 and 7.6.22, compute rss0 and q0.

rss0 = (q - z*ghat)’(q - z*ghat);
q0 = (ghat-gbar)’(invpd(invpd(bb)+invpd(z’z)))*

(ghat-gbar);

CHAPTER 7. BAYESIAN INFERENCE: II 65

Last, using Equation 7.6.24 compute the posterior odds ratio given a prior odds
ratio of unity.

t1 = sqrt(det(bb)/(det(bb + z’z)));
t2 = sqrt(det(a)/ (det(a + xpf’xpf)));
k01 = (t1/t2)*exp(-(rss0-rss1+q0-q1)/(2*sigma2));
k01;

Compute the chi-square statistic which would be calculated if the same test
were performed within a sampling theory framework. (See Equation 7.6.27.)

chi = (rss0 - rss1)/sigma2;
chi cdfchic(chi,1);

7.7 Bayesian Inference for the General Linear
Model with Unknown Disturbance Variance

Continue the production function example from Section 7.5, now assuming that
the disturbance variance is unknown.
As in Section 4.4 (page 143), solve for the parameters of the inverted gamma,
on the assumption that cdfchic(s/.09,v) = .5 and cdfchic(s/(.652),v) = .95. Do
so by creating a matrix of possible values of s and v and finding the pair that
comes closest to simultaneously satisfying the two equations.

v = seqa(1,1,10);
ssq = seqa(.05,.0001,300);
r = v.*ssq’;
q = abs(cdfchic(r/.09,v) - .5) +

abs(cdfchic(r/(.65^2),v) - .95);
i = minindc(minc(q));
j = minindc(minc(q’));
vbar = v[j,1];
sbarsq = ssq[i,1];
vbar sbarsq;
sbar = sqrt(sbarsq);

Compute the mean and mode for the prior density for σ using Equations 4.4.8,
on page 142.

mean = sqrt(vbar/2)*gamma((vbar-1)/2)*sbar/gamma(vbar/2);
mode = sqrt(vbar/(vbar + 1))*sbar;
mean mode;

Compute the mean of the posterior distribution. See Equation 7.7.10.

adb = inv(a + xpf’xpf);
bdb = adb*(a*bbar + xpf’xpf*b);

CHAPTER 7. BAYESIAN INFERENCE: II 66

Using Equation 7.7.13 in the text, compute the posterior parameter vdb.

T = rows(ypf);
vdb = T + vbar;

Compute the posterior parameter sdb2 using vdb and Equation 7.7.11.

sdb2 =
(vbar*sbarsq+ypf’ypf+bbar’A*bbar-bdb’*

(A+xpf’xpf)*bdb)/vdb;

Graph the marginal prior and posterior distributions for σ2 using the inverted
gamma p.d.f., given in Equation 7.7.4. In addition, graph the posterior distribu-
tion assuming a noninformative prior. Begin by writing a function to compute
the p.d.f of the inverted gamma.

fn igamma(sigma,v,s) =
2/(gamma(v/2)) * (v*s*s/2)^(v/2) *
(1./sigma^(v+1)) .* exp(-v*s*s./(2*sigma.*sigma));

Create a vector of σs in the relevant range, compute the p.d.f. for the marginal
prior, and graph. See Figure 7.7.

sigma = seqa(.001,.01,80);
priors = igamma(sigma,vbar,sbar);
xy(sigma,priors);

Now add the marginal posterior distribution for σ.

posts = igamma(sigma,vdb,sqrt(sdb2));
xy(sigma,priors~posts);

Next compute some parameters needed for the posterior distribution with a non-
informative prior (nonis), compute it, and add it to the graph. See Section 7.7.4
and the definitions below Equation 7.7.34.

k = rows(b);
ssq = (ypf - xpf*b)’(ypf - xpf*b)/(t - k);
nonis = igamma(sigma,t-k,sqrt(ssq));
xy(sigma,priors~posts~nonis);

Graph the prior and posterior distributions for β2. Consider both an informa-
tive and non-informative prior. See Equations 7.7.26 and 7.7.27. First write
the probability density function for the t-distribution: µ is the mean, h is the
precision, v is the degrees of freedom and x is the value of the random variable.
The formula comes from Equation 7.7.19 with p = 1.

fn pdft(u,h,v,x) =
gamma((v+1)/2)*(1/(gamma(.5)*gamma(v/2)))*sqrt(h/v)
* (1 + (h*(x-u)^2)/v)^(-(v+1)/2);

CHAPTER 7. BAYESIAN INFERENCE: II 67

Specify a vector of b’s in the relevant range and graph the prior distribution.

ainv = inv(a);
bvec = seqa(0,.01,100);
priorb = pdft(bbar[2,.],1/(sbarsq*ainv[2,2]),vbar,bvec);
xy(bvec,priorb);

Now add the posterior distribution to the graph.

postb = pdft(bdb[2,.],1/(sdb2*adb[2,2]),vdb,bvec);
xy(bvec,priorb~postb);

Compute the parameters for the posterior with a non-informative prior, and
include it in the graph. See Equation 7.7.37.

ixx = invpd(xpf’xpf);
nonib = pdft(b[2,1],1/(ssq*ixx[2,2]),T-k,bvec);
xy(bvec,priorb~postb~nonib);

Do the same for β3.

priorb = pdft(bbar[3,1],1/(sbarsq*ainv[3,3]),vbar,bvec)
xy(bvec,priorb);

postb = pdft(bdb[3,1],1/(sdb2*adb[3,3]),vdb,bvec)
xy(bvec,priorb~postb);

nonib = pdft(b[3,1],1/(ssq*ixx[3,3]),T-k,bvec);
xy(bvec,priorb~postb~nonib);

Compute and graph confidence intervals for β2 and β3 using the informative
prior distribution, as in Figure 7.8 in the text.

vcbar = sbarsq*ainv;
vcdb = sdb2*adb;
let pos = 2 3;
d = confid(bbar,vcbar,6.94,pos);
xy(d[.,1],d[.,2]);

Now add the confidence region using the posterior distribution.

d1 = confid(bdb,vcdb,3.40,pos);
d = d~d1;
xy(d[.,1 3],d[.,2 4]);

Can you add the confidence region using the posterior with a non-informative
prior to the graph? (Hint: F(2,17) = 3.59, the variance-covariance matrix is
ssq*ixx, and the parameter estimates are in b.)

Chapter 8

General Linear Statistical
Model

In this chapter the classical linear regression model is generalized by considering
situations where the error covariance matrix is not equal to a scalar times an
identity matirx, i.e., Cov(e) 6= σ2IT

8.1 The Statistical Model and Estimators

In this chapter you will create a data set in which the error terms are first- order
autoregressive. The parameters are then estimated using ordinary least squares
and generalized least squares. A Monte Carlo study allows you to carefully
compare the characteristics of the two procedures and to see the pitfalls in
using ordinary least squares inappropriately.
The Monte Carlo experiment will be set up as in Section 8.1.5 in ITPE2. The
design matrix X and the true parameter vector β are as in Chapter 6.

t = 20;
k = 3;
load x[t,k] = judge.x;
let beta = 10.0 0.4 0.6;

Set the parameter ρ = 0.9 and σ2 = .0625.

rho = 0.9;
sigma2 = .0625;

Create the underlying covariance matrix for the error terms, following Equation
8.8.21 in the text. While there are no doubt more clever ways to proceed,
define Ψ to be a (T x T) identity matrix and then simply fill in the off-diagonal
elements with powers of ρ, using nested DO-LOOPS, and taking advantage of
the symmetry of Ψ.

68

CHAPTER 8. GENERAL LINEAR STATISTICAL MODEL 69

psi = eye(t); /* (T x T) identity */

i = 1; /* begin "row" loop */
do while i le t;

j = i + 1; /* begin "col" loop */
do while j le t;

psi[i,j] = rho^(j - i); /* i,j-th element */
psi[j,i] = psi[i,j]; /* j,i-th element */

j = j+1;
endo; /* end column loop */

i = i+1;
endo;

psi = psi ./ (1 - rho^2); /* See Eq. 8.1.21 */

With X given and knowledge of Ψ and σ2 you can compute the true covariance
matrices of both the ordinary least squares and generalized least squares estima-
tors of the parameters. For the ordinary least squares covariance use Equation
8.1.24 in the text:

ixx = invpd(x’x);
covb = sigma2*ixx*x’*psi*x*ixx;
covb;

The covariance of the generalized least squares estimator is computed by Equa-
tion 8.1.23 in the text.

ipsi = invpd(psi);
covbhat = sigma2*invpd(x’*ipsi*x);
covbhat;

Note that the variances (shown on the diagonals of the covariance matrices)
of the generalized least squares estimator are smaller than those of the OLS
estimator.
You can also compute the expected value of the usual estimator of the error
variance, given your special knowledge of the true σ2, as in Equation 8.1.25 of
ITPE2.

tr1 = sumc(diag(psi));
tr2 = sumc(diag(x’*psi*x*ixx));
esighat2 = sigma2*(tr1 - tr2)/(t - k);
esighat2;

CHAPTER 8. GENERAL LINEAR STATISTICAL MODEL 70

How does the expected value of the biased estimator of the variance compare
with the true value of σ2 = 0.0625?
The most complicated part of simulating the data generation process is creating
the error terms. Make use of the fact that the autocorrelated error, et = et−1 +
vt, can be created using a normally distributed error term, estar, with mean 0
and variance σ2. First create a vector estar using the first 20 “official” normal
random numbers, which have a N(0,1) distribution.

open f1 = nrandom.dat; /* open file */
estar = readr(f1,t); /* read T obs. */
f1 = close(f1); /* close file */
estar = sqrt(sigma2)*estar; /* change variance */

Next use the transformation outlined below Equation 8.1.21 in the text, and
apply it to e. The first element in e is constructed using a special formula.
The remainder can be constructed iteratively using a first order autocorrelation
process.

e = zeros(t,1); /* initialize vector */
e[1,1] = /* create element 1 */

estar[1,1]/sqrt(1 - (rho^2));

i = 2; /* begin loop */
do while i le t;
e[i,1] = rho*e[i-1,1] + estar[i,1]; /* e(i) */
i = i+1;
endo; /* end loop */

e’; /* print */

Given e[1,1] the function RECSERAR, which creates an autoregressive recursive
series, could also be used.

e = recserar(estar,e[1,1],rho);
e’;

Now create the vector y.

y = x*beta + e;

Compute least squares estimates, b and σ̂2.

b = y/x;
b’;
ehat = y - x*b;
sighat2 = ehat’ehat/(t - k);
sighat2;

CHAPTER 8. GENERAL LINEAR STATISTICAL MODEL 71

Use the usual (and in this case, incorrect) formula to compute the covariance
matrix for b. Compare it to the true covariance, E[(b− E(b))(b− E(b))′].

badcovb = sighat2*ixx;
badcovb covb;

Compute generalized least squares estimates, β̂ and σ̂2
g .

ipsi = invpd(psi);
bhat = invpd(x’ipsi*x)*(x’ipsi*y);
eghat = y - x*bhat;
sighatg2 = eghat’ipsi*eghat/(t - k);
sighatg2;

As with LS estimation the GLS estimates could be obtained efficiently using
GAUSS division, “ / ”.

bhat = (x’ipsi*y)/(x’ipsi*x);
bhat;

In the Monte Carlo experiment below, it will be useful to know that an alter-
native way to compute σ̂2

g is:

sighatg2 = sumc((ipsi*eghat) .* eghat)/(t - k);
sighatg2;

Now compute the covariance matrix for the generalized least squares coefficient
estimates, and compare with the true values in covbhat.

ecovbhat = sighatg2*invpd(x’*ipsi*x);
ecovbhat covbhat;

Compare your estimates to correspondents in the first row of Table 8.1 in ITPE2.
They should be the same.
In order to carry out a Monte Carlo study of generalized least squares first write
a procedure to simulate NSAM data sets at one time, compute the least squares
and generalized least squares estimates. The alternative is to use many DO-
LOOPS, which would take considerably longer to execute. PROC MCG takes
as arguments x, beta, rho, and a (T x NSAM) matrix of N(0,σ2) random
disturbances. It returns all the estimates stacked into one matrix. It is long so
place it in a separate file, and then run it.

proc MCG(x,beta,rho,estar);
local t,k,nsam,psi,i,e1,y,b,sighat2,ipsi,bhat,sighatg2;

t = rows(x); /* define constants */
k = cols(x);
nsam = cols(estar);

CHAPTER 8. GENERAL LINEAR STATISTICAL MODEL 72

psi = eye(t); /* create psi */
i = 1;
do while i le t;
j = i+1;
do while j le t;
psi[i,j] = rho^(j - i);
psi[j,i] = psi[i,j];
j = j+1;
endo;
i = i+1;
endo;
psi = psi ./ (1-rho^2);

e1 = estar[1,.]/sqrt(1 - (rho^2)); /* create e */
y = x*beta /* create y */
+ recserar(estar,e1,rho*ones(1,nsam));

b = y/x; /* ols */
sighat2 = sumc((y-x*b).*(y-x*b))/(T-k);

ipsi = invpd(psi); /* gls */
bhat = (x’ipsi*y)/(x’ipsi*x);
sighatg2 = sumc((ipsi*(y - x*bhat)) .*

(y - x*bhat))/(t - k);

retp(b|sighat2’|bhat|sighatg2’);
endp;

Use the procedure to compute estimates for 250 samples. Create the matrix
estar.

load estar = e1nor.fmt;
estar = sqrt(sigma2)*estar;
est = MCG(x,beta,rho,estar);

Print out to the screen the estimates of the first ten samples, where each row
represents the estimates for one sample. Compare these estimates to the values
in Table 8.1.

format 6,4;
est[.,1:10]’;

Add another 250 samples and stack them next to the estimates from the first
250 samples. Then clear estar from memory.

load estar = e2nor.fmt;

CHAPTER 8. GENERAL LINEAR STATISTICAL MODEL 73

estar = sqrt(sigma2)*estar;
est = est~MCG(x,beta,rho,estar);
estar = 0;

Calculate the mean values of the parameter estimates from the 500 samples and
compare them to the true values.

meanc(est’)’;

Compute the true variances of the estimated coefficients using covb and covbhat
computed above. Compare them with the sampling variances from the Monte
Carlo study. Note, the GAUSS function STDC uses divisor NSAM - 1, and
thus we deflate the estimated variances to make them strictly comparable to
the diagonal elements of Equation 8.1.26.

var = diag(covb)|diag(covbhat);
var’;
b = est[1:3 5:7,.];
(stdc(b’)^2)’*(499/500);

Now compute the estimated standard errors using the ordinary least squares
formula.

badse = sqrt(est[4,.].*diag(ixx));

Do the same for the generalized least squares estimated coefficients.

bhatse = sqrt(est[8,.].*diag(invpd(x’ipsi*x)));

Compare mean estimated standard deviations to truth.

sqrt(var)’;
meanc(badse’)’;; meanc(bhatse’)’;

8.2 The Normal Linear Statistical Model

In this Section it is shown that if the random vector of disturbances has a
multivariate normal distribution then the GLS estimator is the same as the
maximum likelihood estimator. The ML estimator of σ2 has the divisor T
rather than T - K.

8.3 Sampling distributions of the Maximum Like-
lihood Estimators

If Ψ is known, the ML estimator of β has a normal distribution with the usual
mean and covariance. Likewise the unbiased estimator of σ2 has a multiple of
a chi-square distribution with (T - K) degrees of freedom.

CHAPTER 8. GENERAL LINEAR STATISTICAL MODEL 74

8.4 Interval Estimators

Given the results in Sections 8.2 and 8.3 it is not surprising that all usual
estimation procdures may be applied, with substitution of the GLS estimators
and the appropriate covariance matrix.

8.5 Hypothesis Testing

Linear hypotheses may be tested in the usual way, again with substitutions of
proper estimators and covariance matrices. Continue the Monte Carlo experi-
ment.
Perform t-tests at the 5% level of significance for each coefficient for each sample.
(See Section 8.5 of the text.) Remember that the computed t-statistic for the
ordinary least squares estimates do not in fact have a t-distribution.

tstat = (est[1:3 5:7,.] - (beta|beta))./(badse|bhatse);
meanc((abs(tstat) .>= 2.11)’)’;

How close are the percentages of times the hypotheses are rejected to the true
probability of 5%?
Graph the distribution of the least squares estimate of β3.

library qgraph;
{ c1,m1,freq1 } = histp(est[3,.]’,30);

Graph the distribution of the generalized least squares estimate of β3.

{ c2,m2,freq2 } = histp(est[7,.]’,30);

Graph the distribution of the least squares t-statistics.

{ c3,m3,freq3 } = histp(tstat[3,.]’,30);

Graph the distribution of the generalized least squares t-statistics.

{ c4,m4,freq4 } = histp(tstat[6,.]’,30);

You can do the same for other parameters.

8.6 The Consequences of Using Least Squares

This section summarizes the material in Chapter 8 regarding the consequences
of using Least Squares estimation rules when Generalized Least Squares is ap-
propriate.

CHAPTER 8. GENERAL LINEAR STATISTICAL MODEL 75

8.7 Prediction

In the context of the Generalized Least Squares model it is sometimes possible
to improve predictions by taking into account relationships, if any, between
current and future observations. The algebra is presented here in some detail
and will be applied in Chapter 9.5.5.

Chapter 9

General Linear Model with
Unknown Covariance

9.1 Background

In this chapter the general linear model is examined and problems associated an
unknown error covariance matrix are treated. The problems of heteroskedasti-
city and autocorrelation are used as examples.

9.2 Estimated Generalized Least Squares

When the error covariance matrix is not known it must be consistently esti-
mated before the generalized least squares estimator can be used. The resulting
estimator is called the Estimated Generalized Least Squares (EGLS) estimator.
In this section the asymptotic properties of this estimator are considered and
algebraic conditions stated under which those properties hold.

9.3 Heteroskedasticity

An example of a heteroskedastic model is given in Section 9.3.7 in ITPE2. In
this example the error term is normal and independently distributed with mean
zero, but the error variance is not constant. Instead the error variance follows
the model of multiplicative heteroskedasticty described in Section 9.3.4
The data contained in Table 9.1 is provided on the disk that accompanies this
book and is contained in the file TABLE9.1. LOAD that data and create the
design matrix X.

load dat[20,5] = table9.1;
format 10,7;
x = ones(20,1)~dat[.,2 3];

76

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE77

Create the vector sigma2 following (9.3.57) and compare to the tabled values.

sigma2 = exp(-3 + 0.3 .* x[.,2]);
sigma2~dat[.,4];

Create the vector y using the given parameter values for β and the first 20
official normal random numbers and compare to the tabled values.

t = rows(x); /* define t */
k = cols(x); /* define k */
let beta = 10 1 1; /* true beta */

open f1=nrandom.dat; /* open file */
e = readr(f1,t); /* read t obs. */
f1 = close(f1); /* close file */

e = sqrt(sigma2) .* e; /* create e */
y = x*beta + e; /* create y */
y~dat[.,1]; /* print y */

Begin by computing the least squares estimates of the coefficients.

b = y/x;
format 8,5; b’; /* Eq. 9.3.58 */

Assuming (incorrectly) that the disturbances are homoskedastic, estimate the
covariance matrix of the estimated coefficients.

ehat = y - x*b;
sighat2 = ehat’ehat/(t-k);
sighat2;

ixx = invpd(x’x);
badcovb = sighat2*ixx;
badcovb; /* Eq. 9.3.59 */

Print out the estimated coefficients in a row, with their (incorrectly) estimated
standard errors beneath them.

b’; /* Eq. 9.3.60 */
sqrt(diag(badcovb))’;

Now compute the true covariance matrix for b, following Equation 9.3.61 in the
text. You can do this because you have the unusual information of the exact
structure of the errors, described in Equation 9.3.57 of the text. The function
DIAGRV puts the values of sigma2 on the diagonal of an identity matrix.

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE78

phi = diagrv(eye(t),sigma2);
covb = ixx*(x’*phi*x)*ixx;
covb; /* Eq. 9.3.61 */

Compare the incorrectly computed standard errors with the true values.

sqrt(diag(badcovb))’;
sqrt(diag(covb))’;

Because you know the covariance matrix of the disturbances it is possible to
compute the generalized least squares estimates and their covariance matrix.

covg = invpd(x’invpd(phi)*x);
covg; /* Eq. 9.3.62 */

bg = covg*x’invpd(phi)*y;
bg’; /* Eq. 9.3.63 */
sqrt(diag(covg))’;

In general you will not know the exact structure of the error covariance matrix
and while you may suspect heteroskedasticity is present it is usually necessary
to test for its presence. First use the Breusch-Pagan test.
Using ehat computed above, compute the dependent variable to be used in the
test regression.

sigtilde = ehat’ehat/t;
e2 = (ehat^2)./sigtilde;

The independent variables to be used for the test are the first two columns of
the matrix X.

z = x[.,1 2];

The estimated coefficients are put into ahat.

ahat = e2/z;

Next compute the total and error sum of squares for the test regression

sst = (e2 - meanc(e2))’(e2 - meanc(e2));
e2hat = e2 - z*ahat;
sse = e2hat’e2hat;

The Breusch-Pagan test statistic is equal to one-half of the regression sum of
squares.

q = .5*(sst - sse);
q;
cdfchic(q,1);

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE79

The statistic q is asymptotically distributed as Chi-square with 1 degree of
freedom. If q is greater than 3.84 (the 5% critical value) it is significant at the
5% level, and the hypothesis of homoskedasticity is rejected.
The Goldfeld-Quandt test requires running two separate regression on subsam-
ples of the data, and computing the residual sum of squares from each regression.
In general the data must be sorted according to an increasing error variance
before the partitioning. Here, however, if we assume that the error variance
increases with the magnitude of the second regressor, the data is already in the
proper order.
Include the first eight observations in the first regression.

y1 = y[1:8,.];
x1 = x[1:8,.];
b1 = y1/x1;
e1 = y1 - x1*b1;
sse1 = e1’e1;

The second regression includes the last eight observations.

y2 = y[13:20,.];
x2 = x[13:20,.];
b2 = y2/x2;
e2 = y2 - x2*b2;
sse2 = e2’e2;

The F-statistic for the Goldfeld-Quandt test is the ratio of the two residual sum
of squares.

f = sse2/sse1;
f;
cdffc(f,5,5);

At what significance level can you reject the hypothesis of homoskedasticity?

9.3.1 The Estimated Generalized Least Squares Estimator

Assuming the that least squares estimate, b, and the residuals, ehat, are still
in memory, the next step is to estimate the vector α which is used to compute
the variances of the disturbances. From Equation 9.3.41 in the text, regress the
log of the squared errors on the first two columns of X.

q = ln(ehat^2);
z = x[.,1 2];
ahat = q/z;
ahat’; /* Eq. 9.3.64 */

Adjust the constant term for bias. Although this is not necessary for the esti-
mates of the coefficients, it will affect the estimated covariance matrix.

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE80

ahat[1,1] = ahat[1,1] + 1.2704;
ahat’;

Compute the estimated generalized least squares estimator, following Equation
9.3.65 in the text.

psihatv = exp(z[.,2]*ahat[2,1]); /* diag. elements */
psihat = diagrv(eye(20),psihatv); /* diagonal matrix */
invpsi = invpd(psihat); /* inverse */
begls = (x’invpsi*y)/(x’invpsi*x); /* est. gls */
begls’; /* Eq. 9.3.65 */

These parameters could alternatively be estimated by using ordinary least squares
on transformed data (also called weighted least squares)

ystar = y ./ sqrt(psihatv);
xstar = x ./ sqrt(psihatv);
begls = ystar/xstar;
begls’;

Estimate paramater σ2 and the covariance matrix for b.

ehatg = y - x*begls;
sighatg2 = ehatg’invpsi*ehatg/(t-k);
covegls = sighatg2*invpd(x’invpsi*x);
covegls; /* Eq. 9.3.66 */

Summarize your results, with standard errors reported underneath the coeffi-
cients.

begls’;
sqrt(diag(covegls))’; /* Eq. 9.3.67 */

9.4 Exercises on Heteroskedasticity

The numercial exercises in this section can be carried out using the skills you
have learned in Section 9.3.

9.5 Autocorrelation

In this section of the text the problem of autocorrelation is defined. Procedures
for implementing EGLS are presented and tests for autocorrelation given. Begin
by considering the Example in Section 9.5.3c of ITPE2.
Type in the data used in Section 9.5.3c in the text.

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE81

let y = 4 7 7.5 4 2
3 5 4.5 7.5 5;

let x1 = 2 4 6 3 1
2 3 4 8 6;

t = rows(y);
x = ones(t,1)~x1;
k = cols(x);

Compute the least squares parameter estimates and the least squares residuals.

b = y/x;
ehat = y - x*b;

Assuming a first-order autoregressive process, compute the least squares esti-
mate of rho given in Equation 9.5.40.

et = ehat[2:10,1];
el = ehat[1:9,1];
rhohat = et/el;
rhohat;

An asymptotic test for first-order autoregressive errors is described in Section
9.5.3a in the Text.
The test statistic z has an approximate standard normal distribution under the
null hypothesis. The null hypothesis is rejected at the 5% level if the absolute
value of Z is greater than 1.96.

z = sqrt(t)*rhohat;
z;

The Durbin-Watson test is described in Section 9.5.3b of the text. Compute
the Durbin-Watson statistic using Equation 9.5.45.

d = (et-el)’(et-el)/(ehat’ehat);
d;

To compute the exact critical value, use the procedure EXACTDW which is
given in section 9.6 begining on page 82. The theory behind this procedure
is beyond the scope of this course, so don’t worry about “how” it works for
now. It takes three arguments: d, the Durbin-Watson statistic; x, the matrix
of explanatory variables; and rho, the hypothesized value of ρ. To compute the
probability that d is less than 1.037 given ρ = 0, enter the following:

EXACTDW(d,x,0);

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE82

What is the probability that DW is less than 1.037 assuming that ρ = .5?
If you did not have a procedure such as EXACTDW, it might be useful to compute
Durbin and Watson’s (1971) approximation of the critical value. To do so, first
create the matrix A, shown in Equation 9.5.46 in the text. Do this by first
creating a matrix A1 which has 1’s on the off-diagonal.

a1 = zeros(t-1,1)~eye(t-1)|zeros(1,t);

Next create a matrix with 2’s on the diagonal, and using the matrix A1, put -
1’s on the off-diagonals. Then set the two corner elements equal to 1.

a = eye(t)*2 - (a1 + a1’);
a[1,1] = 1;
a[t,t] = 1;
format 2,0; a;

Notice that you can use the matrix A to compute the Durbin-Watson statistic,
as shown in Equation 9.5.43 in the text.

d = (ehat’a*ehat)/(ehat’ehat);
format 8,4; d;

Following Equations 9.5.60 and 9.5.61 compute the values P and Q.

ixx = invpd(x’x);
p1 = sumc(diag(x’a*x*ixx));
p = 2*(t-1) - p1;
format 10,7; p;

q1 = sumc(diag(x’a*a*x*ixx));
q2 = sumc(diag((x’a*x*ixx)*(x’a*x*ixx)));
q = 2*(3*t-4) - 2*q1 + q2;
q;

Now compute the expected value and variance of d. (See Equations 9.5.58 and
9.5.59.)

exd = p/(t-k);
exd;
vard = 2*(q - p*exd)/((t-k)*(t-k+2));
vard;

Using the values of EXDU and VARDU from the tables at the end of the text,
compute the parameters aa (a in the text) and bb (b in the text).

exdu = 2.238;
vardu = 0.29824;
bb = sqrt(vard/vardu);
bb;
aa = exd - (exdu*bb);
aa;

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE83

The approximate critical value is d∗u.

du = 1.32;
dstar = aa + bb*du;
dstar;

Compare the value of the critical value with the test statistic D. Do you accept
of reject the null hypothesis of no positive autocorrelation?
In Section 9.5.6 of ITPE2 a second example relating to autocorrelation is given.
First, load the data given in the file TABLE9.2 on the disk accompanying this
book and examine it.

load dat[20,3] = table9.2;
y = dat[.,1];
x = ones(20,1)~dat[.,2 3];
dat=y~x;
dat;

Before analyzing this data verify your understanding of the data generation
process by generating the vector y. The true parameter values are given on
page 411 of ITPE2 and refer to equation (9.6.2)

let beta = 10 1 1;
sigma2 = 6.4;
rho = .8;

Read in the N(0,1) random disturbances v and create the random errors e using
the “inverse” of the data transformation described in equations (9.5.31) and
(9.5.32).

t = rows(x); /* define t */
k = cols(x); /* define k */

open f1 = nrandom.dat; /* open file */
v = readr(f1,t); /* read t obs. */
f1 = close(f1); /* close file */

v = sqrt(sigma2) .* v; /* adjust variance */
e = zeros(t,1); /* create e */
e[1,1] = v[1,1] ./ sqrt(1-rho^2); /* first element */

ind = 2; /* begin loop */
do while ind le t;
e[ind,1] = rho*e[ind-1,1] + v[ind,1]; /* t’th element */
ind = ind + 1; /* increment index */
endo; /* end loop */

Create the vector y and compare it to the data in Table 9.2.

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE84

y = x*beta + e;
y~dat[.,1];

Compute the least squares estimates.

b = y/x;
b’;

ehat = y - x*b;
t = rows(x);
k = cols(x);
sighat2 = ehat’ehat/(t-k);
sighat2;

Compute the least squares estimated covariance matrix for b.

badcovb = sighat2*invpd(x’x);

Compute the Durbin-Watson statistic to test for autocorrelation.

edif = ehat[2:20,1] - ehat[1:19,1];
d = (edif’edif)/(ehat’ehat);
d;

Compute the critical value of the Durbin-Watson statistic.

EXACTDW(d,x,0);

Compute the least squares estimate of ρ.

rhohat = ehat[2:20,1]/ehat[1:19,1];
rhohat;

Transform the data using the estimated rho and the matrix dat containing both
Y and X.

dstar = dat - rhohat*dat[1 1:19,.];
dstar[1,.] = sqrt(1-rhohat^2)*dat[1,.];

Take ystar and xstar out of the matrix dstar.

ystar = dstar[.,1];
xstar = dstar[.,2:4];

Compute the estimated generalized least squares estimator using the trans-
formed data.

bhat = ystar/xstar;
bhat’;

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE85

Estimate the covariance matrix using the transformed data.

estar = ystar - xstar*bhat;
sighatg2 = estar’estar/(t-k);
sighatg2;

covbhat = sighatg2*invpd(xstar’xstar);
covbhat;

Summarize the results with the estimated standard errors. Compare the esti-
mated generalized least squares results with the least squares estimates.

bhat’;
sqrt(diag(covbhat))’;
?;
b’;
sqrt(diag(badcovb))’;

Re-estimate the coefficients, this time adjusting ρ following Equation 9.5.42 in
the text. Set the parameter M in that equation equal to 1.

arho = rhohat + (2 + 4*rhohat)/t;
arho;

Compute the new estimated generalized least squares estimates.

dstar = dat - arho*dat[1 1:19,.];
dstar[1,.] = sqrt(1-arho^2)*dat[1,.];
ystar = dstar[.,1];
xstar = dstar[.,2:4];
bhata = ystar/xstar;
bhata’;

Compute the covariance matrix.

estara = ystar - xstar*bhata;
sighata = estara’estara/(t-k);
sighata;

covbhata = sighata*invpd(xstar’xstar);
covbhata;

Compare the two generalized least squares estimates.

bhat’;
sqrt(diag(covbhat))’;
?;
bhata’;
sqrt(diag(covbhata))’;

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE86

Predict the value of Yt for x2t = 20 and x3t = 20, ignoring the autocorrelation.

let xf = 1 20 20;
yf = xf’bhat;
yf;

Now use the information concerning the autocorrelation.

yf = yf + rhohat*(y[20,1] - x[20,.]*bhat);
yf;

9.6 Exact Durbin-Watson Statistic

This program contains the code for the program DW.SET which compiles and
loads the procedures to compute the exact Durbin-Watson critical value. If you
type it into a file, it is usually best to save the file on the subdirectory

\GAUSS\sp.

The computations follow those outlined in J. Koerts and A. P. J. Abrahamse, On
the Theory and Application of the General Linear Model, Rotterdam University
Press, 1969, and in J. P. Imhof, “Computing the distribution of quadratic forms
in normal variables,” Biometrika, 1961, Vol. 48, pages 419-426.

/* DW.SET -- Loads and creates procedures to compute exact
Durbin-Watson critical value */

loadp intquad;
loadp eigsym;
proc INHOFF(u,Lp);

local e,g,z;
/* u is the variable to be integrated

Lp is the transposed vector of eigenvalues */
e = (.5*sumc(arctan(Lp’.*u))) ;
g = exp(sumc(0.25*ln(1 + (Lp’.*u)^2))) ;
z = sin(e)./(u’.*g);

retp(z’);
endp;

proc EXACTDW(dw,x,rho);
local M,A,Psi,psih,t,w,C,D,A1,val,g;
t = rows(x);

/* Creating psi - covariance matrix of disturbances */
w = seqa(0,1,t);
psi = reshape(rho^w,t,t);
psi = shiftr(psi,w,0);

CHAPTER 9. GENERAL LINEAR MODEL WITH UNKNOWN COVARIANCE87

psi = psi + (psi - eye(t))’;
psi = psi/(1-rho^2);

/* Computing psi to the 1/2 using the
Cholesky decomposition */

psih = chol(psi);

/* Creating M */
M = eye(t) - (x*invpd(x’x)*x’);

/* Creating A -- matrix with 2’s on diagonal,
-1’s on off-diagonal, and 1’s at two corners */

A1 = zeros(t-1,1)~eye(t-1)|zeros(1,t);
A = eye(t)*2 - (A1 + A1’);
A[1,1] = 1;
A[t,t] = 1;

/* Computing roots */
C = psih*M;
D = C*(A - dw*eye(t))*C’;
L = eigsym(D,0);

/* Integrating */
val = .5 - (intquad(&IMHOF,0,30,L’,40))/pi;

retp(val);
endp;

Chapter 10

Varying Parameter Models

10.1 Introduction

In this chapter you will learn how to use dummy variables to permit some
parameters in a regression model to change within the sample period and to
test for such a strucural change. You will also be introduced to varying and
random coefficient models.

10.2 Use of Dummy Variables in Estimation

The first application of dummy varibles is to account for a change in an intercept
value. Equation 10.2.11 describes an investment function which has a larger
intercept during the years 1939-1945 which are taken to be the period of World
War II.
The values of the exogenous variables x2 and x3 are found in the file labelled
TABLE10.1 on the disk accompanying this book. LOAD this data, and create
the dummy variable which is one during the war years and zero otherwise.

load xvar[20,2] = table10.1;
year = seqa(1935,1,20);
d = (year .>= 1939) .and (year .<= 1945);

We note in passing that GAUSS has three built-in functions that aid in the
construction of dummy variables. See your GAUSS manual for descriptions of
the functions DUMMY, DUMMYBR, DUMMYDN. These will not be used in
this Chapter.
Construct the intercept variable, and add it and the dummy varible as columns
one and two of the X matrix.

x = ones(20,1)~d~xvar;
t = rows(x);
k = cols(x);

88

CHAPTER 10. VARYING PARAMETER MODELS 89

Construct a (20 x 1) vector of N(0,100) disturbances using the first 20 “official”
random numbers1

sig2 = 100;
open f1 = nrandom.dat;
e = readr(f1,t);
f1 = close(f1);
e = sqrt(sig2)*e;

Create the variable ya in Table 10.1 of the text using the parameter values in
Equation 10.2.11.

let beta = -10.0 20.0 0.03 0.15;
ya = x*beta + e;

Check the data.

format 14,6;
ya~x;

At the end of chapter 6 we updated our PROC MYOLS. Run that PROC now
to place in memory so that we can use it in this chapter. Obtain the OLS
parameter estimates for the model described by Equation 10.2.11 and compare
to the second column of Table 10.2.

{b,covb} = myols(x,ya);

Repeat the regression omitting the dummy variable and compare to column 1
of Table 10.2.

x1 = ones(20,1)~xvar;
{b1,covb1} = myols(x1,ya);

Now create the dummy variable Ct = 1 −Dt and include it in the model with
the dummy variable Dt but excluding the overall intercept. Examine the data.

c = 1 - d;
x2 = d~c~xvar;
format 14,6;
ya~x2;

Obtain the OLS estimates of this model and compare to column 3 of Table 10.2.

{b2,covb2} = myols(x2,ya);

As noted in the text Equations 10.2.3 and 10.2.8 are equivalent forms. Using the
coefficient estimates b2 we can calculate the coefficient of the dummy variable
Dt in (10.2.3) as follows.

1These are the ones that came with the original manual. You may construct substitutes
for the official ones yourself using the the statement ‘e=sqrt(100)*rndn(20,1);’.

CHAPTER 10. VARYING PARAMETER MODELS 90

let r[1,4] = 1 -1 0 0;
delta = r*b2;
delta;

Since delta is a linear combination of be, we can compute the standard error of
the estimator as

sqrt(r*covb2*r’);

Now consider the possibility that not only is the intercept different during the
war years but there is a difference in one or more slope parameters as well.
Construct yb in Table 10.1 using Equation 10.2.15 and examine the data.

x = ones(20,1)~d~xvar~(xvar[.,2] .* d);
let beta = -10.0 20.0 0.03 0.15 -0.09;
yb = x*beta + e;
format 10,6;
yb~x;

Obtain the OLS results and compare to column 2 of Table 10.4.

{b,covb} = myols(x,yb);

Now construct the “sets of equations” equivalent model and examine.

x1 = d~c~xvar[.,1]~(xvar[.,2] .* d)~(xvar[.,2] .* c);
format 10,6;
x1;

Obtain the OLS results and compare to column 3 in Table 10.4.

{b1,covb1} = myols(x1,yb);

10.3 The Use of Dummy Variables to Test for a
Change in the Location Vector

Assuming that XVAR, the dummy variables Dt and Ct and the random dis-
turbances E are still in memory, construct the values yc in Table 10.1 using
Equation (10.3.1) and examine the data.

x = ones(20,1)~d~xvar[.,1]~(xvar[.,1] .* d)~
xvar[.,2]~(xvar[.,2] .* d);

let beta = -10 20 0.03 0.03 0.15 -0.09;
yc = x*beta + e;
format 10,6;
yc~x;

CHAPTER 10. VARYING PARAMETER MODELS 91

Compute the unrestricted and restricted regressions as in Table 10.6 using
PROC MYOLS and compute the test statistic u in Equation 10.3.2.

{bu,covbu} = myols(x,yc); /* unrestricted model */
sseu = sumc((yc - x*bu)^2);
df = rows(x) - cols(x);
sighat2 = sseu/df;

xr = ones(20,1)~xvar; /* restricted model */
{br,covbr} = myols(xr,yc);
sser = sumc((yc - xr*br)^2);

u = (sser - sseu)/(3*sighat2); /* test statistic */
pval = cdffc(u,3,df); /* p-value */

u~pval;

10.4 Systematically Varying Parameter Models

This section contains a discussion a general way to incorporate both systematic
and/or random parameter variation. To illustrate we will consider an alter-
native way to model the data generation process of the dependent variable yb

which was introduced in Section 10.2. Instead of including intercept and slope
dummy variables we will consider the possiblity that these coefficients vary sys-
tematically over time. In particular we will “model” the parameter variation as
β1 = δ1 + δ2 ∗ yeart and β2 = γ1 + γ2 ∗ yeart. It should be stressed that this
specification is incorrect and we are using it only for illustration purposes.
Construct the matrix of explanatory variables following Equations 10.4.2 - 10.4.5.

xa = ones(20,1)~year~xvar[.,1]~(xvar[.,1].*year)~xvar[.,2];

Estimate this “unrestricted” model and calculate the sum of squared residuals.

{ba,covba} = myols(xa,yb);
sseu = (yb - xa*ba)’(yb - xa*ba);

Now estimate the “restricted” model, which assumes that δ2 = γ2 = 0.

x = ones(20,1)~xvar;
{b,covb} = myols(x,yb);

Compare the restricted and unrestricted estimates. Compute the sum of squared
residuals for the restricted model and test the hypothesis that the parameters
in question do not vary linearly with time.

CHAPTER 10. VARYING PARAMETER MODELS 92

sser = (yb - x*b)’(yb - x*b);
df = rows(xa) - cols(xa);
u = (sser - sseu)/(2*sseu/df);
pval = cdffc(u,2,df);
u~pval;

Thus despite the apparantly substantial changes in the parameter estimates
caused by including the variable time, their inclusion does not significantly
affect the fit of the model.

10.5 Hildreth-Houck Random Coefficient Mod-
els

In this section the essentials of the Hildreth-Houck random coefficient model are
presented and an estimation procedure outlined. To illustrate the computational
procedure consider the dependent variable yc considered in Section 10.3. This,
of course, is an incorrect assumption for the data generation process and we are
using it only for illustration purposes.
Assuming the variable yc is still in memory, obtain the least squares estimates
of the model assuming no parameter variation.

x = ones(20,1)~xvar;
{b,covb} = myols(x,yc);

Follow the procdure for estimating the parameter covariance matrix Σ discussed
below Equation 10.5.7. First calculate the OLS residuals and square them to
form edot.

ehat = yc - x*b;
edot = ehat .* ehat;

Construct the idempotent matrix m, and square its elements to form mdot.

m = eye(20) - x*invpd(x’x)*x’;
mdot = m .* m;

Form the matrices z and f.

z = ones(20,1)~(2*x[.,2])~(2*x[.,3])~(x[.,2]^2)~(2*x[.,2] .* x[.,3])~
(x[.,3]^2);

f = mdot * z;

Estimate the parameters alpha by regressing edot on f.

ahat = edot/f;

Form the estimate of the matrix Σ and examine it.

CHAPTER 10. VARYING PARAMETER MODELS 93

sighat = ahat[1]~ahat[2]~ahat[3]|
ahat[2]~ahat[4]~ahat[5]|
ahat[3]~ahat[5]~ahat[6];

sighat;

As noted in the text there is nothing in the estimation procedure to ensure
that this estimated covariance matrix is positive semidefinite. Check the matrix
sighat by obtaining its determinant.

det(sighat);

The negative determinant implies that sighat is not positive semidefinite, and
thus if it were used as a basis for constructing the error variances in Equation
10.5.7 some of those values might be negative. Let us proceed but we will check
this possibility. Form the variances in (10.5.7) and examine them.

var = z*ahat;
var’;

Despite the negative variances that appear the estimation procedure is “con-
sistent” and one could simply proceed. For the purposes of completing this
example, however, we will set the off-diagonal elements of sighat to zero and
proceed. We do not suggest this as a general “fix-up” procedure. The reader is
advised to consult the cited references if this problem is encountered in practice.

sighat = diagrv(eye(3),diag(sighat));
sighat;

Now proceed with EGLS estimation.

phi = diagrv(eye(20),diag(x*sighat*x’));
covbhat = invpd(x’*invpd(phi)*x);
bhat = covbhat*x’*invpd(phi)*yc;
bhat’;
sqrt(diag(covbhat))’;

As suggested in the text general tests for heteroscedasticity can be used to
test for this form of random coefficients. Carry out the Breusch-Pagan test as
described in Chapter 9.3.5c.

sigtilde = sumc(edot)/20;
lhs = edot/sigtilde;
ahat = lhs/z;
sst = (lhs - meanc(lhs))’(lhs - meanc(lhs));
sse = (lhs - z*ahat)’(lhs - z*ahat);
q = (sst - sse)/2;
q cdfchic(q,cols(z)-1);

What do you conclude?

Chapter 11

Sets of Linear Statistical
Models

11.1 Introduction

In this chapter you will study two types of models involving sets of linear equa-
tions: seemingly unrelated regression equations and pooled time series cross-
sectional models.

11.2 Seemingly Unrelated Regression Equations

Begin with the example outlined in Section 11.2.4 in ITPE2. It concerns in-
vestment for two companies, say General Electric and Westinghouse. LOAD
the data from TABLE11.1, check it, and create the the vectors y1 (column 1
of Table 11.1) and y2 (column 4 of Table 11.1) containing the investment data.
The matrices of independent variables contain a constant term, market values
(columns 2 and 5 of Table 11.1), and capital stocks (columns 3 and 6 of Table
11.1.)

load dat[20,6] = table11.1;
format 10,7;
dat;
y1 = dat[.,1];
y2 = dat[.,4];
x1 = ones(20,1)~dat[.,2 3];
x2 = ones(20,1)~dat[.,5 6];

Estimate each equation separately using least squares. (See Equation 11.2.31
in the text.)

b1 = y1/x1;

94

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 95

b1’;
b2 = y2/x2;
b2’;

Compute the OLS residuals from the regressions, and use them to estimate the
contemporaneous covariance matrix. Note that the divisor used is the “average”
number of coefficients per equation.

e1hat = y1 - x1*b1;
e2hat = y2 - x2*b2;
k1 = rows(b1);
k2 = rows(b2);
t = rows(y1);
df = t - (k1 + k2)/2;
shat = (e1hat~e2hat)’(e1hat~e2hat)/df;
shat;

To compute the generalized least squares estimator, bg, first combine the data
to form one “stacked” model as shown in Equation 11.2.19 in the text.

y = y1|y2;
x = (x1~zeros(t,k2))|(zeros(t,k1)~x2);

Next create the inverse of the estimated error covariance matrix for the stacked
error vector. See Equations 11.2.21 and 11.2.28 in the text. The .*. operator
produces the Kroneckor product.

ishat = invpd(shat);
iphi = ishat .*. eye(t);

Now compute the generalized least squares estimate using Equation 11.2.28 in
the text.

bg = (x’iphi*y)/(x’iphi*x);
bg’;

This method works fine if the number of observations is small enough. However,
the matrix iphi has dimensions (MT x MT), where M is the number of equa-
tions, and personal computers can quickly run into storage problems. Write a
procedure to do the same computations but without creating the entire iphi
matrix. See Equation ll.2.24 in the text. Note that all computations so far
assume that each equation contains the same number of observations.
The procedure SUR takes three arguments. The matrices x and y contain the
data. To use the procedure, the vectors of dependent variables and matrices
of independent variables are concatenated horizontally. For example, the y
matrix has as many columns as there are separate equations and as many rows
are there are observations per equation. The third argument, shat, contains
the estimated contemporaneous covariance matrix. The procedure returns the

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 96

variables xx, xty and std so that they can be used for later computations. The
name xty is given to x′y, rather than xy, to avoid confusion with the QUICK
GRAPHICS XY.
You may want to put the code for the procedure into a file (sur.prc) to rerun
at later dates; SUR is used repeatedly in this chapter. Also, be sure that you
understand how the GAUSS code used represents Equation 11.2.24.

proc (4) = sur(x,y,shat);
local *;

k = cols(x)/cols(y);
ishat = invpd(shat);
xx = (x’x) .* (ishat .*. ones(k,k));
xty = (x’y) .* (ishat .*. ones(k,1));
bg = sumc(xty’)/xx;
std = sqrt(diag(invpd(xx)));
retp(bg,xx,xty,std);

endp;

If the code is in a file, press F2 to compile and save. Test your procedure by
re-estimating the example. The results should be the same as those computed
above, bg.

x = x1~x2;
y = y1~y2;
{bga,xx,xty,std} = sur(x,y,shat);
bga’;
bg’;

As is noted in ITPE2 another way to estimate the parameters in a seemingly
unrelated regressions context is to iterate Equations (11.2.27) and (11.2.28). To
compute the iterative generalized least squares estimate, repeatedly estimate the
covariance matrix and the coefficients within a DO-LOOP. When the coefficients
cease to change (according to the specified tolerance), the estimation is complete.
In addition to stopping when convergence has been achieved, it is usually wise to
stop after a given number of iterations, since iterative procedures may converge
very slowly, if at all.

tol = 1; /* initialize tol */

iter = 1; /* initialize iter */

format 10,7; /* begin loop */

do until ((tol lt .00001)

or (iter ge 20));

e1hat = y1 - x1*bg[1:k1,1]; /* new residuals */

e2hat = y2 - x2*bg[k1+1:2*k1,1];

shat = (e1hat~e2hat)’

(e1hat~e2hat)/t; /* new contemp. cov. */

{bga,xx,xty,std} = sur(x,y,shat); /* new estimates */

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 97

tol = sumc(abs(bga-bg)); /* check tol. */

iter = iter + 1; /* update iter */

bg = bga; /* store current est.*/

" iter " iter "tol " tol;?; /* print */

endo; /* end loop */

bga’; /* print estimates */

std’;

Note that at each iteration the variable tol decreases. In the first iteration the
starting values were the already obtained SUR estimates. The OLS estimates
could have been used and convergence to the same set of estimates obtained.
In Chapter 12 more will be said about maximum likelihood estimation. The
Iterative estimator of the SUR model is the maximum likelihood estimator of
this model if the random disturbances are multivariate normal.
Now carry out a Monte Carlo experiment that illustrates the small sample prop-
erties of the SUR estimator. When SUR is based on an estimated contempo-
raneous matrix the properties of EGLS estimators are asymptotic ones and do
not necessarily apply in small samples. Thus in this Monte Carlo experiment
we will be interested to see if the SUR estimates are more efficient than the OLS
estimates.
In order to simulate the data it must be possible to draw random numbers from
a multivariate normal distribution with a given error covariance matrix. Two
procedures are given in the Appendix to Chapter 11. We will illustrate the first
using characteristic roots and vectors, since that is how the data in Table 11.1
is generated. As an exercise we will replicate the example in the appendix using
this method. Note that the GAUSS function CHOL performs the Cholesky
decompostion.
First obtain the characteristic roots and vectors of the matrix Σ given on page
494.

let sigma[2,2] = 1 1
1 2;

{d,c} = eigrs2(sigma);
d~c;

Note that GAUSS orders the characteristic roots and the corresponding char-
acteristic vectors from smallest to largest. To conform to the text order the roots
from largest to smallest and reverse the order of the columns of the matrix of
characteristic vectors to match.

d = rev(d);
c = (rev(c’));
d~c;

Form the transformation matrix sighalf and compare to the text.

sighalf = c * diagrv(eye(2), sqrt(d));
sighalf;

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 98

To duplicate the Monte Carlo results in the text we will use the matrices of
N(0,1) already stored. LOADM them.

loadm e1 = e1nor;
loadm e2 = e2nor;

Recall that these matrices are (20 x 250) with each column representing a vector
from a multivariate N(0,I) distribution. To create a sample of size T = 20 from
a multivariate normal distribution with covariance matrix Σ given in Equation
11.2.33 create a (20 x 2) matrix of N(0,1) values from the first 2 columns of e1
and apply a transformation like sighalf to each row.

let sigma[2,2] = 660 175
175 90;

{d,c} = eigrs2(sigma);
d = rev(d);
c = (rev(c’))’;
sighalf = c * diagrv(eye(2), sqrt(d));

This transformation matrix will serve to transform the N(0,1) random errors to
the desired multivariate normal distribution. However, to obtain the numbers
in ITPE2 recall that characteristic vectors are not unique. In fact, if v is a
characteristic vector of a matrix then −v is as well. The normalization used in
GAUSS is the negative of the normalization used to create the data in Table
11.1 of ITPE2. While in general the choice does not matter, to replicate the
example in the text we change the sign of sighalf, and proceed to transform the
random errors.

sighalf = -sighalf;
e = e1[.,1 2];
estar = e * sighalf’;

Define the parameter vectors to be those given in Equation 11.3.2 and construct
the vectors y1 and y2. Compare the values to those in Table 11.1.

let beta1 = -28.0 0.04 0.14;
let beta2 = -1.3 0.06 0.06;

y1 = x1*beta1 + estar[.,1];
y2 = x2*beta2 + estar[.,2];
y1~y2;

Write a program to simulate data and estimate the least squares and generalized
least squares estimates for two equations with equal numbers of coefficients.
The two matrices of independent variables, x1 and x2; the two vectors of true
parameters, beta1 and beta2; the true contemporaneous covariance matrix,
sigma; and the number of samples, nsam, must be specified. The procedure
SUR written above is used within this procedure (MCSUR), so make sure that
you have entered it and run it so that it is in memory.
Since this procedure is quite long, you may want to put it into a file: MCSUR.PRG.

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 99

/* Program to carry out a Monte Carlo experiment for
the Seemingly Unrelated Regressions model */

load dat[20,6] = table11.1; /* load data */
x1 = ones(20,1)~dat[.,2 3];
x2 = ones(20,1)~dat[.,5 6];
T = rows(x1);
k = cols(x1);
x = x1~x2;

/* define parameters */

let beta1 = -28.0 0.04 0.14;
let beta2 = -1.3 0.06 0.06;
xb = (x1*beta1)~(x2*beta2);
nsam=250;

let sigma[2,2] = 660 175
175 90;

/* create transformation */

{d,c} = eigrs2(sigma);
d = rev(d);
c = (rev(c’))’;
sighalf= -c * diagrv(eye(2), sqrt(d));

/* load random values */

loadm e1 = e1nor;
loadm e2 = e2nor;

/* storage matrix */

param = zeros(4*k,nsam);

i = 1; /* start loop */
do until i > nsam;

if i le 125; /* select error vectors */
c2 = 2*i;
c1 = c2-1;
e = e1[.,c1~c2];

else;
c2 = 2*(i-125);
c1 = c2-1;

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 100

e = e2[.,c1~c2];
endif;

e = e*sighalf’; /* transform errors */

y = xb + e; /* create y */

b1 = y[.,1]/x1; /* ols */
b2 = y[.,2]/x2;
ehat = (y[.,1] - x1*b1)~(y[.,2] - x2*b2);

shat = ehat’ehat/(t-k) ; /* sur */
{bg,xx,xty,std} = sur(x,y,shat);

param[.,i] = b1|b2|bg; /* store estimates */
i = i + 1;
endo; /* end loop */

m = meanc(param’); /* Calculate means */
std = stdc(param’); /* Calculate Std Errors */

format 10,5;
(beta1|beta2)~m[1:6,.]~std[1:6,.]~m[7:12,.]~std[7:12,.];

/* End of Program */

Execute the program and compare the results to Table 11.2 in the text.
Use histograms to compare the distributions of the least squares and GLS esti-
mators of the second parameter in the first equation. To obtain histograms just
like those in the top panel of Figure 11.1 we must use the same “breakpoints”
as in the text. These are given in the vector v1 below.

let v1 = .0111 .0253 .0395 .0537 .0679;
graphset;
beggraph;
window(1,2);
{b,m,freq} = histp(param[2,.]’,v1);
{b,m,freq} = histp(param[8,.]’,v1);
endgraph;

So that you can reproduce the 2nd, 3rd and 4th panels of Figure 11.1, the
breakpoints to use are:

let v2 = .0959 .119 .141 .164 .186;
let v3 = .0291 .0446 .0601 .0757 .0912;
let v4 = -.0373 .0121 .0616 .111 .161;

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 101

In Section 11.2.5 of the text there is a discussion of methods used to test hy-
potheses in the SUR model. In Section 11.2.6 an example of those tests is given.
LOAD the data in the file TABLE11.3 on the disk accompanying this text. Take
natural logs to create the dependent and independent variables for each equa-
tion. The data consist of thirty observations on prices, quantities and income
for three commodities.

load dat[30,7] = table11.3;
t = rows(dat);
c = ones(t,1);
lnd = ln(dat);
x1 = c~lnd[.,1 4];
x2 = c~lnd[.,2 4];
x3 = c~lnd[.,3 4];
y1 = lnd[.,5];
y2 = lnd[.,6];
y3 = lnd[.,7];

Compute the least squares estimates and compare them to the values in Table
11.4 of ITPE2.

b1 = y1/x1;
b2 = y2/x2;
b3 = y3/x3;
b1’; b2’; b3’;

Compute the residuals from the least squares estimates, and estimate the con-
temporaneous covariance matrix.

y = y1~y2~y3;
ehat = y - ((x1*b1)~(x2*b2)~(x3*b3));
k = rows(b1);
shat = ehat’ehat/(t-k);

Write a function to compute the squared correlations in Equation 11.2.35.

fn corr(i,j) = shat[i,j]^2/(shat[i,i]*shat[j,j]);

Using CORR, compute the Lagrange multiplier statistic to test for contempo-
raneous correlation. See Equation 11.2.34. Under the null hypothesis of no
contemporaneous correlation, the test statistic lambda has a χ2

3 distribution, in
this case. Compare to the value given on p.461 of ITPE2.

lambda = t*(corr(2,1) + corr(3,1) + corr(3,2));
lambda;
cdfchic(lambda,3);

Compute the generalized least squares estimates, using the procedure SUR writ-
ten above in Section 11.2.3. Compare your results to those in Table 11.4.

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 102

x = x1~x2~x3;
{bg,xx,xty,std} = sur(x,y,shat);
bg~std;

Now estimate a restricted model requiring that the price elasticities be the
same for all three commodities (the price is the second column of the relevant
X matrix). First write the restrictions in matrix format: Rβ = r, where β is
the vector of unknown parameters.

r = zeros(2,9);
r[1 2,2] = 1|1;
r[1,5] = -1;
r[2,8] = -1;
rr = zeros(2,1);
format 2,0;
r~rr;

Following Equations 11.2.39 through 11.2.43 in the text, estimate the restricted
seemingly unrelated regression estimator. Note that the matrix xx was au-
tomatically returned from memory when bg was estimated. It is equal to
X ′(Σ̂−1 ⊗ IT)X or Ĉ−1 in the text.

chat = invpd(xx);
qq = chat*r’invpd(r*chat*r’);
bgr = bg + (qq*(rr - r*bg));

The covariance matrix of the estimated parameters is:

covbgr = chat - qq*r*chat;

Print the results and compare to the third column of Table 11.4.

format 8,4;
bgr~sqrt(diag(covbgr));

Write a procedure to compute the restricted generalized least squares estimator.
It takes as its arguments the output from the unrestricted estimates, bg and xx,
and the matrices describing the constraints, r and rr.

proc (2) = glsr(bg,xx,r,rr);
local *;
chat = invpd(xx);
qq = chat*r’invpd(r*chat*r’);
br = bg + qq*(rr - r*bg);
covbgr = chat - qq*r*chat;
retp(br,covbgr);

endp;

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 103

Use the procedure SUR written above to compute the least squares estimates
of the three equations and the matrix xx. Do this by setting shat equal to an
identity matrix, thereby assuming no contemporaneous correlation. (Note that
the computed standard errors will not be correct in this case, but that they are
not used in any of the following computations.)

shat = eye(3);
{b,xx,xty,std} = sur(x,y,shat);

Now compute the restricted generalized least squares (SUR) estimates using
glsr. Verify that the estimates satisfy the constraints.

{br,covbgr} = glsr(b,xx,r,rr);
r*br;

Compute the restricted least squares residuals. Use them to compute the con-
temporaneous covariance matrix.

br1 = br[1:3,1];
br2 = br[4:6,1];
br3 = br[7:9,1];
erls = y - ((x1*br1)~(x2*br2)~(x3*br3));
shat = erls’erls/(t-k);

Compute a new generalized least squares estimate using the new, restricted,
estimate shat.

{bgn,xx,xty,std} = sur(x,y,shat);

Now compute the restricted generalized least squares estimate and compare
these results to the last column of Table 11.4. Slight differences may be present
due to rounding error.

{bgrn,covbgrn} = glsr(bgn,xx,r,rr);
bgrn~sqrt(diag(covbgrn));

In Section 11.2.7 the problem of unequal numbers of observations in SUR equa-
tions is discussed.
Load in the data from Table 11.1 in the text again, this time dropping the last
five observations for the first equation.

load dat[20,6] = table11.1;
y1 = dat[1:15,1];
x1 = ones(15,1)~dat[1:15,2 3];
y2 = dat[.,4];
x2 = ones(20,1)~dat[.,5 6];
t = rows(y1);
n = rows(y2) - t;

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 104

Compute the least squares coefficients.

b1 = y1/x1;
b2 = y2/x2;
b1’;
b2’;

Compute the generalized least squares estimates, dropping the last five obser-
vations for the second group so that the sample sizes are the same. Use the
procedure SUR written in Section 11.2.3 above and using the correction in
Equation 11.2.60

e1 = y1 - x1*b1;
e2 = y2 - x2*b2;
ehat = e1~e2[1:15,1];
shat = ehat’ehat/t;
shat[2,2] = e2’e2/(t+n);
{bb,xx,xty,std} = sur(x1~x2[1:15,.],y1~y2[1:15,.],shat);
shat;
bb’;

This time adjust xx and xty to use all observations in the data set. (See
Equation 11.2.59 in the text.)

x20 = x2[16:20,.];
y20 = y2[16:20,1];
xxadd = (x20’x20)/shat[2,2];
xyadd = (x20’y20)/shat[2,2];
xx[4:6,4:6] = xx[4:6,4:6] + xxadd;
xty = sumc(xty’) + (zeros(3,1)|xyadd);
bg = xty/xx;
bg’;
sqrt(diag(invpd(xx)))’;

11.3 Pooling Time Series and Cross-Sectional
Data Using Dummy Variables

In this section you will apply the dummy variable techniques of Chapter 10 to
the problem of pooling Time-Series and Cross-Sectional (TSCS) data. LOAD in
the data from the file TABLE11.1 on the disk accompanying this book. Columns
1 – 4 contain cost data for four different firms, and columns 5 – 8 contain output
data for the four firms. Examine the data.

load dat[10,8] = table11.5;
n = 4;
t = rows(dat);

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 105

format 8,4;
dat;

Compute the means of each column of data, and use the vector of means, mn, to
compute deviations from the mean for each column of data. Call the matrix of
deviations from the mean ddat. Note that we can take advantage of GAUSS’s
elementwise operations to subtract a row from the data matrix. Compare the
result to Table 11.6 in ITPE2.

mn = meanc(dat);
mn;
ddat = dat - mn’;
ddat;

Take the observations on cost (deviations from the mean) and put them in a
single column vector using the GAUSS function VEC. Do the same for the ob-
servations on output. This stacks the data on the slope variables as in Equation
11.4.13–11.4.16

dy = ddat[.,1:4];
w = vec(dy);
dx = ddat[.,5:8];
z = vec(dx);

Compute the slope coefficient using least squares. Remember that this estimate
of the slope coefficient is equivalent to a least squares regression with dummy
variables for each firm (omitting the constant term).

bs = w/z;
bs;

Compute the N intercept terms using Equation 11.4.10 and the means computed
above.

b1 = mn[1:4,1] - mn[5:8,1]*bs;
b1’;

Compute the estimate of the error variance which is assumed to be constant
across the firms. Use Equation 11.4.18.

k1 = rows(bs);
ehat = w - z*bs;
sse = ehat’ehat;
sighat2 = sse/(n*t - n - k1);
sighat2;

Estimate the variance of the estimated slope parameter and its standard devi-
ation.

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 106

covbs = sighat2*invpd(z’z);
sqrt(covbs);

Your results should agree with those on pages 477-478 of the text. As an exercise,
apply OLS (use PROC MYOLS) to the model including the dummy variables
for the intercepts to verify, in this small model, that the results are the same.
First create y vector and X matrix as shown in Equations 11.4.4 and 11.4.5.

y = dat[.,1:4];
y = vec(y);
xs = dat[.,5:8];
xs = vec(xs);
x = (eye(n) .*. ones(t,1))~xs;

Now make sure PROC MYOLS is in memory or can be found by the GAUSS
auto-load feature.

{b,covb} = myols(x,y);

Next, carry out the F-test for the hypothesis that all the intercepts are equal.
Compute the least squares coefficients this time constraining all of the intercepts
to be equal. Use the vector y just created and add a column of ones to xs to
create the X matrix. model.

x = ones(n*t,1)~xs;
b = y/x;
b’;

Compute the sum of squared residuals from the restricted regression and call it
sser.

ehatr = y - x*b;
sser = ehatr’ehatr;
sser;

Test the null hypothesis that the intercepts are equal.

df1 = n-1;
df2 = n*t - n - k1;
fstat = (sser - sse)/(df1*sighat2);
fstat;
cdffc(fstat,df1,df2);

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 107

11.4 Pooling Time Series and Cross-Sectional
Data Using Error Components

In this section the assumption is made that the intercepts of each firm are ran-
dom instead of fixed, and consist of a “mean” intercept and a random compo-
nent. The appropriate estimator for this model is the genreralized least squares
estimator, and the steps involved are summarized on pages 485-486 of ITPE2.

1. Calculate the dummy variable estimator, which is simply the estimator of
the slope parameter (bs) computed in the previous section.

bs’;

2. Use the residuals from (1) to calculate the unbiased estimate of the error
variance. Again, this we have calculated above.

sighat2;

3. Estimate beta using the observations on the individual means, as in (11.5.27).

mny = mn[1:4,1];
mnx = ones(4,1)~mn[5:8,1];
bstar = mny/mnx;
bstar’;

4. Compute the residuals from (3). Use these residuals to calculate (11.5.28)

k = rows(bstar);
vstar = mny - mnx*bstar;
sig1 = t * (vstar’vstar)/(n - k);
sig1/t;

5. Use the estimates sig1 and sighat2 to estimate σ2
u as in Equation 11.5.30.

sigu2 = (sig1 - sighat2)/t;
sigu2;

If sigu2 is negative, then the researcher is advised to rethink the model
formulation rather than proceeding in an ad hoc manner.

6. Calculate α̂

alphahat = 1 - sqrt(sighat2/sig1);
alphahat;

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 108

7. Transform the data by subtracting the fraction α of their means.

sdat = dat - alphahat*mn’;
sy = vec(sdat[.,1:4]);
sx = vec(sdat[.,5:8]);

8. Add an intercept to the matrix of explanatory variables and obtain the
EGLS estimator of the variance components model by applying OLS to
the transformed data. Note that the intercept must be transformed as
well.

sx = (ones(n*t,1)-alphahat)~sx;
bhathat = sy/sx;
bhathat’;
sehat = sy - sx*bhathat;
sighate = sehat’sehat/(rows(sx) - cols(sx));
covbhat = sighate * invpd(sx’sx);
stderr = sqrt(diag(covbhat));
stderr’;

Next we consider the problem of “predicting” the random components. Com-
pute the residuals using the generalized least squares estimator. Then reshape
the column vector of residuals into a (N x T) matrix so that the first column
contains the residuals for the first firm, the second column for the second firm,
etc. To predict the random components, sum the residuals for each firm and
multiply by σ2

u/σ2
1 as in Equation 11.5.31.

ehathat = y - x*bhathat;
ui = (sigu2/sig1)*sumc(reshape(ehathat,n,t)’);
ui’;

Compare these answers with the corrsponding estimates from the dummy vari-
able estimator by taking the deviation from the means of the dummy variables
as suggested near the bottom of page 488. The estimated intercepts b1 should
stillbe in memory.

uidv = b1 - meanc(b1);
uidv’;

Finally, test the specification by testing whether individual components exist.
Calculate the value of the Lagrange multiplier test statistic to test the null
hypothesis that σ2

u is equal to zero. See Equation 11.5.32 in the text.

eje = sumc(sumc(reshape(ehatr,n,t)’)^2);
ratio = eje/(ehatr’ehatr);
lambda = (n*t/(2*(t-1))) * (ratio - 1)^2;
lambda;
cdfchic(lambda,1);

CHAPTER 11. SETS OF LINEAR STATISTICAL MODELS 109

11.5 The Choice of Model for Pooling

In this section a variety of factors are presented for consideration when trying
to decide which model, the dummy variable or error components model, to use
in a particular application. One factor to consider is whether the random error
components are correlated with the X data using the Hausman specification
error test.
Compute the Chi-square statistic for the Hausman test given in Equation 11.6.2
in the text. Rejection of the null hypothesis that the slope coefficients are
the same in the two models suggests that the error components model is not
appropriate.

k = rows(bhathat);
bdif = (bs - bhathat[2:k,1]);
mdif = covbs - covbhat[2:k,2:k];
m = bdif’invpd(mdif)*bdif;
m;
cdfchic(m,k-1);

What do you conclude?

Chapter 12

Estimating Nonlinear
Models

12.1 Introduction

This chapter deals with models that are intrinsically nonlinear. That is, they
are nonlinear in the parameters and there is no way to transform them to be-
ing linear in the parameters. In such cases nonlinear least squares (NLS) and
maximum likelihood (ML) estimation techniques are appropriate, depending on
error assumptions. In both cases the first order conditions of the optimization
problem are nonlinear and thus numerical techniques are relied upon to mini-
mize the sum of squared errors or maximize the likelihood function. Thus in this
Chapter the numerical optimization techniques are presented and asymptotic
properties of the estimators stated.

12.2 Principles of Nonlinear Least Squares

Consider the problem of estimating the parameter in Equation (12.2.1) by non-
linear least squares. LOAD the data from file TABLE12.1 on the disk with this
book and check it.

load dat[20,3] = table12.1;
y = dat[.,1];
x = dat[.,2 3];
format 8,4;
y~x;

Write a PROC to calculate the values of the function (12.2.1), given that x is
in memory, for any value of the unknown parameter. Write a FUNCTION to
calculate the residual sum of squares rsq (12.2.2) again assuming that x is in
memory.

110

CHAPTER 12. ESTIMATING NONLINEAR MODELS 111

proc FNB(beta);
retp(x[.,1] .* beta + x[.,2] .* (beta^2));

endp;

fn rsq(beta) = sumc((y - fnb(beta)).*(y - fnb(beta)));

The reason for treating the functions differently is that the GAUSS functions
GRADP and HESSP, which calculate numerical first and second derivatives of a
function, take as arguments PROCs but not FUNCTIONs. We will demonstrate
the use of these functions in this chapter.
Plot the values of the sum of squares function, as in Figure 12.1 of the text, for
values of β starting at -3.

beta = seqa(-3,.1,56);

library qgraph;
xy(beta,rsq(beta’));

In order to use the Gauss-Newton algorithm to estimate the parameters we need
the derivative of the function with respect to the parameter as in (12.2.26).
Write a PROC to calculate that derivative assuming x is in memory.

proc DERV(beta);
retp(x[.,1] + 2*beta*x[.,2]);

endp;

Use the Gauss-Newton algorithm to estimate the parameter, using the initial
value of 4. Note that the stopping rule is based on the number of iterations or
convergence of the algorithm to a specified tolerance. The steps of the Gauss-
Newton algorithm are defined in Equation (12.2.29).

b1 = 4;
crit = 1;
iter = 1;
format 10,4;
do until (iter gt 25) or (crit < 1e-8);

iter b1 rsq(b1);

/* Equation 12.2.29 */

bn = b1 +
(DERV(b1)’(y - FNB(b1)))/(DERV(b1)’DERV(b1));

crit = abs(bn - b1);
b1 = bn;
iter = iter + 1;

endo;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 112

Try different starting values and note the different rates of convergence and
that the process converges to different points depending on the starting value
used. This should give ample warning that in nonlinear problems one must try
a variety of starting values to ensure that the global minimum of rsq is found.
Below is PROC NLSG which does nonlinear least squares estimation of a non-
linear regression model. It takes as arguments the starting values b0; the right-
hand- side of the regression model, E(y), which is passed as a PROC, &FI; the
analytic gradient vector which is also passed as a PROC, &GRAD, and the data
matrices x and y.
In addition it has a step-length adjustment which halves the step length until
no further reduction in the sum of squared errors is possible.
You should place this PROC in a file for future use and run it to place it in
memory.

***/
* PROC NLSG --- Non-linear Least Squares */
* using analytic derivatives */
***/

proc (2) = NLSG(b0,&FI,&GRAD,x,y);

local FI:proc, GRAD:proc;
local *;

crit = 1; /* Initialize values */
iter = 1;
k = rows(b0);
s = 0;

do until (crit < 1e-8) or (iter > 25); /* Begin loop */

z = GRAD(b0); /* Evaluate derivatives */
u = y - FI(b0); /* Compute residuals */
sse = u’u; /* Compute sum of sqrd res.*/
crit = solpd(z’u,z’z); /* Compute full step adjust*/
gosub step; /* Compute step length */
b = b0 + s*crit; /* Update parameters */
gosub prnt; /* Print iteration results */
iter = iter + 1; /* Update for iteration */
crit = abs(b - b0); /* check convergence */
b0 = b; /* store new value of est. */

endo; /* end loop */

CHAPTER 12. ESTIMATING NONLINEAR MODELS 113

/* Compute covariance matrix */

sighat2 = sse/(rows(y) - k);
covb = sighat2*invpd(z’z);

/* Print out final results */

?;
"Final Results: ";
?;
"Coefficients : " b0’;
"Std. Errors : " sqrt(diag(covb))’;
"Sighat2 : " sighat2;

retp(b0,z);

step: /* Subroutine for step length */
s = 2;
ss1 = 2; ss2 = 1;
do until ss1 <= ss2;

s = s/2;
u1 = y - FI(b0 + s*crit);
u2 = y - FI(b0 + s*crit/2);
ss1 = u1’u1;
ss2 = u2’u2;

endo;
return;

prnt: /* Subroutine for printing */
format 4,2; " i = " iter;;
format 4,2; " Steplength = " s;;
format 10,6; " SSE = " sse;

" b = " b0’;?;
return;

endp;

Use PROC NLSG to estimate β using the 4 starting values in Table 12.2.

{bn,z} = NLSG(4,&FNB,&DERV,x,y);
{bn,z} = NLSG(-3,&FNB,&DERV,x,y);
{bn,z} = NLSG(-1.05,&FNB,&DERV,x,y);
{bn,z} = NLSG(-.9,&FNB,&DERV,x,y);

The procedure returns not only the estimated parameter but also z. Thus we
can calculate the estimate of the error variance.

CHAPTER 12. ESTIMATING NONLINEAR MODELS 114

sighat2 = rsq(bn)/(rows(y) - rows(bn));
sighat2;

The asymptotic variance of the estimated parameter.

varb = sighat2*invpd(z’z);
varb;

And construct a 95% confidence interval for the regression parameter β.

interval = 1.96*sqrt(varb);
(bn - interval) (bn + interval);

This problem was relatively simple as the analytic gradient was easy to derive
and program. It will not always be so easy. The following PROC again obtains
NLS parameter estimates, but it calculates numerical gradients. In this version
the computation of the numerical derivative is shown explicitly, but the GAUSS
function GRADP could be used instead. Put PROC NLS in a file and run it to
put in memory.

/***/
/* PROC NLS --- Non-linear Least Squares */
/* using numerical derivatives */
/***/

proc (2) = NLS(b0,&FI,x,y);

local FI:proc;
local *;
crit = 1; /* Initialize values */
iter = 1;
s = 0;
k = rows(b0);

dh = 1e-6; /* Values used in gradients*/
e = eye(k)*dh;

do until (crit < 1e-8) or (iter > 25); /* Begin do loop */

/* Compute numerical gradients */
/* Could use z = gradp(&FI,b0); */

z = (FI(b0 + e) - FI(b0 - e))/(2*dh);

u = y - FI(b0); /* Compute residuals */
sse = u’u; /* Compute sum of sqrd res. */

CHAPTER 12. ESTIMATING NONLINEAR MODELS 115

crit = solpd(z’u,z’z); /* Compute full step adjust */
gosub step; /* Compute step length */
b = b0 + s*crit; /* Update parameters */
gosub prnt; /* Print results for iter’n */
iter = iter + 1; /* Update for next iter’n */
crit = abs(b - b0);
b0 = b;

endo;

/* Compute covariance matrix */

sighat2 = sse/(rows(y) - k);
covb = sighat2*invpd(z’z);

/* Print out final results */

" Final Results: ";
" Coefficients : " b0’;
" Std. Errors : " sqrt(diag(covb))’;
" Sighat2 : " sighat2;

retp(b0,z);

step: /* Subroutine for step length */
s = 2;
ss1 = 2; ss2 = 1;
do until ss1 <= ss2;

s = s/2;
u1 = y - FI(b0 + s*crit);
u2 = y - FI(b0 + s*crit/2);
ss1 = u1’u1;
ss2 = u2’u2;

endo;
return;

prnt: /* Subroutine for printing */
format 4,2; " i = " iter;;
format 4,2; " Steplength = " s;;
format 10,6; " SSE = " sse;

" b = " b0’;?;
return;

endp;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 116

Now, repeat the nonlinear estimation of our model using PROC NLS for the
same set of starting values.

{bn,z} = NLS(4,&FNB,x,y);
{bn,z} = NLS(-3,&FNB,x,y);
{bn,z} = NLS(-1.05,&FNB,x,y);
{bn,z} = NLS(-0.9,&FNB,x,y);

In sections 12.2.2 and 12.2.3 of ITPE2 the general multiple parameter nonlinear
regression model is presented and examples of Cobb-Douglas and CES produc-
tion functions given. LOAD the data for both examples from file TABLE12.3
on the data disk and check it.

load dat[30,3] = table12.3;
y = dat[.,3];
x = dat[.,1 2];
y~x;

Write PROC CD to calculate E(y) for the Cobb-Douglas production function
shown in Equation (12.2.45) for the given x data. PROC CD returns a (T x 1)
vector.

proc CD(b);
retp((b[1,.] .* (x[.,1]^b[2,.]) .* (x[.,2]^b[3,.])));

endp;

Write a PROC to calculate the gradient vector, Equation (12.2.47), for each of
the data points. Note that this returns a (T x K) matrix.

proc GRADCD(b);
local g;

g = (CD(b) ./ b[1,.])~
(ln(x[.,1]) .* CD(b))~
(ln(x[.,2]) .* CD(b));

retp(g);
endp;

Now estimate the parameters of the model using the starting values (1,0,0) and
using analytic derivatives. The results will be identical to those in the text
except for the estimate of the error variance. In Equation (12.2.43b) the text
uses (T - K) as the divisor, as we have, but the numerical results in the book
use T as the divisor.

let b0 = 1 0 0;
{b,z} = NLSG(b0,&CD,&GRADCD,x,y);

Repeat the exercise using numerical derivatives.

CHAPTER 12. ESTIMATING NONLINEAR MODELS 117

{b,z} = NLS(b0,&CD,x,y);

The second example in the text is the CES production function. Write a PROC
for E(y), Equation (12.2.53), and the gradient (12.2.54). Note that both PROCs
assume that x is in memory.

proc CES(b);
local m1,m2,mid;
m1 = x[.,1]^b[3,.];
m2 = x[.,2]^b[3,.];
mid = (b[2,.].*m1) + ((1-b[2,.]).*m2);
retp(b[1,.] + (b[4,.] .* ln(mid)));

endp;

proc GRADCES(b);
local g2,g3,mid;
mid = (b[2,.] .* (x[.,1]^b[3,.])) +

((1 - b[2,.]) .* x[.,2]^b[3,.]);

g2 = b[4,.] .* (x[.,1]^b[3,.] - x[.,2]^b[3,.]) ./ mid;

g3 = b[4,.] .* (ln(x[.,1]).*b[2,.].*x[.,1]^b[3,.]
+ ln(x[.,2]).* (1-b[2,.]).*x[.,2]^b[3,.]) ./ mid;

retp(ones(rows(y),1)~g2~g3~ln(mid));
endp;

As you can see, the process of deriving and programming the gradient vector
can become a sizable problem. Estimate the parameters of the CES production
function. The dependent variable is the natural log of y and take as starting
values (1, .5, -1, -1).

y = ln(y);
let b0 = 1 .5 -1 -1;
{b,z} = NLSG(b0,&CES,&GRADCES,x,y);

Repeat the estimation using numerical derivatives.

{b,z} = NLS(b0,&CES,x,y);

In Section 12.2.4 the Newton-Raphson algorithm is introduced. It is a general
purpose optimization algorithm that uses first and second derivatives. The
algorithm is illustrated with the one parameter model in Equation (12.2.1).
LOAD the data from file TABLE12.1.

load dat[20,3] = table12.1;
y = dat[.,1];
x = dat[.,2 3];
x1 = dat[.,2];
x2 = dat[.,3];

CHAPTER 12. ESTIMATING NONLINEAR MODELS 118

Write functions to evaluate the function value, Equation 12.2.1, its first and
second derivatives, and the sum of squared errors.

fn FNB(beta) = x1 .* beta + x2 .* (beta^2);
fn DERV1(beta) = x1 + 2*beta*x2;
fn DERV2(beta) = 2*x2;
fn RSQ(beta) = sumc((y - FNB(beta)).*(y - FNB(beta)));

Write a PROC that computes the parameter estimates using the Gauss-Newton
first and then using the Newton-Raphson procedure. Put this PROC in a file
and run it.

proc GNNR(bn);
local b1,num,gn,nr,flag,bn0,crit,iter;
bn0 = bn; /* bn0 is starting value */
flag = 1;
do until flag > 2;

bn = bn0;
crit = 1;
iter = 1;

do until (crit < 1e-6) or (iter > 25);
b1 = bn;
iter;; b1;; rsq(b1);

num = DERV1(b1)’(y-FNB(b1)); /* numerator of (12.2.74) and
(12.2.29) */

gn = DERV1(b1)’DERV1(b1); /* denom. of (12.2.29) */
nr = gn - (y-FNB(b1))’DERV2(b1); /* denom. of (12.2.74) */

if flag == 1;
bn = b1 + (num/gn); /* full Gauss-Newton step */

elseif flag == 2;
bn = b1 + (num/nr); /* full Newton-Raphson step */

endif;

iter = iter + 1;
crit = abs(bn - b1);

endo;
flag = flag + 1;?;

endo;
retp("");
endp;

Now use PROC GNNR to replicate Table 12.4.

CHAPTER 12. ESTIMATING NONLINEAR MODELS 119

GNNR(1);
GNNR(-2);
GNNR(0.1);
GNNR(-.9);

12.3 Estimation of Linear Models with General
Covariance Matrix

In this section the general linear model is considered. Maximum likelihood and
nonlinear least squares estimators, as well as Bayesian techniques, are discussed
and applied to models of autocorrelation and heteroskedasticity.
The first example is given in Section 12.3.2 where a variety of estimators are
developed for the first-order autoregressive error model. LOAD the data in file
TABLE9.2 and examine it. This data was used first in Section 9.5.6.

load dat[20,3] = table9.2;
t = rows(dat);
y = dat[.,1];
x = ones(t,1)~dat[.,2 3];
k = cols(x);

format 8,4;
y~x;

Obtain the least squares estimates.

b = y/x;
b’;

Write a PROC to obtain the estimate of rho in Equation (9.5.40). Note that
PROC NEWRHO, like many others in this section, assume that y and x are in
memory. If you try to run the proc before y and x are defined you will get an
error message, as GAUSS will assume they are uninitialized procs.

proc NEWRHO(b);
local e;
e = y - x*b;
retp(e[2:t,.]/e[1:t-1,.]);

endp;

Run the PROC to load it into memory and use it to estimate ρ.

rhohat = newrho(b);
rhohat;

Write a PROC to obtain the EGLS estimates of β, the sum of squared errors
and the transformed X matrix.

CHAPTER 12. ESTIMATING NONLINEAR MODELS 120

proc (3) = NEWB(rho);
local dstar,ystar,sse,bstar,xstar,data;

/* Transform the data */

data = y~x;
dstar = data - (rho*(zeros(1,k+1)|data[1:t-1,.]));
dstar[1,.] = sqrt(1 - rho^2)*data[1,.];
ystar = dstar[.,1];
xstar = dstar[.,2:k+1];

/* Obtain the estimates */

bstar = ystar/xstar;
sse = (ystar - xstar*bstar)’(ystar - xstar*bstar);

retp(bstar,sse,xstar);
endp;

Use the PROC to obtain the EGLS parameter estimates and then the estimated
covariance matrix.

{bstar,sse,xstar} = newb(rhohat);
sighat2 = sse/(t - k);
covb = sighat2*invpd(xstar’xstar);

In Equations (12.3.35) - (12.3.37) are the approximate asymptotic covariance
matrices for the estimates of β, σ2 and ρ. Use these to calculate ”asymptotic
standard errors” and print out the results. Compare these results to the last
row of Table 12.5.

"bhat rhohat sighat2 " bstar’;;rhohat;;sighat2;
"std.err. " sqrt(diag(covb))’;;sqrt((1-rhohat^2)/t);;

sqrt(2*(sighat2^2)/t);

An alternative to EGLS is to apply NLS to Equation (12.3.28). This approach
discards the first observation which dramatically alters the estimates, despite
the fact that asymptotically it does not matter. Methods that retain the first
observation are more efficient in small samples and are preferred. But for com-
parison purposes this is a useful exercise. First transform the data.

y = dat[2:t,1];
yl = dat[1:t-1,1];
x = ones(t-1,1)~dat[2:t,2:k];
xl = ones(t-1,1)~dat[1:t-1,2:k];
y~x;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 121

Write a PROC to calculate E(y) given initial values of β and ρ stacked into the
vector b0.

proc AUTO(b0);
local m1,m2,m3,m4,m5;

m1 = yl .* b0[4,.];
m2 = (x[.,1] .* b0[1,.]) + (x[.,2] .* b0[2,.])

+ (x[.,3] .* b0[3,.]);
m3 = (xl[.,1] .* b0[1,.]) .* b0[4,.];
m4 = (xl[.,2] .* b0[2,.]) .* b0[4,.];
m5 = (xl[.,3] .* b0[3,.]) .* b0[4,.];
retp(m1+m2-m3-m4-m5);

endp;

Make sure that NLS is in memory, and use it to obtain estimates.

b0 = b|rhohat;
{b,z} = NLS(b0,&AUTO,x,y);

Compare these NLS estimates to those in Table 12.5 and you will see that they
are substantially different.
In Equations (12.3.29) and (12.3.30) outline the Cochrane-Orcutt procedure.
Write a PROC that uses this algorithm but retaining the first observation.

proc (3) = CORC(rho);
local iter,crit,b,rho1,sse,sighat2,covb;

iter = 1;
crit = 1;
do until (crit < 1e-6) or (iter > 25);

"iteration " iter " rho " rho " crit " crit;
{b,sse,xstar} = newb(rho);
rho1 = newrho(b);
crit = abs(rho1 - rho);
rho = rho1;
iter = iter + 1;

endo;
sighat2 = sse/(t - k);
covb = sighat2 * invpd(xstar’xstar);
"SSE" sse;
"Est " b’;;rho;;sighat2;
"Std err" sqrt(diag(covb))’;;sqrt((1-rho^2)/t);;

sqrt(2*(sighat2^2)/t);
retp(b,sse,covb);

endp;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 122

Reconstruct the original y and X.

y = dat[.,1];
x = ones(t,1)~dat[.,2:k];
t = rows(x);
k = cols(x);

Use PROC CORC to obtain NLS estimates starting from several initial values of
ρ.

{b,sse,covb} = CORC(0);
{b,sse,covb} = CORC(.5);
{b,sse,covb} = CORC(.9);

Compare these estimates to those in the first row of Table 12.5.
Maximum likelihood estimation of the parameters of this model can proceed in
several ways. In Equation (12.3.33) gives, except for constants, the expression
for the concentrated likelihood function, which is only a function of ρ. One
possiblity is to search over values of ρ and choose the value that maximizes
(12.3.33). To that end write a PROC that calculates this likelihood given a
value of ρ and with y and X in memory. Note that this proc returns twice the
“elements” of the log-likelihood given in (12.3.10) and not the sum.

/***/
/* PROC AUTOLIC -- Concentrated Log-Likelihood */
/* for AR(1) errors */
/***/

proc AUTOLIC(rho);
local l1,k,T,dstar,ystar,dat,estar,phi,sigmasq,b,xstar;

k = cols(x);
t = rows(x);

/* Transform the data */

dat = y~x;
dstar = dat - (rho*(zeros(1,k+1)|dat[1:T-1,.]));
dstar[1,.] = sqrt(1 - rho^2)*dat[1,.];
ystar = dstar[.,1];
xstar = dstar[.,2:k+1];

/* Compute b and sigmasq */
/* See Equations 12.3.11 and 12.3.12 */

b = ystar/xstar;
estar = ystar - xstar*b;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 123

sigmasq = (estar’estar)/T;

/* Compute components of the likelihood function */

phi = 1/(1 - rho^2);
l1 = ln(2*pi*sigmasq) + ln(phi)/T;
retp(-l1 - ((estar.*estar)/sigmasq));

endp;

Note that this PROC returns a (T x 1) vector of components of the log-
likelihood. Search over the [0,1) interval first in units of .01.

rhov = seqa(0,.01,100);
l = zeros(100,1);
iter = 1;
do while iter le 100;

rho = rhov[iter,1];
l[iter,1]=sumc(AUTOLIC(rho));
iter = iter + 1;

endo;

Find the value of rho corresponding to the maximum and then search in a finer
grid over the neighborhood about this value.

rhoml = rhov[maxindc(l),1];
rhoml = rhoml -.1;
rhov = seqa(rhoml,.001,200);
l = zeros(200,1);
iter = 1;
do while iter le 200;

rho = rhov[iter,1];
l[iter,1] = sumc(AUTOLIC(rho));
iter = iter + 1;

endo;
rhoml = rhov[maxindc(l),1];

format 8,4;
rhoml;

Once the maximum likelihood estimate of rho is obtained the ML estimates of
beta can be found using PROC NEWB.

{b,sse,xstar} = NEWB(rhoml);
sighat2 = sse/t;

Since we will find the ML estimates in several ways, write a PROC to construct
and print out the final results with their asymptotic standard errors, given that
the estimates of β, ρ and σ2 have been stacked into a vector, param.

CHAPTER 12. ESTIMATING NONLINEAR MODELS 124

proc AUTOCOV(param);
local k,t,rho,b,sigmasq,dstar,ystar,xstar,varrho,varsig,data;

data = y~X;
k = rows(param)-2;
t = rows(data);
b = param[1:k,1];
rho = param[k+1,1];
sigmasq = param[k+2,1];
dstar = data - (rho*(zeros(1,k+1)|data[1:T-1,.]));
dstar[1,.] = sqrt(1 - rho^2)*data[1,.];
ystar = dstar[.,1];
xstar = dstar[.,2:k+1];
covb = sigmasq*invpd(xstar’xstar);
varrho = (1-rho^2)/t;
varsig = 2*(sigmasq^2)/t;
"Final results";?;
"Est " b’;; rho;; sigmasq;
"Std. errs. " sqrt(diag(covb))’;;sqrt(varrho);;sqrt(varsig);

retp(covb);
endp;

Use this PROC to print out final results for the ML estimates just obtained.

param = b|rhoml|sighat2;
covb = AUTOCOV(param);

The search procedure is effective but potentially costly and does not ensure that
the global maximum of the likelihood function is obtained. Another alternative
is to maximize the Log-likelihood function using a general optimization proce-
dure. Several of these are described in Section 12.2.5 of the text. While it is
possible to obtain analytical expressions for the first and second derivatives it is
tedious to do so and then program them. Below is a ML procedure that uses the
method of Berndt-Hall-Hall-Hausman (BHHH) with numerical first derivatives.
It assumes y and X are in memory and initial estimates and the PROC defining
the “components ” of the likelihood function are passed to it (NOTE: not the
summed log-likelihood).

/**/
/* PROC MAXL -- Maximum likelihood estimation (BHHH) */
/**/

proc MAXL(b0,&LI,x,y);
local LI:proc;
local *;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 125

db = 1; /* Initialize values */
iter = 1;
s = 0;

do until db < 1e-5; /* Begin do loop */
z = gradp(&LI,b0); /* Compute gradients (T x K) */
H = z’z; /* Compute approx. to Hessian */
g = -sumc(z); /* Gradient vector (K x 1) */
db = -inv(H)*g; /* Compute full step adjustment */
gosub step; /* Compute step length */
b = b0 + s*db; /* Update parameters */
gosub prnt; /* Print results for iteration */
iter = iter + 1; /* Update for next iteration */
db = abs(b-b0); /* Convergence criteria */
b0 = b; /* Replace old estimate */

endo;

std = sqrt(diag(invpd(H))); /* Compute estimated std. errors*/
?; /* Print out final results */
"Final Results: ";
" Parameters: " b0’;
" Std. Errors: " std’;

retp(b0); /* Return parameters to memory */

step: /* Subroutine for step length */
s = 2;
li1 = 0; li2 = 1;
do until li1 >= li2;

s = s/2;
li1 = sumc(LI(b0 + s*db));
li2 = sumc(LI(b0 + s*db/2));

endo;
return;

prnt: /* Subroutine for printing */
format 4,2; "i = " iter;;
format 4,2; " Steplength = " s;;
format 10,6; " Ln Likelihood = " sumc(LI(b0));
format 10,6; " Parameters: " b0’;

return;
endp;

To use this general purpose algorithm we must write a PROC that defines
the components of the log-likelihood function of the first-order autoregressive
model. Its argument is the stacked vector of parameter values for β, ρ and then

CHAPTER 12. ESTIMATING NONLINEAR MODELS 126

σ2. PROC AUTOLI is fairly long, so place it in a convenient file and run it.

/***/
/* */
/* PROC AUTOLI -- Log-likelihood with AR(1) errors */
/***/

proc AUTOLI(param0);
local l1,k,T,b,rho,e,elag,estar,zz,phi,sigmasq;

/* Take apart the parameter vector */

k = rows(param0);
t = rows(y);
b = param0[1:k-2,1];
rho = param0[k-1,1];
sigmasq = param0[k,1];

/* Compute the transformed error term */

e = y - x*b;
elag = 0|e[1:t-1,1];
estar = e - (rho*elag);
estar[1,1] = sqrt(1 - (rho^2))*e[1,1];

/* Compute the components of the likelihood function */

phi = 1/(1 - (rho^2));
l1 = ln(2*pi*sigmasq) + ln(phi)/t;
retp(- l1 - ((estar.*estar)/sigmasq));

endp;

Set the initial parameter values and apply the proc. In general several sets
of starting values should be tried since the procedure may converge to a local
maximum or even a minimum of the log-likelihood function.

let b0 = 4 2 .7 .5 7;
b = MAXL(b0,&AUTOLI,x,y);
covb = AUTOCOV(b);

In Section 12.3.2c the principles of Bayesian methodology are applied to the
autocorrelation problem. The example used is based on the model and data
from Section 9.5.6. LOAD the data from that section and inspect the data.

load dat[20,3] = table9.2;
t = rows(dat);
k = cols(dat);

CHAPTER 12. ESTIMATING NONLINEAR MODELS 127

nu = t - k;
y = dat[.,1];
x = ones(t,1)~dat[.,2 3];
format 8,4;
y~x;

The “kernel” of the posterior p.d.f. for the autocorrelation parameter, ρ, is given
in Equation 12.3.41. The normalizing constant is given in the form of an integral
in Equation 12.3.42. PROC RHOKERN calculates the value of kernel for a vector,
or matrix, of ρ values. It uses PROC NEWB to calculate the EGLS estimator
of β (bstar), the sum of squared errors (sse) and the transformed X matrix
(xstar). The PROC is written in a way such that it can be used by GAUSS’s
numerical integration function INTQUAD1. That is, the proc must return a
vector or matrix the same size as the single argument of the proc. See your
GAUSS manual for an example. Before you place RHOKERN in memory make
sure PROC NEWB is in memory or can be automatically loaded by GAUSS.

proc RHOKERN(rho);
local m,n,store,i,j,bstar,sse,xstar;

m = rows(rho); /* define dimensions of rho */
n = cols(rho);
store = zeros(m,n); /* initialize storage matrix */
i = 1;
do while i le m;
j = 1;
do while j le n;

{ bstar,sse,xstar } = newb(rho[i,j]); /* gls */

/* Equation 12.3.41 */

store[i,j] = sqrt(1 - rho[i,j]^2)*(sse^(-nu/2))
/ sqrt(det(xstar’xstar));

j = j + 1;
endo;
i = i + 1;
endo;

retp(store);
endp;

With RHOKERN in memory, carry out the integral in (12.3.42) and solve for the
normalizing constant.

_intord = 20;
xl = 1|-1;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 128

rhoconst = intquad1(&RHOKERN,xl);
rhoconst = 1/rhoconst;
rhoconst;

Given the normalizing constant, write PROC RHOPOST which returns the p.d.f.
values given ρ.

proc RHOPOST(rho);
retp(rhoconst * RHOKERN(rho));

endp;

Graph the posterior p.d.f. for ρ as in Figure 12.5.

rhovec = seqa(0,.01,100);
library qgraph;
xy(rhovec,RHOPOST(rhovec));

The mean of the posterior distribution can be obtained using Equation 12.3.43.
Again we will use numerical integration. Write PROC RHOMU which takes ρ as
an argument and returns ρ times the p.d.f. value.

proc RHOMU(rho);
local mom1;
mom1 = rho .* RHOPOST(rho);
retp(mom1);

endp;

Calculate the mean of the posterior distribution.

rhomean = intquad1(&RHOMU,xl);
rhomean;

To obtain the standard deviation of the posterior p.d.f. we will first calculate
the second moment (about the origin) of the p.d.f. in the same fashion as the
first moment.

proc RHOMU2(rho);
local mom2;
mom2 = rho .* rho .* RHOPOST(rho);
retp(mom2);

endp;

Calculate the standard deviation of the posterior distribution.

rhose = sqrt(intquad1(&RHOMU2,xl) - rhomean^2);
rhose;

Calculate the probability that rho falls in the interval [0.4, 1.0].

CHAPTER 12. ESTIMATING NONLINEAR MODELS 129

xl = 1.0|.4;
p = intquad1(&RHOPOST,xl);
p;

The next task is to obtain the posterior distribution for an individual parameter
value, β2. The kernel of the joint posterior is given in Equation 12.3.44. It is
a function of ρ and β2. PROC RB2KERN takes these arguments and returns the
value of the kernel. It must be written in such a way that it can be used by
the bivariate numerical integration function INTQUAD2. In particular it must
take arguments that are vectors or matrices and return the same.

proc RB2KERN(rho,b2);
local m,n,p,q,store,i,j,bstar,sse,xstar,xtx,

ixx,c22,rhomat,b2m;

store = 0 * rho .* b2; /* define storage matrix */
m = rows(store); /* obtain dimensions */
n = cols(store);

rhomat = rho .* (store + 1);/* matrix of rho values */
b2m = (store + 1) .* b2; /* matrix of b2 values */

i = 1;
do while i le m;
j = 1;
do while j le n;

/* carry out gls */

{ bstar,sse,xstar } = NEWB(rhomat[i,j]);

/* define pieces of kernel */
xtx = xstar’xstar;
ixx = invpd(xtx);
c22 = ixx[2,2];

/* calculate kernel */

store[i,j] = (sqrt(1 - rhomat[i,j]^2)*(sse^(-(nu + 1)/2))
/(sqrt(det(xtx))*c22))
/(1+((b2m[i,j]-1.672)^2)/(c22*sse))^((nu+1)/2) ;

j = j + 1;
endo;
i = i + 1;
endo;
retp(store);

endp;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 130

Now use INTQUAD2 to obtain the normalizing constant. Let the limits of β2

be -1 to 4, which for practical purposes defines the real line. This will take a
few minutes to calculate.

_intord = 20;
rhol = 1|-1;
b2l = 4|-1;
biconst = intquad2(&RB2KERN,rhol,b2l);
biconst;

Now write a procedure that calculates the value of the joint posterior as a
function of ρ with β2 in memory. The reason for this is that we will integrate
out ρ, using INTQUAD1, to obtain the marginal posterior p.d.f. for β2.

b2 = 0;

proc RB2POST(rho);
local m,n,store,i,j,bstar,sse,xstar,xtx,ixx,c22,rhomat;
store = 0 .* rho;
m = rows(store); n = cols(store);
rhomat = rho .* (store + 1);
i = 1;
do while i le m;
j = 1;
do while j le n;
{ bstar,sse,xstar } = newb(rhomat[i,j]);
xtx = xstar’xstar;
ixx = invpd(xtx);
c22 = ixx[2,2];
store[i,j] = (1/biconst)

.* (sqrt(1- rhomat[i,j]^2)*(sse^(-(nu+1)/2))
/ (sqrt(det(xtx))*c22))
/ (1+((b2-1.672)^2)/(c22*sse))^((nu+1)/2);

j = j+1;
endo;
i = i + 1;
endo;

retp(store);
endp;

Create a vector of values of beta2 and calculate the corresponding values of the
posterior p.d.f.

b2vec = seqa(0,.035,100);
_intord = 10;
pdfvec = 0 * b2vec;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 131

i = 1;
do while i le rows(b2vec);

b2 = b2vec[i];
pdfvec[i] = intquad1(&RB2POST,rhol);

i = i + 1;
endo;

Now graph the p.d.f. as in Figure 12.6.

xy(b2vec,pdfvec);

To calculate the mean and variance of the posterior p.d.f. we will use Equation
12.3.45. Write PROC MOMB2 which takes ρ as an argument and returns the
values of the EGLS estimates of β2 weighted by the posterior p.d.f. of ρ.

proc MOMB2(rho);
local m,n,store,rhomat,i,j,bstar,sse,xstar,ixx,c22;

m = rows(rho);
n = cols(rho);
store = zeros(m,n);
rhomat = rho .* (store + 1);
i = 1;
do while i le m;
j = 1;
do while j le n;

{bstar,sse,xstar} = newb(rhomat[i,j]);
store[i,j] = bstar[2] .* RHOPOST(rhomat[i,j]);

j = j + 1;
endo;
i = i + 1;
endo;
retp(store);
endp;

_intord = 20;
rhol = 1|-1;
meanb2 = intquad1(&MOMB2,rhol);
meanb2;

proc RB2POST2(rho,b2);
local m,n,p,q,store,i,j,bstar,sse,

xstar,xtx,ixx,c22,rhomat,b2m;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 132

store = 0 * rho .* b2; /* define storage matrix */
m = rows(store); /* obtain dimensions */
n = cols(store);

rhomat = rho .* (store + 1); /* matrix of rho values */
b2m = (store + 1) .* b2; /* matrix of b2 values */

i = 1;
do while i le m;
j = 1;
do while j le n;

/* carry out gls */

{ bstar,sse,xstar } = newb(rhomat[i,j]);

/* define pieces of kernel */
xtx = xstar’xstar;
ixx = invpd(xtx);
c22 = ixx[2,2];

/* calculate kernel */

store[i,j] = (sqrt(1 - rhomat[i,j]^2)*(sse^(-(nu + 1)/2))
/(sqrt(det(xtx))*c22))
/(1+((b2m[i,j]-1.672)^2)/(c22*sse))^((nu+1)/2);

j = j + 1;
endo;
i = i + 1;
endo;
retp(store./biconst);

endp;

proc MUB2(rho,b2);
local mom1;
mom1 = b2 .* RB2POST2(rho,b2);
retp(mom1);

endp;

proc MU2B2(rho,b2);
local mom2;
mom2 = b2 .* b2 .* RB2POST2(rho,b2);
retp(mom2);

endp;

_intord = 20;
rhol = 1|-1;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 133

b2l = 4|-1;
meanb2 = intquad2(&MUB2,rhol,b2l);
meanb2;

mom2 = intquad2(&MU2B2,rhol,b2l);
mom2;

varb2 = mom2 - meanb2^2;
varb2;
seb2 = sqrt(varb2);
seb2;

The second example given in Section 12.3 is that of the model of multiplicative
heteroskedasticity first presented in Section 9.3.4.
LOAD the data in file TABLE9.1 and check.

load dat[20,5] = table9.1;
y = dat[.,1];
x = ones(20,1)~dat[.,2 3];
z = x[.,1 2];
format 8,4;
y~x~z;

To obtain the ML estimates we can once again use PROC MAXL. First write a
proc that returns the components of the log-likelihood function (12.3.48) given
a vector of parameter values for beta and alpha stacked into a vector.

/***/
/* */
/* PROC HETEROLI -- Log likelihood for multiplicative */
/* heteroskedastic errors */
/***/

proc HETEROLI(param0);
local k,b,alpha,za,e,const;

/* Take apart the parameter vector */

k = cols(x);
b = param0[1:k,.];
alpha = param0[k+1:rows(param0),.];

/* Compute the log likelihood */

za = z*alpha;
e = y - x*b;
const = -ln(2*pi)/2;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 134

retp(const - za/2 - exp(-za).*e.*e/2);
endp;

Once the ML estimates are obtain the asymptotic standard errors can be ob-
tained from the inverse of the information matrix, which is given in Equation
(12.3.49) Write a proc to obtain those standard errors and put the covariance
matrices into global memory for later use.

proc (2) = HETERCOV(param0);
local k,b,alpha,xstar,za,covb,covalpha;

k = cols(x);
b = param0[1:k,.];
alpha = param0[k+1:rows(param0),.];
za = z*alpha;
xstar = x .* (ones(1,k) .*. sqrt(exp(-za)));
covb = invpd(xstar’xstar);
covalpha = 2*invpd(z’z);

"Final results ";?;
"Est. " param0’;
"Std. Errs. " sqrt(diag(covb))’;;

sqrt(diag(covalpha))’;
retp(covb,covalpha);

endp;

As suggested on p. 540 of ITPE2 let the starting values be the EGLS estimates.

let param0 = 1.01 1.657 .896 -4.376 .366;
param = MAXL(param0,&HETEROLI,x,y);
{covb,covalpha} = HETERCOV(param);

As an alternative to using a general optimization algorithm for ML estimation
it is sometimes possible to use the structure of the problem at hand to simplify
matters. This is true for the model under consideration as was noted by Harvey.
Equations (12.3.51) and (12.3.52) define iterations for the Method of Scoring
algorithm. Note the convergence criteria.

/***/
/* */
/* PROC HARVEY -- ML estimation, by Method of Scoring, */
/* of Multiplicative heteroskedasticity model */
/***/

proc HARVEY(param0);
local b0,a0,bn,an,iter,crit,e,za,estar,xstar,q;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 135

/* Take apart initial parameter values */

k = cols(x);
b0 = param0[1:k,.];
a0 = param0[k+1:rows(param0),.];

/* Set initial constants */

bn = b0;
an = a0;
iter = 1;
crit = 1;

/* Start do-loop and print */

do until (crit < 1e-8) or (iter > 50);
" iter " iter " bn " bn’ " an " an’ " crit " crit;

e = y - x*bn; /* transform residuals and X */
za = z*an;
estar = e .* sqrt(exp(-za));
xstar = x .* (ones(1,k) .*. sqrt(exp(-za)));

bn = b0 + estar/xstar; /* Equation 12.3.51 */

q = (exp(-za) .* e^2) -1; /* Equation 12.3.52 */
an = a0 + q/z;

/* check convergence */

crit = maxc(abs((bn|an) - (b0|a0)));
b0 = bn;
a0 = an;
iter = iter + 1;
endo;

retp(bn|an);
endp;

Use this proc with the same starting values to obtain ML estimates.

let param0 = 1.01 1.657 .896 -4.346 .366;
param = HARVEY(param0)
{covb,covalpha} = HETERCOV(param);

In Section 12.3.4 asymptotic tests related to ML estimation are presented. They
are applied to the model of multiplicative heteroskedasticity in Section 12.3.4b.

CHAPTER 12. ESTIMATING NONLINEAR MODELS 136

The Wald statistic in Equation (12.3.93) is simply the square of the asmptotic-t
statistic in this case.

wald = (param[5,1] / sqrt(covalpha[2,2]))^2;
wald; cdfchic(wald,1);

The likelihood ratio test is given in Equation (12.3.102).

t = rows(x);
b = y/x;
sig02 = (y - x*b)’(y - x*b)/t;
lr = t*ln(sig02) - sumc(z*param[4 5,.]);
lr;

12.4 Nonlinear Seemingly Unrelated Regression
Equations

In this Section the nonlinear SUR model is considered and maximum likelihood
estimation of the concentrated likelihood function, Equation 12.4.9, described.
As an example of such a model a linear expenditure system. The data used is
that in file TABLE11.3 which contains T = 30 observations on the prices of 3
commodities, income and quantities of the commodities. LOAD the data and
check it.

load dat[30,7] = table11.3;
p = dat[.,1:3];
y = dat[.,4];
q = dat[.,5:7];
v = p.*q;
format 10,5;
p~y~q;

In order to maximize the concentrated likelihood function we will use the Newton-
Raphson algorithm, as described in Equation 12.2.89. The matrix of second
partial derivatives will be approximated with numerical second derivatives us-
ing the GAUSS function HESSP, and numerical first derivatives using GRADP.
The arguments of PROC MAXM are a set of initial estimates, b0, and PROC
SURLI that defines the value (a scalar) of the objective function. This proc is
long so place it in a separate file and run it. Note that this proc assumes that
X and y are in memory. In other respects PROC MAXM is much like PROC
MAXL.

CHAPTER 12. ESTIMATING NONLINEAR MODELS 137

/***/
/* */
/* MAXM.PRC -- Maximum likelihood estimation using the */
/* Newton-Raphson Algorithm (Data in Memory) */
/***/

proc MAXM(b0,&ofn);

local ofn:proc;
local t,std,tol,H,g,b,db,iter,ofn1,ofn2,z,s,converge;

db = 1;
iter = 1;
converge = 0;
tol = 1e-5;

do until converge == 1;

g = gradp(&ofn,b0);
H = hessp(&ofn,b0);
db = -inv(H)*g’; /* -solpd(g,m) is much faster */
gosub step;
b = b0 + s*db;

gosub prnt;

db = abs(b-b0);
b0 = b;

if abs(db) < tol; converge = 1;
else; iter = iter + 1;

endif;
endo;

?;
"Final Results: ";
" Coefficients: " b0’;

std = sqrt(diag(-inv(H)));
" Std. Errors: " std’;

retp(b0);

step:
s = 2;
ofn1 = 0;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 138

ofn2 = 1;
do until ofn1 >= ofn2;
s = s/2;
ofn1 = ofn(b0 + s*db);
ofn2 = ofn(b0 + s*db/2);

endo;
return;

prnt:
format 4,2; " i = " iter;;
format 4,2; " Steplength = " s;;
format 10,6; " Likelihood = " ofn(b0);
format 10,6; " b = " b0’;
?;

return;

endp;

Write a PROC that produces the value of the concentrated likelihood function
for the first two of the equations in (12.4.13) (since the 3 equations are linearly
dependent.)

proc surli(b0);
local g,b1,b2,z,e1,e2,s1,s2,s12,s;

g = b0[1:3,.]; /* Separate the param values */
b1 = b0[4,.];
b2 = b0[5,.];

z = y - p*g; /* Calculate Supernumerary
income */

e1 = v[.,1] - p[.,1]*g[1,1] - b1*z; /* Residuals */
e2 = v[.,2] - p[.,2]*g[2,1] - b2*z;

/* Elements of Contemporaneous
Covariance */

s1 = e1’e1;
s2 = e2’e2;
s12 = e1’e2;
s = (s1~s12)|(s12~s2);

retp(-(rows(y)/2)*ln(det(s))); /* Equation 12.4.9 */
endp;

Using the initial values suggested on p. 555 of ITPE2, obtain the ML parameter
estimates. Note that the standard errors returned by MAXM are based on the

CHAPTER 12. ESTIMATING NONLINEAR MODELS 139

numerical second derivaties.

let b0 = 2.903 1.360 13.251 0.20267 .13429;
b = MAXM(b0,&surli);

12.5 Functional Form – The Box-Cox Transfor-
mation

In this Section maxmimum likelihood estimation of the regression and transfor-
mation parameters of the Box-Cox model is discussed. What follows is a series
of PROCs that implement these ideas. The first is PROC BCT which carries out
the transformation in Equation (12.5.3) of the text, given the matrix Z contain-
ing the data to transform and the parameter lambda which is either a scalar or
a vector which is conformable to z.

/* PROC BCT -- Computing the Box-Cox Transformation */

proc BCT(z,lambda);
local z1,z2,idx,zbc;
idx = lambda .== 0;
z1 = ((z^lambda) - 1)./lambda;
z2 = ln(abs(z));
zbc = (z2 .* idx) + (z1 .* (1-idx));
retp(zbc);

endp;

Next, is PROC BOXCOX. Its arguments are a set of initial parameter values for
β, λ and σ2, in that order. PROC BOXCOX returns the T components of the
log-likelihood function in Equation (12.5.10) in a (T x 1) vector. It assumes
that y and X are in memory as well as a (T x 1) vector of ones, j. Thus, before
proceeding, LOAD the data in TABLE12.7 and check it.

load dat[40,3] = table12.7;
x = dat[.,1 2];
y = dat[.,3];
j = ones(40,1);
x~y;

Now enter PROC BOXCOX and run it.

/* BOXCOX -- the full log-likelihood function */

proc BOXCOX(p0);
local c,e,b,li,lambda,sigmasq;

/* Take apart the parameter vector */

CHAPTER 12. ESTIMATING NONLINEAR MODELS 140

b = p0[1:rows(p0)-2,1];
lambda = p0[rows(p0)-1,1];
sigmasq = p0[rows(p0),1];

/* Compute the error term for the transformed data */

e = BCT(y,lambda) - (j~BCT(x,lambda))*b;

/* Compute the log-likelihood */

c = ln(2*pi*sigmasq);
li = -(c/2) - (e.*e./(2*sigmasq)) + (lambda-1).*ln(y) ;

retp(li);
endp;

Assume that the transformation parameter lambda is the same for all the vari-
ables. Use the starting values given at the top of p. 560 and the BHHH algorithm
MAXL to obtain ML estimates. Make sure that MAXL is in memory.

let b0 = 3 1 1 1 1.5;
b = MAXL(b0,&BOXCOX,x,y);

Compare these estimates to those in Table 12.8 which assume the same lambda.
The standard errors reported by MAXL are based on the BHHH approximation
to the Hessian and using only first derivatives. Thus they are an approximation
to the ”Unconditional Standard Errors” reported in the text and, as you can
see, not terribly close. ITPE2 cites the text by Fomby, Hill and Johnson, which
contains a discussion of the difference between conditional and unconditional
standard errors. The conditional standard errors assume that the transforma-
tion parameter λ is known, and not estimated, and are thus based on the covari-
ance matrix in Equation (12.5.15) for β. Compute these conditional standard
errors for the estimates of β based on the ML estimates.

xlam = j~BCT(x,.779);
covb = 1.24 * invpd(xlam’xlam);
std = sqrt(diag(covb));
std’;

The conditional standard error reported for σ2 is based on its usual ML estimate
of the variance.

varsig2 = 2*(1.24^2)/40;
std = sqrt(varsig2);
std;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 141

In order to generalize the procedure to allow different λs on each of the variables
enter the following procedure into a file and run it. It calculates the T elements
of the Concentrated likelihood function in Equation (12.5.19). The PROC takes
as argment a vector, lam0, that contains initial values for the transformation
parameters for y and the (K - 1) regressors in X, in that order. Once again, it is
assumed that y, x, and j are in memory. Note that it places into global memory
OLS estimates b and sigmasq as well as the transformed X matrix which will
be used in the next step using the GAUSS command CLEARG.

/* PROC BOXCOX2 -- general Box-Cox Concentrated Likelihood */

proc BOXCOX2(lam0);
local dat,ybc,c,e,li;
clearg b,xbc,sigmasq;

/* Transform the data with the current lambda’s */

dat = BCT(y~x,lam0’);
ybc = dat[.,1];
xbc = j~dat[.,2:cols(dat)];

/* Compute the estimate of b (Equation 12.5.11) */

b = ybc/xbc;

/* Compute the estimate of sigamsq (Equation 12.5.12) */

e = ybc - xbc*b;
sigmasq = e’e/rows(y);

/* Compute the components of the log-likelihood
in (Equation 12.5.19) */

c = ln(2*pi*sigmasq);
li = -(c/2) - (e.*e/(2*sigmasq)) + (lam0[1,.]-1).*ln(y) ;
retp(li);

endp;

Given the initial values of λ and estimates for β and σ2, the maximum likelihood
estimates of λ can be obtain and then the ML estimates of β and σ2. However,
so that approximate unconditional standard errors for all parameters can be
obtained the proc below, BOXCOX3, obtains the full likelihood for this model as
given exactly in Equation 12.5.19 given a set of parameters p0 that contains
estimates of β, λ, and σ2, in that order.

/* BOXCOX3 -- Full likelihood with differing lambdas */

CHAPTER 12. ESTIMATING NONLINEAR MODELS 142

proc BOXCOX3(p0);
local k,b,lam,sigmasq,dat,ybc,xbc,e,c,li;

/* Take apart the parameter vector */

k = cols(x) + 1;
b = p0[1:k,1];
lam = p0[k+1:2*k,1];
sigmasq = p0[rows(p0),1];

/* Transform the data */

dat = BCT(y~x,lam’);
ybc = dat[.,1];
xbc = j~dat[.,2:cols(dat)];

/* Compute the likelihood */

e = ybc - xbc*b;
c = ln(2*pi*sigmasq);
li = -(c/2) - (e.*e/(2*sigmasq)) + (lam[1,.]-1) .* ln(y);
retp(li);

endp;

Finally we are ready to put it all together. Our strategy will be to use MAXL
to obtain ML estimates of λ given some initial estimates. Then these ML
estimates and the corresponding ML estimates for β and σ2 will used to calculate
the value of the full likelihood function which is fed into GRADP. Given the
numerical values of the first derivatives the BHHH approximation to the Hessian
is computed and approximate unconditional standard errors computed. All
these steps are summarized in PROC BOXFULL. It takes as argument only the
initial values for λ that BOXCOX2 uses.

/* BOXFULL -- Combine BOXCOX2 and BOXCOX3 for full estimation */

proc BOXFULL(lam0);
clearg lam,bvec,sigmasq,z,H,std,p;

/* Compute the vector of lambda’s using BOXCOX2 */

lam = MAXL(lam0,&BOXCOX2,x,y);

/* Create a complete parameter vector from values in memory */

p = b|lam|sigmasq;

CHAPTER 12. ESTIMATING NONLINEAR MODELS 143

/* Compute the numerical gradients using gradp and BOXCOX3 */

z = gradp(&BOXCOX3,p);

/* Compute the BHHH approximation to the Hessian */

H = z’z;

/* Compute standard errors */

std = sqrt(diag(invpd(H)));

/* Print out results */

?;
" Estimates for Complete Model with Unconditional Std. Errors:";
" (b, lambda, sigmasq) ";
p’;
std’;
retp(p);

endp;

Make sure all the procs are loaded into memory. Set the initial values of the
parameters lambda to one and estimate the full model.

let lam0 = 1 1 1;
p = boxfull(lam0);

As you can see the numerical approximations to the unconditional standard
errors are different from those in the text. To obtain the conditional standard
errors we proceed as before.

xlam = j~BCT(x,-1.536~.391);
covb = 2.876 * invpd(xlam’xlam);
std = sqrt(diag(covb));
std’;

varsig2 = 2*(2.876^2)/40;
std = sqrt(varsig2);
std;

Chapter 13

Stochastic Regressors

In this chapter the consequences of not having fixed regressors are examined
and the instrumental variable estimation technique used.

13.1 Independent Stochastic Regressor Model

When the regressor matrix is stochastic but independent of the error term then
the least squares estimator has desirable properties and is equal to the ML
estimator if the errors are normal.

13.2 Partially Independent Stochastic Regres-
sors

If the regressors are only partially dependent on the errors, and not contempo-
raneously correlated with them then the usual properties of the least squares
estimator hold asymptotically.

13.3 General Stochastic Regressor Models

When the errors are contemporaneously correlated with the error term the the
usual least squares estimator is biased and inconsistent. Instrumental variable
estimation is consistent but not asymptotically efficient, in general.
In Section 13.3.2 a numerical example is given. LOAD the data from TABLE13.1
and check it. It consists of 20 artificial observations on x2, y and z2.

load dat[20,3] = table13.1;
format 8,4;
dat;

Construct the matrices X and Z by adding an intercept variable.

144

CHAPTER 13. STOCHASTIC REGRESSORS 145

t = rows(dat);
x = ones(t,1)~dat[.,1];
y = dat[.,2];
z = ones(t,1)~dat[.,3];

Compute the Instrumental Variables (IV) estimator in (13.3.24) and compare
to the OLS estimates.

biv = x’y/x’z;
biv’;

bols = y/z;
bols’;

The asymptotic covariance matrix of the IV estimator is computed in Equation
13.3.25. First calculate the residuals and then the estimated variance, without
correcting for the degrees of freedom.

ehat = y - z*biv;
sig2 = ehat’ehat/t;
sig2;

Compute the estimate of the asymptotic covariance matrix.

covb = sig2 * inv(x’z)*x’x*inv(z’x);
covb;

13.4 Measurement Errors

When errors of measurement exist in the X matrix a particular form of Errors
in Variables or Stochastic Regressor model is created. In this section several
estimators designed to deal with these problems are presented. A numerical
example is given in Section 13.4.3 First LOAD the data in TABLE13.2. It
consists of T = 15 observations on explanatory variables x2 and x3 and random
disturbances u and v. Examine the data.

load dat[15,4] = table13.2;
t = rows(dat);
x = ones(t,1)~dat[.,1 2];
u = dat[.,3];
v = dat[.,4];
format 10,5;
x~u~v;

The random disturbances u and v shown in Table 13.2 are rounded values.
Actually u and v are N(0, 0.2) and N(0, 0.5) and based on the first 30 “official”
normal random numbers. We will construct the exact values so the solutions in
the text can be reproduced exactly.

CHAPTER 13. STOCHASTIC REGRESSORS 146

open f1 = nrandom.dat;
u = readr(f1,15);
v = readr(f1,15);
f1 = close(f1);
u = sqrt(.2)*u;
v = sqrt(.5)*v;
u~v;

Create the variables zstar, z and y using Equations (13.4.51)-(13.4.53).

let theta = 2 3 5;
zstar = x*theta;
z = zstar + u;
let beta = 10 0.8;
y = (ones(t,1)~zstar)*beta + v;
zstar~z~y;

Regress z on x to produce (13.4.54).

bz = z/x;
bz’;

Form the predicted value of z and regress y on this predicted value, with an
intercept, to produce (13.4.55)

zhat = x*bz;
binf = y/(ones(t,1)~zhat);
binf’;

Alternatively, this estimate can be obtained directly from Equation 13.4.28.

zmat = ones(15,1)~z;
xz = x’zmat;
xty = x’y;
ixx = invpd(x’x);
binf = (xz’*ixx*xty)/(xz’*ixx*xz);
binf’;

To calculate the second two-stage estimator regress y on x and compute the
predicted value of y, as in (13.4.58)

by = y/x;
by’;
yhat = x*by;

Then regress z on the predicted value of y, with an intercept, following Equation
13.5.49.

CHAPTER 13. STOCHASTIC REGRESSORS 147

b0 = z/(ones(15,1)~yhat);
b0’;
beta = 1/(b0[2,1]);
alpha = -b0[1,1]*beta;
alpha beta;

Or obtain the estimates directly from Equation 13.4.34.

xya = x’(ones(15,1)~y);
b0 = (xya’ixx*xty)/(xya’ixx*xz);
b0’;

The third estimator is formed following (13.4.60)-(13.4.62),

syy = (y - yhat)’(y - yhat)/t; /* Equation 13.4.38 */
syy;
szz = (z - zhat)’(z - zhat)/t; /* Equation 13.4.39 */
szz;
lambda = syy/szz; /* Equation 13.4.37 */
lambda;

The computation of the estimator (13.4.36b) actually assumes that the data is
in deviation from the mean form (See comments below equations (13.4.25 and
13.4.26)) so correct for the mean values at this time.

yd = yhat - meanc(yhat);
zd = zhat - meanc(zhat);
yy = yd’yd;
zz = zd’zd;
zy = zd’yd;
blam = (yy - lambda*zz + sqrt((lambda*zz - yy)^2

+ 4*lambda*zy^2))/(2*zy);
blam’;

To obtain Goldberger’s Maximum Likelihood estimator the log-likelihood func-
tion in Equation 13.4.44 must be maximized. The following PROC STOCHLI
computes the value of the log-likelihood function assuming y, x and Z are in
memory. The argument is a vector of initial estimates of Πz, as given in Equation
13.4.27, and consistent estimates of α and β in Equation (13.4.20), which are
found by regressing y on ẑ, and an intercept, as in Equation 13.4.28. The proc
returns the value of the log-likelihood, which can be maximized using PROC
MAXM, which appears on page 133.

proc STOCHLI(p0);
local li,k,t,k1,piz,piy,ey,ez,c;
clearg sigv,sigu;

CHAPTER 13. STOCHASTIC REGRESSORS 148

k = rows(p0);
t = rows(x);
piz = p0[1:k-2,.];
alpha = p0[k-1,.];
beta = p0[k,.];
piy = beta*piz;
piy[1,.] = piy[1,.] + alpha;
ey = y - x*piy;
ez = z - x*piz;
sigv = ey’ey/t;
sigu = ez’ez/t;
c = -t*ln(2*pi) - t*.5*ln(sigu) - t*.5*ln(sigv);
li = c - (ey’ey)/(2*sigv) - (ez’ez)/(2*sigu) ;
retp(li);

endp;

Run the procedure and make sure MAXM is in memory. Then, obtain initial
estimates as suggested above and form the vector p0 of initial values.

bz = z/x;
zhat = x*bz;
binf = y/(ones(t,1)~zhat);
p0 = bz|binf;

Minimize the objective funtion to obtain ML estimates of the parameters.

p = MAXM(p0,&STOCHLI);

Chapter 14

Simultaneous Linear
Statistical Models: I

14.1 Introduction

In this chapter the nature of simultaneous equations models is explored. In
particular the notation and assumptions are developed, the inconsistency of
OLS estimation demonstrated and the concept of identification explained.

14.2 Specification of the Sampling Model

In this Section the notation is developed and the assumptions of the sampling
model stated. Following Equation 14.2.21 a numerical example is given. Define
the matrices sigma and plimx as given at the top of page 608.

let sigma[2,2] = 5 1
1 1;

let plimx[3,3] = 1 1 0
1 2 0
0 0 1;

Define the parameter matrices Γ and B.

let g[2,2] = -1 2
1 -1;

let b[3,2] = 0 3
2 0
0 1;

Compute reduced form parameters as in Equation 14.2.13a.

149

CHAPTER 14. SIMULTANEOUS LINEAR STATISTICAL MODELS: I 150

format 8,4;
pix = -b*inv(g);
pix;

Compute the plim of V ′V/T , which is the contemporaneous covariance matrix
for the reduced form disturbances. See Equation 14.2.18a.

plimv = inv(g)’sigma*inv(g);
plimv;

Compute the plim of y′y/T . See Equation 14.2.23. The (2,2) element should
agree with (14.2.23).

plimy = pix’plimx*pix + plimv;
plimy;

Compute the plim of X ′y/T . See Equation 14.2.24. The (2,2) element should
agree with (14.2.24).

plimxy = pix’plimx;
plimxy;

Compute the plim of y′e/T . See Equation 14.2.25. The (2,1) element will agree
with (14.2.25).

plimye = -inv(g)’sigma;
plimye;

14.3 Least Squares Bias

In this Section the least squares bias and inconsistency is demonstrated. On
page 611 the example from the preceeding section is continued.
Compute the plim of the least squares estimator as in Equation 14.3.7. Con-
struct plimz from the previous results.

let plimz[2,2] = 91 -11
-11 2;

Define δ1.

let d1 = 1 2;

Construct plimze using previous results.

let plimze = -11 0;

Find the plim of the least squares estimator of delta and its asymptotic bias.

plimd1 = d1 + inv(plimz)*plimze;
format 8,4;
plimd1;
bias = plimd1 - d1;
bias;

CHAPTER 14. SIMULTANEOUS LINEAR STATISTICAL MODELS: I 151

14.4 The Problem of Going from the Reduced-
Form Parameters to the Structural Para-
maters

In this Section the Identification problem is defined and identification rules
given. In Section 14.5.3 an Empirical example is given using the simple Keyne-
sian model.
LOAD the data from file TABLE14.1. It consists of T = 20 observations on
investment from Table 14.1 in ITPE2.

load i[20,1] = table14.1;

Using i, and the official random numbers, we can create the remaining elements
of the model using Equations 14.9.1-14.9.2. Let e be a vector of N(0,.04) random
disturbances.

open f1 = nrandom.dat;
e = readr(f1,20);
f1 = close(f1);
e = sqrt(.04)*e;

Define the parameter values for α and β.

alpha = 2;
beta = 0.8;

Construct v.

v = (1/(1 - beta))*e;

Construct c and y using Equation 14.9.2.

c = alpha/(1 - beta) + beta/(1 - beta) * i + v;
y = alpha/(1 - beta) + 1/(1 - beta) * i + v;

Print out Table 14.1 using the constructed values.

i~c~y~v;

Compute reduced form parameters regressing c and y on i.

dep = c~y;
x = ones(20,1)~i;
pix = dep/x;
pix;

Solve for the the structural parameters using (14.5.23) and (14.5.25).

CHAPTER 14. SIMULTANEOUS LINEAR STATISTICAL MODELS: I 152

pi11 = pix[1,1];
pi21 = pix[2,1];
beta = pi21/(1+pi21);
alpha = pi11*(1 - beta);
alpha beta;

Then, using income equations, (14.5.24) and (14.5.26),

pi12 = pix[1,2];
pi22 = pix[2,2];
beta = (pi22 - 1)/pi22;
alpha = pi12*(1 - beta);
alpha beta;

Compare these results to the OLS estimates.

b = y/(ones(20,1)~c);
b’;

Since it is impossible to judge the amount of estimator bias from one sample of
data, carry out a short monte carlo experiment, repeating the above using n =
250 samples of size T = 20.
Create the data on c and y.

n = 250;
t = 20;
load e = e1nor.fmt;
e = sqrt(.04) * e;
c = (2 + .8*i + e)/(1 - .8);
y = i + c;

Obtain reduced form estimates and calculate their mean values from the 250
samples and compare to the true values for the consumption equation (14.5.25).

x = ones(t,1)~i;
pic = c/x;
meanc(pic’)’;

Obtain estimates of the structural parameters for the 250 samples and compare
their mean to the true structural parameter values.

p1 = pic[1,.];
p2 = pic[2,.];
beta = p2 ./ (1+p2);
alpha = p1 .* (1 - beta);
b = alpha|beta;
?;
meanc(b’)’;
stdc(b’)’;

CHAPTER 14. SIMULTANEOUS LINEAR STATISTICAL MODELS: I 153

Obtain the OLS estimates for the consumption equation for 250 samples and
calulate their mean and standard deviation.

j = 1;
bols = zeros(2,n);
do until j > n;

bols[.,j] = c[.,j]/(ones(t,1)~y[.,j]);
j = j + 1;

endo;
meanc(bols’)’;
stdc(bols’)’;

Calculate the percent of samples in which the OLS estimates were greater than
the indirect least squares estimates.

z = (bols - b) .> 0;
meanc(z’);

Calculate the percent of samples in which the indirect least squares estimates
were greater than the true parameter values.

let beta = 2 .8;
z = b .> beta;
meanc(z’);

Calculate the percent of samples in which the OLS estimates were greater than
the true parameter values.

z = bols .> beta;
meanc(z’);

These results should demonstrate to you the extent of the OLS bias. You may
wish to experiment with larger sample sizes.

Chapter 15

Simultaneous Linear
Statistical Models: II

In this chapter a variety of estimators for single equations within a system of si-
multaneous equations are considered as well as the problem of estimating all the
equations jointly. The asymptotic properties of the estimators are determined
and compared.

15.1 Estimating the Parameters of an Overiden-
tified Equation

When equations within a simultaneous system are overidentified the indirect
least squares estimator is inefficient. Generalized and Two Stage Least Squares
estimators are proposed that are more efficient than the indirect least squares
estimator.

15.2 The Search for an Asymptotically Efficient
Estimator

The estimators proposed in Section 15.2 are single equation methods. That is
they estimate the parameters of a single structural equation at a time. Much
as in the case in Seemingly Unrelated Regression problems the efficiency of
estimation can be increased if contemporaneous correlations exist among the
structural equation errors and if the equations are overidentified. The technique
of Three Stage Least Squares is introduced as a method of using this additional
information.

154

CHAPTER 15. SIMULTANEOUS LINEAR STATISTICAL MODELS: II 155

15.3 Asymptotic and Finite Sampling Proper-
ties of the Alternative Estimators

This Section summarizes the properties of the various estimators.

15.4 An Example

To illustrate the various estimators discussed in the previous Sections an ex-
ample is carried out. First we will verify the sample generation process by
replicating the data generated in Table 15.1.
LOAD the data in file TABLE15.1, which consists of T = 20 observations on
the five exogenous variables listed in Table 15.1. Check the data.

load x[20,5] = table15.1;
format 10,7;
x;

Specfify the Gamma and Beta matrices of structural parameters, given in Equa-
tions 15.4.3 and 15.4.4, and then construct the matrix of reduced form param-
eters in (15.4.6).

let gam[3,3] = -1 0.2 0
-10 -1 2
2.5 0 -1;

let beta[5,3] = -60 40 -10
0 -4 80
0 -6 0
0 1.5 0
0 0 5;

pimat = -beta*inv(gam);
pimat;

Specify the Sigma matrix in Equation 15.4.5.

let sigma[3,3] = 227.55 8.91 -56.89
8.91 0.66 -1.88

-56.89 -1.88 15.76;

In order to generate random disturbances with a N(0, Sigma) distribution we
will follow the same process used in Chapter 11, as described in the Appendix
to that chapter. First, find the characteristic roots and vectors of Σ and change
their order to one of descending magnitude.

CHAPTER 15. SIMULTANEOUS LINEAR STATISTICAL MODELS: II 156

{d,c} = eigrs2(sigma);
d c;

d = rev(d);
c = (rev(c’))’;
d c;

Due to the normalization issue of characteristic vectors, discussed in Chapter
11, the sign of the third characteristic vector must be changed for us to exactly
replicate the data in ITPE2.

c[.,3] = -c[.,3];
c;

Create the transformation matrix and check that it does transform the matrix
sigma to the identity and that when multiplied by its transpose it creates the
sigma matrix.

sighalf = c * diagrv(eye(3), sqrt(d));

check1 = c’*sigma*c;
check1;

check2 = sighalf*eye(3)*sighalf’;
check2;

Read in the first 60 “official” N(0,1) random numbers.

open f1 = nrandom.dat;
e1 = readr(f1,20);
e2 = readr(f1,20);
e3 = readr(f1,20);
f1 = close(f1);

Stack the columns into a matrix E and transform them using sighalf. The
resulting random numbers have the desired sampling distribution.

e = (e1~e2~e3)*sighalf’;

Create the reduced form disturbances v and use the reduced form equation to
create the values of y.

v = e*inv(gam);
y = x*pimat + v;
y;

Using the data on y and X, estimate the reduced form parameters (15.4.10).

CHAPTER 15. SIMULTANEOUS LINEAR STATISTICAL MODELS: II 157

pix = y/x;
pix;

Compute the OLS parameter estimates for each structural equation (15.4.11-
15.4.12).

y1 = y[.,1];
z1 = y[.,2 3]~x[.,1];
b1 = y1/z1;

y2 = y[.,2];
z2 = y[.,1]~x[.,1 2 3 4];
b2 = y2/z2;

y3 = y[.,3];
z3 = y[.,2]~x[.,1 2 5];
b3 = y3/z3;

b1’;
b2’;
b3’;

Since the second equation is just identified, its structural parameters can be
efficiently estimated using indirect least squares (15.4.13).

bils = x’y2/x’z2;
bils’;

For the overidentified equations indirect least squares is inefficient and GLS-
2SLS should be used. See Equation 15.1.10.

q = x*inv(x’x)*x’;

bgls1 = (z1’q*y1)/(z1’q*z1); /* Equation 1 */
bgls2 = (z2’q*y2)/(z2’q*z2); /* Equation 2 */
bgls3 = (z3’q*y3)/(z3’q*z3); /* Equation 3 */

To obtain standard errors for these estimators we will estimate the covariance
matrix as in Equations 15.1.15 and 15.1.16, correcting for the degrees of freedom.

e1 = y1 - z1*bgls1;
e2 = y2 - z2*bgls2;
e3 = y3 - z3*bgls3;

t = rows(e1);
ehat = e1~e2~e3;
sse = diag(ehat’ehat);

CHAPTER 15. SIMULTANEOUS LINEAR STATISTICAL MODELS: II 158

k = cols(z1)|cols(z2)|cols(z3);
df = t - k;
var = sse ./ df;

sd1 = sqrt(diag(var[1] * invpd(z1’q*z1)));
sd2 = sqrt(diag(var[2] * invpd(z2’q*z2)));
sd3 = sqrt(diag(var[3] * invpd(z3’q*z3)));

Print out the estimates and their standard errors and compare to (15.4.17).

format 8,4;

(bgls1~sd1)’;
?;
(bgls2~sd2)’;
?;
(bgls3~sd3)’;

To compute the 3SLS estimator the contemporaneous covariance matrix will be
estimated using the 2SLS residuals and the inverse taken.

sig = ehat’ehat/t;
isig = invpd(sig);

The most direct computational approach is to use Equation 15.2.4, which re-
quires the construction of the stacked vector y and block diagonal matrix z as
indicated below (15.2.2).

y = y1|y2|y3;

k1 = cols(z1);
z1a = z1|zeros(2*t,k1);

k2 = cols(z2);
z2a = zeros(t,k2)|z2|zeros(t,k2);

k3 = cols(z3);
z3a = zeros(2*t,k3)|z3;

z = z1a~z2a~z3a;

The 3SLS estimator is then computed. Compare these results to those in
(15.4.21).

num = z’(isig.*.q)*y;
den = z’(isig.*.q)*z;
b3sls = num/den;
std = sqrt(diag(invpd(den)));
b3sls~std;

CHAPTER 15. SIMULTANEOUS LINEAR STATISTICAL MODELS: II 159

The only problem with this approach is that the matrices involved can be large
and storage can become a problem. The following is equivalent code which does
not involve creating the large matrices. Analyze how these statements work.

z = z1~z2~z3;
y = y1~y2~y3;
indx = ones(3,1)|(ones(5,1)*2)|(ones(4,1)*3);
vv = isig[indx,indx];
vy = isig[indx,.];
xx = z’x*invpd(x’x)*x’z;
zy = z’x*invpd(x’x)*x’y;
isxx = invpd(xx .* vv);
szy = sumc((zy .* vy)’);
b = isxx*szy;
std = sqrt(diag(isxx));
b~std;

Finally, write a PROC computing the reduced form coefficients from a given set
of structural estimates that are stacked into a single column, c.

proc RFORM(c);
local g, b;

g = -eye(3); /* Gamma */
g[2 3,1] = c[1 2,1]; /* Equation 1 */
g[1,2] = c[4,1]; /* Equation 2 */
g[2,3] = c[9,1]; /* Equation 3 */

b = zeros(5,3); /* Beta */
b[1,1] = c[3,1]; /* Equation 1 */
b[1:4,2] = c[5:8,1]; /* Equation 2 */
b[1 2 5,3] = c[10:12,1]; /* Equation 3 */
retp(-b*inv(g));

endp;

Run PROC RFORM to put it into memory and then apply it to the OLS, GLS-
2SLS and 3SLS parameter estimates.

bols = b1|b2|b3;
pols = rform(bols);
pols; /* Equation 15.4.22 */

b2sls = bgls1|bgls2|bgls3;
p2sls = rform(b2sls);
p2sls; /* Equation 15.4.23 */

CHAPTER 15. SIMULTANEOUS LINEAR STATISTICAL MODELS: II 160

p3sls = rform(b3sls);
p3sls; /* Equation 15.4.24 */

15.5 On Using the Results of Econometric Mod-
els for Forecasting and Decision Purposes

In this Section some of the uses of econometric models are discussed. In Equa-
tions 15.5.1a-g the use of these models as forecasting tools is illustrated. First,
if xt is given by (15.5.1e) and if the true reduced form parameters are known
the forecasted value of yt is (15.5.1f)

let xt = 1 8 6 23 40;
yt = xt’pimat;

If the reduced form parameters are derived from the 3SLS estimates the fore-
casted value of yt is (15.5.1g).

yhat = xt’p3sls;
yhat;

In the context of a dynamic model the characteristic roots of the matrix F
containing the parameters on the lagged endogenous variables determine the
dynamic properties of the model. For the system in Equations 15.5.6a-b the
matrix F is given in (15.5.8). This matrix is not symmetric and the result-
ing characteristic roots need not be real. GAUSS can handle this problem,
however, as it contains special functions designed for complex numbers. The
GAUSS function EIGRG returns the real and imaginary parts of the charac-
teristic roots of a real, general matrix.
Note that the values in the text are incorrect. This may be verified by noting
that the determinant of F is the product of its characteristic roots.

let f[2,2] = .32 -.18 -.16 -.06;
{crr,cri} = eigrg(f);
crr~cri;

The lag 1-step dynamic multipliers are calculated from F ∗G in (15.5.9).

let g[2,3] = 6.8 .04 .3
1.6 -.02 .1;

f*g;

Chapter 16

Time-Series Analysis and
Forecasting

16.1 Introduction

In this Chapter “pure” time series models are presented. Observations on a
random variable are considered a realization from a stochastic process. Thus
the purposes of this Chapter are to discuss ways to model stochastic processes,
to estimate the parameters of such a model and to use the estimated model to
forecast future values of the variable.

16.2 A Mathematical Model for Time-Series and
Its Characteristics

In this Section stochastic processes are defined and definitions of the autoco-
variance and autocorrelation functions given. The concept of stationarity is
discussed and lag operator notation defined.

16.3 Autoregressive Processes

Autoregressive processes use past values of a random variable to explain present
and future values. To illustrate several data sets are examined. First an artifi-
cially constructed sample is considered.
LOAD the data in file TABLE16.1. It consists of 100 observations on a random
variable y generated from an AR(2) process described on page 685 of ITPE2.
Examine the data;

load y[100,1] = table16.1;
y’;

161

CHAPTER 16. TIME-SERIES ANALYSIS AND FORECASTING 162

Plot the data against time.

t = rows(y);
x = seqa(1,1,t);
library qgraph;
xy(x,y);

Write a proc that computes the partial autocorrelations for a data series, given
the data series and the maximum lag to be considered. The partial autocorre-
lations are estimated by using the least squares estimator in (16.3.4) for model
(16.3.3). The maximum lag included is increased sequentially and the corre-
sponding coefficient is the partial autocorrelation coefficient for that lag value.
The programming difficulty is that the number of complete observations changes
as the lag length is increased. Place PROC PARTIAL in a convenient file and
run it.

proc PARTIAL(y,maxk);
local thetakk,t,k,yk,xk,thetak,tk;

y = y - meanc(y); /* center data */
thetakk = zeros(maxk,1); /* storage vector for estimates */
t = rows(y);
k = 1; /* obtain estimate for 1st lag */
yk = y[k+1:t,1];
xk = y[k:t-1,1];
thetak = yk/xk;
thetakk[k,1] = thetak;
k = 2; /* begin loop */
do while k le maxk;

yk = y[k+1:t,1]; /* define yk */
tk = t-k; /* number of complete obs */
xk = xk[1:tk,.]; /* delete last obs */
xk = y[k:t-1,1]~xk; /* add lag */
thetak = yk/xk; /* OLS */
thetakk[k,1] = thetak[k,1]; /* store coefficient */
k = k+1;

endo;
retp(thetakk);

endp;

Use PROC PARTIAL to estimate the partial autocorrelations for the data y and
compare the results to Table 16.2 in ITPE2.

thetakk = partial(y,12);
thetakk’;

CHAPTER 16. TIME-SERIES ANALYSIS AND FORECASTING 163

The approximate 95% bounds are given in (16.3.12). If the absolute value
of a partial autocorrelation coefficient is greater than 2/

√
t then it is deemed

significantly different from zero.

bound = 2/sqrt(t);
bound;

On the basis of the sample partial autocorrelations we (correctly) identify the
process as AR(2). The estimation results are

p = 2;
yp = y[p+1:t,1];
xp = y[p:t-1,1]~y[p-1:t-p,1];
thetap = yp/xp;
thetap’;
sig2 = (yp - xp*thetap)’(yp - xp*thetap)/(t-2*p);
sig2;

Compare the resulting estimates to the true values.
A second data set is given in Table 16.3. It is artificial data generated from
a MA(1) process. The file TABLE16.3 contains the 100 values of the actual,
unobservable errors and the observable random variable y. LOAD the data and
define y.

load dat[100,2] = table16.3;
t = rows(dat);
y = dat[.,2];
y’;

Graph y against time.

x = seqa(1,1,t);
xy(x,y);

Obtain the partial autocorrelations for lags 1 - 15 and compare the the bound
value.

thetakk = partial(y,15);
thetakk’;

There are “significant” partial autocorrelations for relatively high lags.

16.4 Moving Average Processes

In this section moving average processes are defined. Identification of a MA
processs involves the autocorrelation function. Two different estimators for
autocorrelations are given in (16.4.9) and (16.4.11). Write a proc to obtain both
of these estimators of autocorrelation given the data series and the maximum
lag length. Place PROC AUTOCORR in a convenient file and run it.

CHAPTER 16. TIME-SERIES ANALYSIS AND FORECASTING 164

proc (2) = autocorr(y,kmax);
local t,ybar,yd,c0,rk,rkbar,k,yt,ytk,ck,ckbar;

t = rows(y);
ybar = meanc(y); /* center data */
yd = y-ybar;
c0 = yd’yd/t; /* estimate variance - c0 */
rk = zeros(kmax,1); /* define storage matrices */
rkbar = zeros(kmax,1);
k = 1; /* begin loop */
do while k le kmax;

yt = yd[1:t-k,1]; /* y in period t */
ytk = yd[1+k:t,1]; /* y in period t+k */
ck = yt’ytk/t; /* Eq. 16.4.10 */
ckbar = yt’ytk/(t-k); /* Eq. 16.4.12 */
rk[k,1] = ck/c0; /* Eq. 16.4.9 */
rkbar[k,1] = ckbar/c0; /* Eq. 16.4.11 */
k = k+1;

endo;
retp(rk,rkbar);

endp;

Use PROC AUTOCORR to obtain the autocorrelation function for the data y from
Table 16.3 for 15 lag periods. Compare the values to the bound value.

{rk,rkbar} = autocorr(y,15);
rk~rkbar;

Based on these autocorrelations the data series is identified to be a MA(1)
process.
To estimate the parameters of a MA(q) process the sum of squares objective
function in (16.4.18) must be minimized. In practice (16.4.21) is minimized.
Write a proc to calculate this objective function given the data series y and
a value of the single parameter, a. The ojective function is complicated by
the fact that the number of terms in the summed quantity increases as the
index of summation changes. Place PROC MA1SUM in a file and run it. In
general, the data should be centered by subtracting the mean of the data prior
to minimization. The solutions in the text assume that the data has zero mean
and thus that centering is not required. For that reason PROC MA1SUM includes
the centering step as a comment and is not used.

proc MA1SUM(a,y);
local t,obj,i,incr,k;

/* y = y - meanc(y); */ /* center the data */
t = rows(y);

CHAPTER 16. TIME-SERIES ANALYSIS AND FORECASTING 165

obj = 0; /* initialize obj fn */
i = 1; /* begin loop to sum over t */
do while i le t;
incr = 0; /* initialize increment */
k = 1; /* begin loop for summand */
do while k le i;
incr = incr + y[k,1] .* a^(i-k); /* t’th term of Eq. 16.4.21 */
k = k+1;
endo;

obj = obj + incr^2; /* Eq. 16.4.21 */
i = i+1;
endo;
retp(obj);

endp;

It is possible to minimize this objective function with respect to a using a
numerical optimization algorithm like in Chapter 12. It is tedious, however, as
the objective funtion itself is cumbersome to evaluate. In this case it is simpler
to use a numerical search to obtain the minimizing value. First search over a
rough grid from -0.9 to 0.9 to find the minimizing value.

avec = seqa(-0.9,.1,9)|0|seqa(.1,.1,9);
obj = ma1sum(avec,y);
obj’;

ahat = avec[minindc(obj),1];
ahat;

Then search over a finer grid of values near the minimizing value to obtain a
final estimate.

avec = seqa(ahat-0.1,.01,20);
obj = ma1sum(avec,y);
ahat = avec[minindc(obj),1];
ahat;

Obtain estimates of the error variance.

obj = minc(obj);
sighat2 = obj/(t-1);
sigtil2 = obj/t;
sighat2 sigtil2;

CHAPTER 16. TIME-SERIES ANALYSIS AND FORECASTING 166

16.5 ARIMA Models

In this section the features of AR and MA processes are combined. A model
with both MA and AR terms is called an ARMA(p,q) model. If the data must
be differenced to achieve stationarity it is called an ARIMA(p,d,q) process.

16.6 The Box-Jenkins Approach

The Box-Jenkins approach to time-series model building is given in this section.
There are separate steps for identification, estimation and diagnostic checking.
The example used is data on corn prices which is given in Table 16.4. LOAD
file TABLE16.4 and examine the data.

load y[82,1] = table16.4;
y’;

Plot the data against time.

t = rows(y);
x = seqa(1,1,t);
xy(x,y);

Compute the partial autocorrelations for 10 periods and compare them to the
2 standard deviation bound.

thetakk = partial(y,10);
thetakk’;
bound = 2/sqrt(t);
bound;

Compute the autocorrelations for 15 periods.

{rk,rkbar} = autocorr(y,15);
rk~rkbar;

Based on these calculations the series is identified as an AR(1) process. Obtain
the parameter estimates for model (16.6.1).

yt = y[2:t,1];
yl = y[1:t-1,1];
x = ones(t-1,1)~yl;
t = rows(x);
k = cols(x);
bhat = yt/x;
sighat2 = (yt - x*bhat)’(yt - x*bhat)/(t-k);
covb = sighat2 * invpd(x’x);
stderr = sqrt(diag(covb));
bhat’;
stderr’;
sighat2;

CHAPTER 16. TIME-SERIES ANALYSIS AND FORECASTING 167

Using these values calculate an estimate of mu as in (16.6.3) and calculate its
approximate asymptotic standard error. Your values will differ from those in
the text, which are based on the “rounded” values in Equation 16.6.2.

nu = bhat[1,1];
rho = bhat[2,1];
mu = nu/(1-rho);
sdmu = sqrt(sighat2/((1-rho)^2 * t));
mu;
sdmu;

In order to check the AR(1) specification obtain the least squares residuals and
calculate the autocorrelations. No distinct pattern should be present.

ehat = yt - x*bhat;
{rk,rkbar} = autocorr(ehat,15);
rk~rkbar;

Calculate the portmanteau test statistic Q in (16.6.4) as a further check. If the
AR(1) process is correctly specified the statistic Q is approximately chi-square
with K-1 = 14 degrees of freedom.

kvec = seqa(1,1,15);
q = t*(t+2)*sumc(rk^2 ./(t-kvec));
q;
cdfchic(q,15-1);

16.7 Forecasting

The estimated model can be used to generate forecasts of future values of the
stochastic process. Use Equation 16.7.14 to forecast one-step ahead. Your values
will differ from those in the text which uses the rounded parameter estimates
in Equation 16.6.2.

let x1 = 1 1114;
yhat1 = x1’*bhat;
yhat1;

Now repeat the process, using the past forecasts to generate the next future
value.

x2 = 1~yhat1;
yhat2 = x2*bhat;
x3 = 1~yhat2;
yhat3 = x3*bhat;
x4 = 1~yhat3;
yhat4 = x4*bhat;
x5 = 1~yhat4;
yhat5 = x5*bhat;

CHAPTER 16. TIME-SERIES ANALYSIS AND FORECASTING 168

Store the forecasts in a vector for future use.

yhat = yhat1|yhat2|yhat3|yhat4|yhat5;

In order to construct forecast intervals for these values a forecasting mean square
error must be constructed for each. As Equation 16.7.11 illustrates the forecast
MSE depends on the coefficents of the MA representation. The i’th MA coef-
ficient is shown to be .8i in the middle of page 711. Construct the first five of
these terms.

phi0 = 1;
phi1 = .8;
phi2 = .8^2;
phi3 = .8^3;
phi4 = .8^4;

Use Equation 16.7.11 to construct forecast MSEs for 5 periods into the future.

sig1 = sighat2;
sig2 = sig1*(1 + phi1^2);
sig3 = sig1*(1 + phi1^2 + phi2^2);
sig4 = sig1*(1 + phi1^2 + phi2^2 + phi3^2);
sig5 = sig1*(1 + phi1^2 + phi2^2 + phi3^2 + phi4^2);
sigvec = sig1|sig2|sig3|sig4|sig5;

Obtain 95% confidence bounds and construct Table 16.5

lb = yhat - 1.96*sqrt(sigvec);
ub = yhat + 1.96*sqrt(sigvec);
yhat~sigvec~lb~ub;

Chapter 17

Distributed Lags

17.1 Introduction

When using time series data there is often a time lag between an event and
its effect. Furthermore the impacts of an event may be spread over more than
one future time period. Models that take these factors into account are called
distributed lag models. In this chapter finite lag models and infinite lag models
are considered. Finite lags reflect the assumption that the future effects of an
event are exhausted in a specific, or finite, time period. Infinite lags assume
that the effect of the event is spread over an infinite horizon.

17.2 Unrestricted Finite Distributed Lags

For finite distributed lags it is common practice to use the data to help select
the length of the lag. In file TABLE17.1 is a data set on quarterly capital
appropriations (x) and expenditures (y). LOAD the data and examine it.

load dat[88,2]= table17.1;
yvec = dat[.,1];
yvec’;

xvec = dat[.,2];
xvec’;

Note that observation 42 on y is different than in the text. We will use this
data as it is the basis of the calulations in the text.
Following the example in the text, page 725, assume that the maximum lag
length to be considered is M = 10. Construct the y vector, beginning with
observation M + 1.

t = rows(xvec);
m = 10;

169

CHAPTER 17. DISTRIBUTED LAGS 170

y = yvec[m+1:t,1];

In order to construct Table 17.2 in the text we will begin construction of the
X matrix in Equation 17.2.4 assuming that the lag length is zero and then add
columns as the lag length increases to its maximum of 10. The design matrix is
initially a column vector of ones representing the equation intercept. As the lag
length is increased calculate the statistics in Table 17.2 using PROC LAGSTAT,
below, and store them in a storage matrix, store. Execute the procedure to
place it in memory.

proc LAGSTAT(y,x);
local t,k,n,b,sse,sig2,aic,sic;
t = rows(x);
k = cols(x);
n = k-2; /* n is the lag length */
b = y/x;
sse = (y - x*b)’(y - x*b);
sig2 = sse/(t-k); /* Eq. 17.2.5 */
aic = ln(sse/t) + 2*n/t; /* Eq. 17.2.11 */
sic = ln(sse/t) + n*ln(t)/t; /* Eq. 17.2.12 */
retp(sse~sig2~aic~sic);

endp;

Now construct an X matrix consisting of a (T - M) x 1 column of ones and
create the storage matrix.

x = ones(t-m,1);
store = zeros(m+1,5);

Write a DO-LOOP within which the values in Table 17.2 are calculated for lag
lengths n = 0, . . . ,M = 10.

n = 0;
do while n le m;
x = x~xvec[m-n+1:t-n,1];
store[n+1,.] =n~lagstat(y,x);
n = n + 1;
endo;

Print the matrix store and compare to Table 17.2.

format 14,9;
"--------n-------------sse----------sighat2---------aic----------sic";

store;

Calculate the sequential test statistics given in Equation 17.2.7 and used as a
basis for determining the lag length. Carry out each test at the .05 level of
significance and stop the testing process once a hypothesis is rejected. The lag
length is the last value tested but not rejected as zero.

CHAPTER 17. DISTRIBUTED LAGS 171

sse = store[2:11,2];
sighat2 = store[2:11,3];

test = 1;
pval = 1;

do until pval le .05;
n = m - test;
lam = (sse[n,1] - sse[n+1,1])/sighat2[n+1,1];
pval = cdffc(lam,1,t-(n+2));
n~lam~pval;
test = test + 1;

endo;

Compare these results to those on page 725. On the basis of these tests the lag
length is chosen to be N = 8. Given this lag length, obtain the OLS parameter
estimates of the distributed lag weights, correcting the sample size to T - N.

nhat = 8; /* lag length */

t = rows(yvec);
y = yvec[nhat+1:t,1]; /* specify y */

x = ones(t-nhat,1); /* construct X */
n = 0;
do while n le nhat;

x = x~xvec[nhat-n+1:t-n,1];
n = n + 1;

endo;

k = cols(x);
t = rows(x);

b = y/x; /* OLS */
sighat2 = (y-x*b)’(y-x*b)/(t - k);
covb = sighat2*invpd(x’x);
stderr = sqrt(diag(covb));
b~stderr;

In comparing these results to those in Equation 17.2.9 note that there are some
differences in the estimates. This is due to roundoff error resulting from the
highly multicollinear nature of the explanatoray variables in this regression.
The topic of multicollinearity is explored in Chapter 21.

CHAPTER 17. DISTRIBUTED LAGS 172

17.3 Finite Polynomial Lags

One way to deal with the inherent multicollinearity in the finite distributed lag
model is to impose some structure on the lag weight distribution. A popular
and easily implemented alternative is to assume that the lag weights fall on
a polynomial of some low degree, implying that the lag weight distribution is
“smooth”.
To extend the example in the previous section, let the lag length be specified
as eight. Furthermore, for simplicity, follow the text and assume that the y-
intercept is zero. Call the X matrix excluding the intercept column xdot.

xdot = x[.,2:cols(x)];

The maximum degree polynomial to be considered is Q = 8 since a polynomial
of degree 8 will fit exactly the N + 1 = 9 lag parameters. The polynomial
coeffiecients are related to the lag weights by Equation 17.3.1 in the text.
If Q = N the matrix is square and nonsingular, implying that no real restrictions
are placed on the lag weights in this case. The lag weights will be restricted
to fall on lower and lower polynomial degrees as the higher order polynomial
coefficients are set to zero, which also reduces the column dimension of the
matrix hq. To begin construct the matrix hq with Q = N = 8.

nvec = seqa(0,1,nhat+1);
qvec = seqa(0,1,nhat+1);
hq = nvec^(qvec’);

We will sequentially test the hypotheses in Equation 17.3.7 using the test statis-
tic (17.3.8). To implement the test calculate the sum of squared errors SSEN,Q

in (17.3.9) and the estimated error variance σ̂2
N,Q for Q = N,N − 1, . . . , 0, and

retain the values in a matrix store.

store = zeros(nhat+1,3);
test = 0;
do while test le nhat;

q = nhat - test; /* polynomial degree */
z = xdot*hq[.,1:q+1]; /* Z as in Eq. 17.3.3 */
ahat = y/z; /* OLSE of alpha */
sse = (y - z*ahat)’(y - z*ahat);/* sse */
sighat2 = sse/(t-q-1); /* sighat2 */
store[test+1,.]=q~sse~sighat2; /* Store values */
test = test + 1;

endo;

Calculate the value of the test statistic in Equation 17.3.8 for each of the tests
in (17.3.7). The numerator is the difference between the SSE for the more

CHAPTER 17. DISTRIBUTED LAGS 173

restricted model less that of the less restricted model. The denominator is the
estimated error variance from the less restricted model. For each F-test one
restriction is imposed and is based on T − (Q + 1) degrees of freedom.

/* Eq. 17.3.8 */
lam = (store[2:nhat+1,2] - store[1:nhat,2])

./ store[1:nhat,3];

df1 = ones(8,1); /* numerator df */

i = seqa(1,1,8);
q = nhat - i;
df2 = t - (q + 1); /* denominator df */

format 8,4; /* print results */
"----i------q------F-stat------p-value----";
i~q~lam~cdffc(lam,df1,df2);

Based on these tests we would choose a polynomial of degree Q = 3 for the lag
weights. To give an idea of the shapes imposed on the lag weight distributions
calculate the unrestricted lag weights, and those for the second and third degree
polynomials, and plot them as in Figure 17.3. First, the unrestricted estimates
are simply the least squares parameter estimates of Equation 17.2.9 excluding
the intercept.

b0 = y/xdot;

The estimates falling on the third degree polynomial are found by estimating
Equation 17.3.3 with 4 columns (Q + 1) retained in Z and then making the
transformation in Equation 17.3.4 to obtain the estimates of the lag weights.

a3 = y/(xdot*hq[.,1:4]);
b3 = hq[.,1:4]*a3;

The estimates for the second degree polynomial are based on (17.3.3) with 3
columns of Z retained and then the transformation to the lag weights.

a2 = y/(xdot*hq[.,1:3]);
b2 = hq[.,1:3]*a2;

Plot the lag weights against the values i = 0, . . . , 10.

library qgraph;
xy(nvec,b0~b2~b3);

To obtain estimated standard errors of the estimated lag weights estimate the
error variance from the residuals from (17.3.3) corresponding to the third degree
polynomial.

CHAPTER 17. DISTRIBUTED LAGS 174

q = 3;
hq3 = hq[.,1:q+1];
z = xdot*hq3;
sighat2 = (y - z*a3)’(y - z*a3)/(t - q - 1);

Obtain the estimated covariance matrix of the polynomial coefficients.

cova3 = sighat2*invpd(z’z);

Then use Equation 17.3.6 to obtain the covariance matrix of the estimated lag
weights. Then construct standard errors, t-statistics and p-values.

covb3 = hq3*cova3*hq3’;
stderr = sqrt(diag(covb3));
tstat = b3 ./ stderr;
pval = 2*cdftc(tstat,t-q-1);
b3~stderr~tstat~pval;

Compare these results to the unrestricted OLS results.

sighat2 = (y - xdot*b0)’(y - xdot*b0)/(t - cols(xdot));
covb0 = sighat2 * invpd(xdot’xdot);
stderr = sqrt(diag(covb0));
tstat = b0 ./ stderr;
pval = 2*cdftc(tstat,t-cols(xdot));
b0~stderr~tstat~pval;

17.4 Infinite Distributed Lags

In this Section an infinite distributed lag model is described. The statistical
model for the geometric lag is given in Equation 17.4.12. To illustrate estimation
of this model we will follow the text and generate 5 samples of data using
parameter values in Equation 17.4.19. First read 100 random n(0,1) values from
the official random numbers contained in the file NRANDOM.DAT to be used
as the observations on X and then read an additional 500 values to constitute
5 samples of size 100 on the random disturbance U.

open f1 = nrandom.dat;
xvec = readr(f1,100);
u = readr(f1,500);
f1 = close(f1);
u = reshape(u,5,100)’;

Create a (100 x 5) matrix of zeros that will contain the y-values.

y = zeros(100,5);

CHAPTER 17. DISTRIBUTED LAGS 175

The first observation on y, using (17.4.19), depends on the values of y and u
in the time period zero. Assume that these “pre-sample” values are zero and
construct the first observation on y, for all 5 samples.

y[1,.] = xvec[1,1] + u[1,.];

For observations 2,...,100 use Equation 17.4.19 to generate the values of y.

obs = 2;
do while obs le 100;
y[obs,.] = xvec[obs,.] + 0.5*y[obs-1,.]

+ u[obs,.] - 0.5*u[obs-1,.];
obs = obs + 1;
endo;

The estimators of the model’s parameters will be the least squares estimator,
Equation 17.4.13, the instrumental variable estimator (17.4.17) and the maxi-
mum likelihood estimator described in Section 17.4.2c. First we will consider
the use of OLS and the instrumental variables estimator. In each case only
the complete observations will be used. This means that each sample “begins”
with observation 2. We will obtain estimates for samples of size 20, 50, and 100
within a DO-LOOP for each sample 1 through 5. Also, for the present assume
that the model’s intercept is known to be zero.

nsam = 1; /* begin do-loop */
do while nsam le 5;

x = xvec~(0|y[1:99,nsam]); /* full X matrix */

b20 = y[2:20,nsam]/x[2:20,.]; /* OLS on 20 obs */
b50 = y[2:50,nsam]/x[2:50,.]; /* OLS on 50 obs */
b100 = y[2:100,nsam]/x[2:100,.];/* OLS on 100 obs */

z = xvec~(0|xvec[1:99,.]); /* full instrument */
/* matrix in 17.4.18 */

z20 = z[2:20,.]; /* IV on 20 obs */
biv20 = inv(z20’x[2:20,.])*z20’*y[2:20,nsam];

z50 = z[2:50,.]; /* IV on 50 obs */
biv50 = inv(z50’x[2:50,.])*z50’*y[2:50,nsam];

z100 = z[2:100,.]; /* IV on 100 obs */
biv100 = inv(z100’x[2:100,.])*z100’*y[2:100,nsam];

"sample" nsam; /* Print results */
(b20|biv20)’;

CHAPTER 17. DISTRIBUTED LAGS 176

(b50|biv50)’;
(b100|biv100)’;

nsam = nsam + 1;
endo;

Compare these results to the OLS and IV estimates in Table 17.4. Before ob-
taining ML estimates, carry out a Monte Carlo experiment comparing the OLS
and IV estimation procedures. We will use the GAUSS random number gen-
erator for this exercise, so the histogram results we obtain will not be identical
to those in Figures 17.4 and 17.5, but they will be similar. Essentially we will
simply repeat the steps carried out above for 100 samples instead of 5 and col-
lect all the results. The data generation will be carried out in sets of 50 samples
each because of the storage limits of personal computers.

open f1 = nrandom.dat; /* create X */
xvec = readr(f1,100);
f1 = close(f1);

y1 = zeros(100,50); /* storage matrices */
y2 = zeros(100,50);

u1 = rndn(100,50); /* random numbers */
u2 = rndn(100,50);

y1[1,.] = xvec[1,1] + u1[1,.]; /* the first obs on y */
y2[1,.] = xvec[1,1] + u2[1,.];

obs = 2; /* obs 2, ..., 100 */
do while obs le 100;

y1[obs,.] = xvec[obs,.] + 0.5*y1[obs-1,.]
+ u1[obs,.] - 0.5*u1[obs-1,.];

y2[obs,.] = xvec[obs,.] + 0.5*y2[obs-1,.]
+ u2[obs,.] - 0.5*u2[obs-1,.];

obs = obs + 1;
endo;

u1 = 0; /* clear storage area */
u2 = 0;

b20 = zeros(2,100); /* define storage matrices */
b50 = zeros(2,100);
b100 = zeros(2,100);

CHAPTER 17. DISTRIBUTED LAGS 177

biv20 = zeros(2,100);
biv50 = zeros(2,100);
biv100 = zeros(2,100);

iter = 1; /* begin estimation do-loop */
do while iter le 100;

if iter le 50; /* define y and sample index */
y = y1; nsam = iter;

else;
y = y2; nsam = iter - 50;

endif;

x=xvec~(0|y[1:99,nsam]); /* X matrix */
b20[.,iter] = y[2:20,nsam]/x[2:20,.]; /* OLS, 20 obs */
b50[.,iter] = y[2:50,nsam]/x[2:50,.]; /* OLS, 50 obs */
b100[.,iter] = y[2:100,nsam]/x[2:100,.]; /* OLS, 100 obs*/

z=xvec~(0|xvec[1:99,.]); /* Z matrix */

z20 = z[2:20,.]; /* IV on 20 obs */
biv20[.,iter] = inv(z20’x[2:20,.])*z20’*y[2:20,nsam];

z50 = z[2:50,.]; /* IV on 50 obs */
biv50[.,iter] = inv(z50’x[2:50,.])*z50’*y[2:50,nsam];

z100 = z[2:100,.]; /* IV on 100 obs */
biv100[.,iter] = inv(z100’x[2:100,.])*z100’*y[2:100,nsam];

iter;
iter = iter + 1;
endo;

Now calculate the means and standard deviations of the OLS estimates.

meanc((b20|b50|b100)’)~stdc((b20|b50|b100)’);

Note that the OLS estimator is biased for the parameter λ.
Define the break points for the histograms in Figure 17.5 for γ (v1) and λ (v2).

let v1 = .7 .9 1.1 1.3;
let v2 = 0 .2 .4 .6;

CHAPTER 17. DISTRIBUTED LAGS 178

Use the “window” option to construct 6 panels and plot the percentage of esti-
mated values falling in each interval.

library qgraph;
beggraph;
window(3,2);
{c,m,freq} = histp(b20[1,.]’,v1);
{c,m,freq} = histp(b20[2,.]’,v2);
{c,m,freq} = histp(b50[1,.]’,v1);
{c,m,freq} = histp(b50[2,.]’,v2);
{c,m,freq} = histp(b100[1,.]’,v1);
{c,m,freq} = histp(b100[2,.]’,v2);
endgraph;

Repeat the process for the instrumental variable estimator. First calculate the
means and standard deviations of the estimates, and note that the IV estimator
estimates both parameters well, on average.

meanc((biv20|biv50|biv100)’)~stdc((biv20|biv50|biv100)’);

Again obtain the histograms similar to Figure 17.4. The break points for λ are
redefined.

let v2 = .2 .4 .6 .8;
graphset;
beggraph;
window(3,2);
{c,m,freq} = histp(biv20[1,.]’,v1);
{c,m,freq} = histp(biv20[2,.]’,v2);
{c,m,freq} = histp(biv50[1,.]’,v1);
{c,m,freq} = histp(biv50[2,.]’,v2);
{c,m,freq} = histp(biv100[1,.]’,v1);
{c,m,freq} = histp(biv100[2,.]’,v2);
endgraph;

Maximum likelihood estimation of the geometric lag model is simplified by the
fact that for a given value of λ the model is linear in the parameters as indicated
in Equation 17.2.24 with variables as defined just below Equation 17.2.24. Write
a proc that constructs the artificial variables z1 and z2, estimates the model
(including an intercept this time) and returns the sum of squared errors and
OLS estimates of Model 17.4.25. The arguments of PROC SSELAM are y, the
vector X and the value of λ. Note that z1 (the second variable in the matrix
zlam) is calculated recursively following the expression below (17.4.24). Place
PROC SSELAM in a convenient file and run it.

proc (2) = SSELAM(y,x,lam);
local *;

CHAPTER 17. DISTRIBUTED LAGS 179

t = rows(x);
zlam = ones(t,3);
obs = 1;
do while obs le t;

if obs == 1;
zlam[obs,2] = x[1,1];
zlam[obs,3] = lam;

else;
zlam[obs,2] = x[obs,1] + zlam[obs-1,2]*lam;
zlam[obs,3] = lam^obs;

endif;
obs = obs + 1;
endo;

yt = y[2:t,1];
zt = zlam[2:t,.];
blam = yt/zt;
sse = (yt - zt*blam)’(yt - zt*blam);
retp(sse,blam);

endp;

Place the original data back in memory.

open f1 = nrandom.dat;
xvec = readr(f1,100);
u = readr(f1,500);
f1 = close(f1);
u = reshape(u,5,100)’;

y = zeros(100,5);

y[1,.] = xvec[1,1] + u[1,.];

obs = 2;
do while obs le 100;
y[obs,.] = xvec[obs,.] + 0.5*y[obs-1,.]

+ u[obs,.] - 0.5*u[obs-1,.];
obs = obs + 1;
endo;

Now, use PROC SSELAM to compute the sum of squared errors for a range of λ
values between zero and one for each of the 5 samples constructed earlier and
each of the 3 sample sizes. This is fairly long so you will want to place the code
in a file and then run it.

CHAPTER 17. DISTRIBUTED LAGS 180

nsam = 1; /* loop controlling sample */
do while nsam le 5;

samsize = 1; /* loop controlling
sample size */

do while samsize le 3;

if samsize == 1; /* select sample size */
t = 20;

elseif samsize == 2;
t = 50;

else;
t = 100;

endif;

ssevec=zeros(9,3); /* initialize storage matrix for sse
and estimates of gamma and lambda */

iter = 1; /* begin loop varying lambda */
do while iter le 9;
lam = iter/10;

{sse,blam} = sselam(y[1:t,nsam],xvec[1:t,.],lam);

gam = blam[2,1]; /* store values */
ssevec[iter,.]=gam~lam~sse;

iter = iter + 1;
endo;

/* Find estimates that minimize SSE */

parm = ssevec[minindc(ssevec[.,3]),.];

t~parm; /* print ML estimates and sample size */

samsize = samsize + 1;
endo;

nsam = nsam + 1;
?;
endo;

Compare these ML results to those in Table 17.4.

Chapter 18

Multiple-Time Series

18.1 Background

In this chapter time series techniques are applied to several economic variables
simultaneously. This allows the possibility that each random variable is affected
by and related to the rest. The specific model used to describe these multiple
time series is a Vector Autoregressive process, or VAR for short.

18.2 Vector Autoregressive Processes

In this Section the basic properties of a VAR(p) process for a vector of M
variables are explored. One important property is stationarity. A VAR(p)
process is stationary if the roots of polynomial (in z) defined by Equation 18.2.2
are “outside the complex unit circle”. That is, if a root of the polynomial is real
it must be greater than one in absolute value. If a root is complex, and of the
form r = a + bi, where i =

√
−1, then

√
a +

√
b > 1.

In Equation 18.2.4 an example of the problem is given for a VAR(1) process.
The matrix theta is given in Equation 18.2.5 and the polynomial is given just
below. Define the matrix theta and the polynomial coefficients. Then use the
GAUSS function POLYROOT to obtain the real and complex roots.

let theta1[2,2] = .008 .461
.232 .297;

a0 = 1;
a1 = sumc(diag(theta1));
a2 = det(theta1);
a= a2|-a1|a0;
lam = polyroot(a);
lam;

In this case the roots are real and greater than 1 in absolute value.

181

CHAPTER 18. MULTIPLE-TIME SERIES 182

18.3 Estimation and Specification of VAR Pro-
cesses

In this Section estimators for the parameters of a VAR process are suggested
and their properties explored. In addition model selection procedures, for the
order of the process, are explained. First LOAD the data in file TABLE18.1
and graph it against time.

load dat[75,2] = table18.1;
y1 = dat[.,1];
y2 = dat[.,2];
v = seqa(1,1,75);

Use the Quick-graphics command WINDOW to define two panels as in Figure
18.1.

library qgraph;
graphset;
beggraph;
window(2,1);
xy(v,y1);
xy(v,y2);
endgraph;

The order of the VAR process for the M = 2 time series will be selected using
the AIC and SC criteria developed in Section 17.2. In the context of time series
they are defined in Equations 18.3.15 and 18.3.16. Following the text we will
assume that the maximum order is n = 4. Create vectors containing the current
and lagged values of the two variables.

y1t = y1[5:71,1];
y1lag1 = y1[4:70,1];
y1lag2 = y1[3:69,1];
y1lag3 = y1[2:68,1];
y1lag4 = y1[1:67,1];

y2t = y2[5:71,1];
y2lag1 = y2[4:70,1];
y2lag2 = y2[3:69,1];
y2lag3 = y2[2:68,1];
y2lag4 = y2[1:67,1];

Place the current values of y1 and y2 in a matrix y and define the ” X ” matrix
as in (18.3.2).

y = y1t~y2t;
t = rows(y1t);
x = ones(t,1)~y1lag1~y2lag1~y1lag2~y2lag2~y1lag3~y2lag3~y1lag4~y2lag4;

CHAPTER 18. MULTIPLE-TIME SERIES 183

Now write a proc that will estimate a VAR process given the matrices y and X.
Note that the parameter estimates can be obtain for all equations simultaneously
by using GAUSS DIVISION (/) since the X matrix is the same for each of the
equations (18.3.4). PROC VAR is long so place the code in a file and run it to
place in memory.

proc (2) = VAR(y,x);
local *;

m = cols(y);
t = rows(y);
k = cols(x);
b = y/x; /* Eq. 18.3.4 */
e = y - x*b; /* obtain residuals */
sighat = e’e/(t - k); /* Eq. 18.3.11 */
sigtheta = sighat .*. invpd(x’x); /* Eq. 18.3.13 */
stderr = sqrt(diag(sigtheta));

i = 1; /* begin loop to print */
do while i le m;
format 7,3;
"Eq " i;
"est " b[.,i]’;
"std " stderr[k*(i-1)+1:i*k,.]’;

/* t-stats for later use */

tstat = b[.,i] ./ stderr[k*(i-1)+1:i*k,.];
pval = 2*cdftc(abs(tstat),t-k);
"tstat " tstat’;
"pval " pval’;
?;
i = i + 1;
endo;
format 8,4;
sighat;
retp(b,sighat);

endp;

Now use PROC VAR to estimate the parameters of the VAR(4) process. Compare
your results to those in Equation 18.3.14.

{parm4,sighat4} = var(y,x);

To determine the order of the VAR process write a proc that will calculate the
model selection criteria in Equations 18.3.15 and 18.3.16. In addition calculate
the determinant of the contemporaneous covariance matrix. The arguments of
PROC VARSTAT are the matrix y and the X matrix which contains a column of
ones and lagged values of y for orders n = 0, 1, 2, 3 and 4.

CHAPTER 18. MULTIPLE-TIME SERIES 184

proc VARSTAT(y,x);
local *;

m = cols(y);
t = rows(y);
n = (cols(x) - 1)/2;
b = y/x; /* Estimate parms */
e = y - x*b; /* residuals */
sig = e’e/t; /* Eq. 18.3.17 */
aic = ln(det(sig)) + 2*(m^2)*n/t; /* Eq. 18.3.15 */
sc = ln(det(sig)) + (m^2)*n*ln(t)/t; /* Eq. 18.3.16 */
format 8,4;
"----n-------det--------aic--------sc";?;
n~det(sig)~aic~sc;
?;
" sighat ";
sig;

retp("");
endp;

Run PROC VARSTAT to place it in memory and then calculate the selection
criteria for successively larger orders of lags. Compare your results to those in
Table 18.2. Note that these tests are all based on the data created above which
has T = 67 complete observations.

x = ones(t,1); /* n = 0 */
varstat(y,x);

x = x~y1lag1~y2lag1; /* n = 1 */
varstat(y,x);

x = x~y1lag2~y2lag2; /* n = 2 */
varstat(y,x);

x = x~y1lag3~y2lag3; /* n = 3 */
varstat(y,x);

x = x~y1lag4~y2lag4; /* n = 4 */
varstat(y,x);

Since the AIC and SC criteria obtain their minima at lag n = 1 we will use
a VAR(1) process to describe the data. Re-estimate the model assuming this
lag. Correct the definitions of y and X using T = 70 complete observations.
Compare your results to Equation 18.3.18.

y1t = y1[2:71,1];

CHAPTER 18. MULTIPLE-TIME SERIES 185

y1lag1 = y1[1:70,1];

y2t = y2[2:71,1];
y2lag1 = y2[1:70,1];

y = y1t~y2t;
t = rows(y1t);
x = ones(t,1)~y1lag1~y2lag1;

{parm1,sighat1} = var(y,x);

18.4 Forecasting Vector Autoregressive Processes

Optimal forecasting in the context of a VAR process means that the forecast
mean square error is minimized. The optimal h-step-forecasts are given in Equa-
tion 18.4.1 and recursions defined just below that equation. To implement these
forecasting techniques separate the estimated parameters PARM1 from the pre-
vious section into the intercept (nu) and lag weights (theta1).

nu = parm1[1,.]’;
theta1 = parm1[2:3,.]’;

Using starting period T = 71 forecast one and two periods into the future,
following Equation 18.4.2.

y71 = dat[71,.]’;

yhat1 = nu + theta1*y71;
yhat1;

yhat2 = nu + theta1*yhat1;
yhat2;

The mean square error matrix of the forecasts is defined in Equations 18.4.3-
18.4.5. For the VAR(1) process we are using the MSE matrices are given in
Equations 14.4.6.

sig1 = sighat1;
sig1;

sig2 = sighat1 + theta1*sighat1*theta1’;
sig2;

These MSE matrices and the asymptotic normality of the parameter estimators
can be used to construct forecast intervals as in (18.4.9) and (18.4.10).

CHAPTER 18. MULTIPLE-TIME SERIES 186

lb1 = yhat1 - 1.96*sqrt(diag(sig1));
ub1 = yhat1 + 1.96*sqrt(diag(sig1));
lb1~ub1;

lb2 = yhat2 - 1.96*sqrt(diag(sig2));
ub2 = yhat2 + 1.96*sqrt(diag(sig2));
lb2~ub2;

One way to verify the model is to examine its forecasting accuracy. Note that
the actual observations for T = 72 and T = 73 fall inside the confidence intervals.

dat[72,.]’;

dat[73,.]’;

18.5 Granger Causality

To test for the existence of causality in VAR models, as defined by Granger,
standard test procedures can be used. First test the hypothesis that y2 does
not cause y1 using the test statistic in Equation 18.5.5. In this context the
“unrestricted” estimates are given by the VAR(1) model above. The “restricted”
estimates are obtained by estimating the model assuming that the lagged value
of y2 does not significantly affect y1. That is, only the lagged value of y1 is
present in the model.

y1t = y1[2:71,1]; /* define y1 and y1 lagged */
y1lag1 = y1[1:70,1];

t = rows(y1t); /* define X */
x = ones(t,1)~y1lag1;

{parmr,sigr} = var(y1t,x);/* restricted estimates */

Compare your restricted estimates to those in Equation 18.5.6. Then calculate
the value of the test statistic which is defined just below (18.5.6). Under the
null hypothesis that y2 does not cause y1 it has an F-distribution with 1 and
T-3 degrees of freedom (asymptotically).

lam = (sigr*(t-2) - sighat1[1,1]*(t-3))/sighat1[1,1];
pval = cdffc(lam,1,t-3);
lam~pval;

On the basis of this test we reject the null hypothesis at the 1significance. As
is noted in the text, for the VAR(1) model an equivalent test can be carried
out using the t-statistics obtained when the VAR(1) model was estimated. You
may wish to check this if you have not printed out your results.

CHAPTER 18. MULTIPLE-TIME SERIES 187

To illustrate a test of the hypothesis that income does not cause consumption
the VAR(4) process initially estimated will be used. The unrestricted estimates
are given by (18.3.14) which we estimated earlier. The restricted model is
obtained by estimating the model where y1 is determined only by its lagged
values. Estimate the model in (18.5.7) and carry out the joint test of significance.

y1t = y1[5:71,1]; /* define y and lags */
y1lag1 = y1[4:70,1];
y1lag2 = y1[3:69,1];
y1lag3 = y1[2:68,1];
y1lag4 = y1[1:67,1];

t = rows(y1t); /* define X */
x = ones(t,1)~y1lag1~y1lag2~y1lag3~y1lag4;

{parmr,sigr} = var(y1t,x); /* estimate Eq. 18.5.7 */

Now carry out the test and note that the hypothesis is rejected at the 1% level.

lam = (sigr*(t-5) - sighat4[1,1]*(t-9))/(4*sighat4[1,1]);
pval = cdffc(lam,4,t-9);
lam~pval;

18.6 Innovation Accounting and Forecast Error
Variance Decomposition

To trace the effect of a shock (or innovation) to the Multiple Time series system a
multiplier anaysis is useful. To trace the effect of a shock to income (y2) assume
that the values of y1 and y2 in period 0 are (0,1). Recursively predict the time
path of the variables as is done following (18.6.1). Note that for simplicity the
mean vector (nu) has been dropped.

let y0 = 0 1;
y1hat = theta1*y0;
y1hat;

y2hat = theta1*y1hat;
y2hat;

If a shock of one standard deviation in income were traced

y0 = 0|sqrt(sighat1[2,2]);
y1hat = theta1*y0;
y1hat;

y2hat = theta1*y1hat;
y2hat;

CHAPTER 18. MULTIPLE-TIME SERIES 188

To carry out the innovation analysis in the system transformed to have con-
temporaneously uncorrelated errors we must diagonalize the covariance matrix
sighat1. As noted in the text there are many ways to do this. First let P
be given by the Cholesky decomposition of the inverse of the contemporaneous
covariance matrix using the GAUSS command CHOL.

p1 = chol(invpd(sighat1));
p1;

Check to see if p1 diagonalizes sighat1 to an identity matrix, except for round-
ing error.

check = p1*sighat1*p1’;
check;

Calculate the inverse of P−1 and use it to construct the multiplier matrices in
(18.6.6). For the VAR(1) process the M matrices are powers of the parameter
matrix Θ1.

invp1 = inv(p1);
invp1;

psi0 = eye(2)*invp1;

m1 = theta1;
m2 = theta1*theta1;

psi1 = m1*invp1;
psi1;

psi2 = m2*invp1;
psi2;

The income innovation (0,1) in this model is different from the effects in (18.6.3).

let w0 = 0 1;
y0 = psi0*w0;
y1 = psi1*w0;
y2 = psi2*w0;
y0~y1~y2;

One problem with this analysis is that there are many P matrices that will diag-
onalize the covariance matrix. For example, taking the inverse of the transposed
Cholesky decomposition also “works”. Check this.

p = chol(sighat1);
p = inv(p’);
p;

CHAPTER 18. MULTIPLE-TIME SERIES 189

check = p*sighat1*p’;
check;

Naturally the innovation analysis is quite different and the form of P must be
selected on the basis of a priori information.
Another innovation analysis determines the percent of the MSE contributed
by the innovations. Using Equation 18.6.8 the two-step forecast variance of
consumption is

f = psi0[1,1]^2 + psi1[1,1]^2 + psi0[1,2]^2 + psi1[1,2]^2;
f;

Decomposing the contributions of y1 and y2

f1 = psi0[1,1]^2 + psi1[1,1]^2;
f2 = psi0[1,2]^2 + psi1[1,2]^2;

The percent contributions are

pctown = f1/f;
pctown;

pctinc = f2/f;
pctinc;

Chapter 19

Qualitative and Limited
Dependent Variable Models

19.1 Introduction

In this Chapter some very useful models are considered. Probit and Logit
are designed for situations when the dependent variable takes only two values,
usually 1 and 0, indicating that some event did, or did not, occur. Tobit is
appropriate when the dependent variable is truncated. That is, for example, it
may only be observable if it is positive.

19.2 Binary Choice Models

An example of Maximum Likelihood estimation of the probit model is given on
pages 793-794. The data for the example is generated as follows. First, LOAD
the design matrix in Equation 5.10.2. It is in the file JUDGE.X. Then stack it
four times to produce a design matrix with T = 80 observations.

load x[20,3] = judge.x;
x = x|x|x|x;
t = rows(x);
k = cols(x);

Create an error vector of N(0,1) disturbances using the “official” normal random
disturbances in NRANDOM.DAT.

open f1 = nrandom.dat;
e = readr(f1,80);
f1 = close(f1);

Let beta take the indicated values (0,3,-3) and construct the variable ystar,
which is unobservable to the economic researcher.

190

CHAPTER 19. QUALITATIVE AND LIMITED DEPENDENT VARIABLE MODELS191

let beta = 0 3 -3;
ystar = x*beta + e;

What is observable is the binary variable yt, which takes the value of 1 or 0
depending on whether ystar is positive or not. Compare the 80 values produced
to the values in Table 19.4 for y1, y2, y3 and y4.

y = ystar .> 0;
format 4,2;
y’;

To estimate the probit model using the Newton-Raphson algorithm, (19.2.20),
first write PROC PROBITLI which returns the value of the log-likelihood func-
tion. It assumes that X and y are in memory and takes as argument an estimate
of beta. It uses the GAUSS function CDFN which returns the value of the CDF
for a N(0,1) random variable.

proc PROBITLI(b); /* See Eq. 19.2.18
*/ local cdf,li;

cdf = cdfn(x*b);
li = y .* ln(cdf) + (1-y) .* ln(1-cdf);
retp(sumc(li));

endp;

At this point there are several ways to proceed. The general optimization algo-
rithms of Chapter 12 could be used to maximize the log-likelihood function or
an algorithm specifically for probit could be written, which entails programming
the first and second derivatives. We will follow both paths. First, PROC PROBIT
is written which returns the probit ML estimates and their asymptotic covari-
ance matrix using (19.2.20) and the derivatives given in (19.2.19) and (19.2.21).
Its arguments are X, y and PROC PROBITLI. Place the PROC in a convenient
file and run it.

proc (2) = PROBIT(x,y,&PROBITLI);
local probitli:proc;
local t,k,b,iter,crit,pdf,cdf,g,d,h,db,bn,s,ofn1,ofn2,covb,std;

iter = 1; /* define constants */
crit = 1;
b = y/x; /* initial param. estimates */

do until (iter ge 50) or (crit le 1e-6);

pdf = pdfn(x*b); /* f and F */
cdf = cdfn(x*b);

/* Gradient vector. See Eq. 19.2.19 */

CHAPTER 19. QUALITATIVE AND LIMITED DEPENDENT VARIABLE MODELS192

g = y.*(pdf./cdf).*x - (1-y).*(pdf./(1-cdf)).* x;
g = sumc(g);

/* Hessian Matrix. See Eq. 19.2.21 */
/* H = -X’DX where D is diagonal */

d = pdf.*((y.*(pdf+(x*b).*cdf)./cdf^2)
+((1-y).*(pdf-(x*b).*(1-cdf))./(1-cdf)^2));

H = -(x .* d)’x;

db = -inv(H)*g; /* Full Newton-Raphson step */
gosub step; /* Determine step length */
bn = b + s*db; /* New estimates */
crit = maxc(abs(db)); /* Convergence criterion */
gosub prnt; /* Print iteration results */
b = bn; /* Replace old with new */
iter = iter + 1; /* Increment iteration */
endo; /* End do-loop */

?; /* Print final results */
"Final results: " ;
"Estimates: " b’;
covb = -inv(H); /* Define Covariance matrix */
std = sqrt(diag(covb)); /* Asymptotic Std. Errors */
"Std. Errors: " std’;
"Asy. t-values: " (b./std)’; /* Asymptotic t-values */

retp(b,covb);

step: /* Determine step length */
s = 2;
ofn1 = 0;
ofn2 = 1;
do until ofn1 >= ofn2;
s = s/2;
ofn1 = probitli(b+s*db);
ofn2 = probitli(b+s*db/2);
endo;
return;

prnt: /* Print iteration results */
format 4,2; "iter = " iter;;
format 3,2; "step length =" s;;
format 10,6; "Likelihood =" probitli(bn);
format 10,6; " b = " bn’;?;

CHAPTER 19. QUALITATIVE AND LIMITED DEPENDENT VARIABLE MODELS193

return;

endp; /* End */

Use PROC PROBIT to estimate the parameters of our model

{bp,covbp} = PROBIT(x,y,&PROBITLI);

Instead of writing a complete new PROC, we could have used PROC MAXM from
Chapter 12. Make sure PROC MAXM is in memory and obtain the maximum
likelihood estimates of the parameters using this Newton-Raphson algorithm
based on numerical derivatives. Use the OLS estimates as starting values.

b = y/x;
bp = MAXM(b,&probitli);

You should observe that using numerical derivatives is slower. In this case
the numerical derivatives provide a good approximation to the Hessian when
evaluated at the final estimates. That is because the log-likelihood function of
the probit model is strictly concave.
Given this experience estimation of the logit model is easy. Write PROC
LOGITLI that returns the value of the log-likelihood function for the logit model.

proc LOGITLI(b); /* See Eq. 19.2.18 */
local cdf,li;

cdf = 1 ./ (1 + exp(-x*b));
li = y .* ln(cdf) + (1-y) .* ln(1-cdf);

retp(sumc(li));
endp;

Use PROC MAXM to obtain the ML estimates of the parameters of the logit
model.

b = y/x;
bl = MAXM(b,&LOGITLI);

Once again there may be a question how close the approximate Hessian is to
the true one. The Hessian for the logit model is given in (19.2.22).

pdf = exp(-x*bl) ./ (1+exp(-x*bl))^2;
H = -(x .* pdf)’x;
std = sqrt(diag(-inv(H)));
std’;

In this case the approximate Hessian is very close to the true one at the final
estimates.
The likelihood-ratio test for the “overall” significance of the model is described
on the top of page 794. First calculate the value of the log- likelihood function
at the ML estimates for the probit model.

CHAPTER 19. QUALITATIVE AND LIMITED DEPENDENT VARIABLE MODELS194

l1 = probitli(bp);

Under the hypothesis the X matrix is a column of ones. Use the sample mean
of y as the initial estimate of the remaining parameter, β1, and obtain the ML
estimate for this restricted model.

x = ones(t,1);
b = meanc(y);
br = MAXM(b,&probitli);

Calculate the value of the log-likelihood for the restricted model and then the
value of the test statistic.

l2 = probitli(br);
lr = 2*(l1-l2);
pval = cdfchic(lr,t-k);
lr~pval;

Calculate the value of the “Pseudo”-R2.

r2 = 1-(l1/l2);
r2;

Calculate the values of the partial derivatives at xstar.

let xstar = 1 .69 .69;
partials = pdfn(xstar’bp) .* bp;
partials;

19.3 Models with Limited Dependent Variables

In this Section the Tobit model is presented. Construct the data in Table 19.2
as follows. First construct X and a vector of 20 N(0,16) random errors.

x = ones(20,1)~seqa(1,1,20);
t = rows(x);
k = cols(x);
open f1 = nrandom.dat;
e = readr(f1,20);
f1 = close(f1);
e = 4*e;

Using the given parameter values construct ystar and y.

let beta = -9 1;
ystar = x*beta + e;
z = (ystar .> 0);
y = z .* ystar;
y~x;

CHAPTER 19. QUALITATIVE AND LIMITED DEPENDENT VARIABLE MODELS195

Obtain the OLS estimates using all the data and ignoring the truncated nature
of the dependent variable. Compare to column 1 of Table 19.3.

b = y/x;
sig2 = (y - x*b)’(y - x*b)/(t - k);
std = sqrt(diag(sig2*invpd(x’x)));
b~std~(b./std);

Delete the observations that have y = 0 and use OLS again. Compare the results
to the second column of Table 19.3.

dat = y~x;

/* Sort the data and place the complete observations first,
then delete the rest */

dat = rev(sortc(dat,1));
t1 = sumc(z);
yt = dat[1:t1,1];
xt = dat[1:t1,2:cols(dat)];

/* Apply OLS */

bt = yt/xt;
sigt = (yt - xt*bt)’(yt - xt*bt)/(t1 - k);
stdt = sqrt(diag(sigt*invpd(xt’xt)));
bt~stdt~(bt./stdt);

To carry out ML estimation we will use MAXM. First write PROC TOBITLI which
returns the value of the Tobit log-likelihood function given in Equation 19.3.6.
Its argument is an initial set of estimates for β and σ2, in that order.

proc TOBITLI(p0);
local k1,b,sig,z,t1,l1,l2,li;

k1 = rows(p0); /* sort out estimates */
b = p0[1:k1-1,1];
sig = sqrt(p0[k1,1]);

z = (y .> 0); /* number of complete obs */
t1 = sumc(z);

l1 = ln(1-cdfn(x*b/sig)) .* (1-z); /* first term */
l2 = (((y-x*b)^2)./(2*sig^2)) .* z; /* last term */

li = sumc(l1)-.5*t1*(ln(2*pi)+ln(sig^2))-sumc(l2);
retp(li);
endp;

CHAPTER 19. QUALITATIVE AND LIMITED DEPENDENT VARIABLE MODELS196

Using as initial estimates the results of OLS applied to the complete sample,
obtain the ML estimates of the parameters.

p0 = b|sig2;
param = MAXM(p0,&TOBITLI);

The asymptotic covariance matrix for the ML estimates is given by the inverse
of the information matrix in Equation 19.3.8. Write PROC TOBITI to compute
it. Its argument is the set of ML estimates.

proc TOBITI(p0);
local k1,b,sig,z,pdf,cdf,a,b,c;

k1 = rows(p0); /* sort out estimates */
b = p0[1:k1-1,1];
sig = sqrt(p0[k1,1]);

z = (x*b)./sig; /* argument of std. normal */

pdf = pdfn(z); /* f */
cdf = cdfn(z); /* F */

/* write a, b, c as column vectors */

a = -(z.*pdf - pdf^2 ./(1-cdf) -cdf) ./(sig^2);

b = ((z^2 .* pdf)+pdf-(z .* pdf^2)./(1-cdf))./(2*sig^3);

c = -((z^3 .* pdf)+z.*pdf-((z^2) .* pdf^2)
./(1-cdf)-2*cdf)./(4*sig^4);

/* construct the components of (19.3.8) */

a = (x.*a)’x;
b = sumc(x.*b);
c = sumc(c);
retp((a~b)|(b’~c));

endp;

Use PROC TOBITI to calculate the estimate of the asymptotic covariance ma-
trix, standard errors and t-values.

covp = inv(TOBITI(param));
covp;
std = sqrt(diag(covp));
param~std~(param./std);

CHAPTER 19. QUALITATIVE AND LIMITED DEPENDENT VARIABLE MODELS197

In Equations (19.3.9) and (19.3.10) various regression functions and their partial
derivatives are shown.

b = param[1:k,1];
sig = sqrt(param[k+1,1]);
xbar = meanc(x);

z = (xbar’*b)./sig;

cdfn(z); /* 19.3.10b */

m = 1 - z*pdfn(z)/cdfn(z) /* 19.3.10c */
-(pdfn(z)/cdfn(z))^2;

m;

Chapter 20

Biased Estimation

20.1 Statistical Decision Theory

In this Section basic concepts of decision theory are presented.

20.2 Combining Sample and Nonsample Infor-
mation

Various ways of incorporating sample and nonsample information are discussed
in this Section. The first example is given in Section 20.2.1b. It uses the
sampling model described in Section 6.1.5. LOAD the (20 x 3) design matrix
in JUDGE.X, specify the true parameter vector, β, and construct a sample of
y values using N(0,.0625) random disturbances. Examine the data.

load x[20,3] = judge.x;
t = rows(x);
k = cols(x);
let beta = 10 0.4 0.6;
open f1 = nrandom.dat;
e = readr(f1,20);
f1 = close(f1);
e = sqrt(0.0625)*e;
y = x*beta + e;
format 10,6;
y~x;

Construct the linear restrictions in (20.2.1a) and obtain the RLS estimates using
(20.2.5).

let r[1,3] = 0 1 1; /* 20.2.1a */
rr = 1;

198

CHAPTER 20. BIASED ESTIMATION 199

b = y/x;
sinv = invpd(x’x);
q = invpd(r*sinv*r’);
br = b + sinv*r’*q*(rr - r*b); /* 20.2.5 */

The covariance matrix for the RLS estimator is given in Equation 20.2.7. To
estimate the error variance either the usual, unbiased estimator can be used or
the sum of squared errors can be based on the RLS estimates and the degrees
of freedom corrected for the fact that J = rank(R) fewer parameters need be
estimated.

sighat2 = (y - x*b)’(y - x*b)/(t - k);

j = rows(r); /* based on RLS */
sig2 = (y - x*br)’(y - x*br)/(t - k + j);

This provides two estimates of the RLS covariance matrix.

/* Eq. 20.2.7 */
covbr = sighat2 * (sinv - sinv*r’*q*r*sinv);
covbr2 = sig2 * (sinv - sinv*r’*q*r*sinv);

Compare the OLS and RLS estimates.

format 8,5;
b; sighat2*sinv;
br; covbr; covbr2;

For later use, write PROC RLS to produce the RLS estimates and covariance
matrix given y, x, r and rr. Use the restricted residuals to estimate the error
variance.

proc (2) = RLS(x,y,r,rr);
local t,b,sinv,q,br,sser,sig2,covbr,stderr,sseu,

sighat2,fstat;

t = rows(x); k = cols(x); j = rows(r);
b = y/x;
sinv = invpd(x’x);
q = invpd(r*sinv*r’);
br = b + sinv*r’*q*(rr - r*b);
sser = (y - x*br)’(y - x*br);
sig2 = sser/(t-k+j);
covbr = sig2 * (sinv - sinv*r’*q*r*sinv);
stderr = sqrt(diag(covbr));

CHAPTER 20. BIASED ESTIMATION 200

format 10,4;

"RLS results";
?;
"R || rr";
r~rr;
?;
"Est :" br’;
"Std. Err. :" stderr’;

sseu = (y - x*b)’(y - x*b);
sighat2 = sseu ./ (t - k);
fstat = (sser - sseu)/(j * sighat2);
?;
" F-statistic " fstat;
" pval= " cdffc(fstat,j,t-k);
retp(br,covbr);

endp;

The use of stochastic contraints is illustrated on page 819. It uses the same
sampling model. Write the restrictions (20.2.13a) and the precision matrix Ω.

let r[2,3] = 0 1 0
0 0 1;

let rr = .5 .5;
om = eye(2) ./ 64;

Obtain parameter estimates using (20.2.15) and the covariance matrix in (20.2.17).
This example assumes σ2 = .0625 is known.

q = invpd(x’x + r’*invpd(om)*r);
btilde = q*(x’y + r’*invpd(om)*rr);
covbtil = (.0625) * q;
btilde; covbtil;

An example using inequality constraints is given on p.822. It is simply noted
that the OLS estimates violate the single restriction in (20.2.24a) and that the
inequality RLS estimates are equal to the RLS estimates.

b’;
br’;

In Section 20.2.3d Bayesian analysis with inequality restrictions is considered.
Given the sampling model in Equation 20.2.37 and a noninformative prior is
assumed then the posterior is given by (20.2.39). Write a PROC that returns
the value of the posterior given the least squares estimate b, the sum of the
squared x values xsum and the multiplicative constant c.

CHAPTER 20. BIASED ESTIMATION 201

c = 1;
b = .95;
xsum = 196;

proc POST(beta);
local g;
g = c.*sqrt(xsum)

.*exp(-0.5*xsum*(beta-b)^2)./sqrt(2*pi);
retp(g);

endp;

In order to calculate the normalizing constant c for the truncated normal pos-
terior in (20.2.41), let c = 1 with the values for b and the sum of squares at
the bottom of page 827. Use the GAUSS function INTQUAD1 to numerically
integrate the posterior density from 0 to 1. The normalizing constant is the
reciprocal of this value as given on page 828.

_intord = 20;
xl = 1|0;
y = intquad1(&POST,xl);
y;
c = 1/y;
c;

Plot the normal and truncated normal posterior functions.

beta = seqa(.7,.005,101);
n1 = POST(beta); /* normal posterior */
n2 = n1*c .* (beta .< 1);/* truncated normal post’r */

library qgraph;
xy(beta,n1~n2);

To compute the Bayesian point estimate of beta the mean of the posterior distri-
bution must be obtained. The weighted posterior can be numerically integrated
over the range [0,1] to compute the expected value of β. PROC EXPT returns
the value of the weighted density function which is then integrated.

proc EXPT(beta);
local g;
g = c.*beta.*sqrt(xsum)

.*exp(-0.5*xsum*(beta-b)^2)./sqrt(2*pi);
retp(g);

endp;

betabar = intquad1(&expt,xl);
format 10,6;
betabar;

CHAPTER 20. BIASED ESTIMATION 202

To compute the Bayesian 95% highest posterior density interval for the trun-
cated posterior calculate the probability mass over a rough grid of values and
then refine the search.

lb = seqa(.7,.01,20);
ub = ones(20,1);
xl = ub’|lb’;
prob = intquad1(&POST,xl);
lb~prob;

The lower bound of the 95% interval is near .82. Examine this area more
carefully.

lb = seqa(.81,.001,20);
xl = ub’|lb’;
prob = intquad1(&POST,xl);
lb~prob;

The example is then repeated for a different value of b, which violates the prior
information.
Find the normalizing constant.

b = 1.05;
c = 1;
xsum = 196;

xl = 1|0;
y = intquad1(&POST,xl);
y;
c = 1/y;
c;

Graph the posteriors.

beta = seqa(.8,.005,101);
n1 = POST(beta);
n2 = n1*c .* (beta .< 1);
xy(beta,n1~n2);

Find the mean of the truncated posterior.

betabar = intquad1(&expt,xl);
betabar;

Find the 95% HPD interval.

lb = seqa(.8,.01,20);
ub = ones(20,1);
xl = ub’|lb’;
y = intquad1(&POST,xl);
lb~y;

CHAPTER 20. BIASED ESTIMATION 203

Search near .89 for the lower bound of the interval.

lb = seqa(.88,.001,20);
xl = ub’|lb’;
y = intquad1(&POST,xl);
lb~y;

Finally, let us extend the results to allow for an unknown error variance, as on
page 830 of ITPE2. The example used is that in Section 6.1.5. LOAD in the
(20 x 3) design matrix found in the file JUDGE.X and examine it.

t = 20;
k = 3;
load x[t,k] = judge.x;
x;

Now create the values of the dependent variable using the parameter values
given in the text and the first 20 “official” normal random numbers, which are
transformed to have variance .0625.

let beta = 10 .4 .6;
open f1 = nrandom.dat;
e = readr(f1,20);
f1 = close(f1);
e = sqrt(.0625) * e;
y = x*beta + e;

Calculate the ML estimates of beta and the unbiased estimator of the error
variance.

b = y/x;
sighat2 = (y - x*b)’(y - x*b)/(t - k);
covb = sighat2 * invpd(x’x);

The idea now is to do the following. If a uniform inequality prior is placed
on the parameters, namely that the sum of the second and third parameters is
less than or equal to one, the posterior distribution is a multivariate-t which
is truncated itself. The parameter estimates are the mean of this truncated
joint distribution. Since it is difficult to integrate this function in a straight-
forward manner, we use a technique called “Monte Carlo Integration”. What it
amounts to is generating many (we will use 20,000) (K x 1) vectors of βs from
the untruncated multivariate-t distribution and then simply keep track of the
mean and variance of those beta vectors which satisfy the inequality constraint.
Those means and variances are our Bayesian parameter estimates.
The first problem we must address is how to generate random values from a
multivariate-t distribution. The method is described in “Further experience in

CHAPTER 20. BIASED ESTIMATION 204

Bayesian Analysis Using Monte Carlo Integration,” by H.K. van Dijk and T.
Kloek, Journal of Econometrics, vol. 14, pages 307-328, 1980. The procedure is
to generate multivariate normal random values from a distribution with mean
B and covariance matrix COVB, which we have calculated above, and divide
by the square root of a random value from a chi-square distribution which has
been divided by its degrees of freedom, (T - K).
To generate the desired multivariate normal distribtion we use a transformation
matrix such that P*P’ = COVB. That is provided by the transpose of the
Cholesky decomposition. Find and check this matrix.

pt = chol(covb);
p = pt’;
check = p*p’;
check;
covb;

As noted above we wish to generate 20,000 (K x 1) vectors. This we will do in
25 loops that generates 800 such vectors at a time. We will also use the concept
of antithetic random numbers which says to use both the positive and negative
values of a random number to reduce numerical inaccuracy. Thus the number
of random samples in each iteration will be NSAM = 400.

niter = 25;
nsam = 400;
totsam = 2*niter*nsam;

We will use separate seed values for the multivariate normal and chi-square
random deviates to ensure independence of the numerator and denominator.

seed1 = 93578421;
seed2 = 17411329;

Finally, define storage matrices in which we will accumulate the sum, sum of
squares and posterior probability of the inequality constrained parameters.

bbar2 = zeros(k,1);
bbaravg = zeros(k,1);
totn = 0;

Now we are ready to start. The following code should be placed in a file and
executed. It will take a couple of minutes to complete the execution. Also, the
results you obtain will not be exactly the same as in the text as a different set
of random numbers is used, but they will be close.

iter = 1; /* begin loop */
do while iter le niter;

w = rndns(t-k,nsam,seed2); /* create chi.sq.(t-k) */

CHAPTER 20. BIASED ESTIMATION 205

w = sumc(w .* w)’;

inc = p*rndns(k,nsam,seed1); /* normal(b,covb) */
inc = inc ./ sqrt(w ./ (t-k)); /* divide by chi.sq. */
bbar = (b + inc)~(b - inc); /* multi-t */

bsum = bbar[2,.] + bbar[3,.]; /* sum b2 and b3 */
success = (bsum .le 1); /* check constraint */
totn = sumc(success’) + totn; /* count successes */
bsat = bbar .* success; /* select successes */
bbaravg = bbaravg + sumc(bsat’); /* collect sum */
/* collect sum of sq. */
bbar2 = bbar2 + sumc((bsat.*bsat)’);
?;
"iter =" iter; /* print iteration */
"totn =" totn; /* cumulative total */
iter = iter + 1;
endo;

postprob = totn/totsam; /* post. prob */
bbarbar = (bbaravg ./ totn); /* means */
bbarvar = ((bbar2 - (totn .* bbarbar^2))/totn);/* variances */

?;
"totn =" totn; /* print */
"postprob =" postprob;
"bbarbar =" bbarbar’;
"bbarvar =" bbarvar’;

20.3 Pretest and Stein Rule Estimators

In this section the sampling properties of the pretest estimator and the Stein-
rule estimator are presented.

20.4 Model Specification

In this Section various rules are discussed which have been proposed to aid in the
selection of regressors to include in a statistical model. In order to examine the
ability of these rules to detect the correct set of regressors a small monte carlo
experiment is carried out in Section 20.4.3f. The true model is the one presented
in Section 6.1.5 and which has been used earlier in this chapter. Construct 100
samples of y with T = 20 observations using this model. Recall that 250 samples
of random errors from a N(0,1) are stored in e1nor.fmt.

t = 20;

CHAPTER 20. BIASED ESTIMATION 206

load x[20,3] = judge.x;
load xa[20,3] = table20.52;
let beta = 10 0.4 0.6;
load e = e1nor.fmt;
e = sqrt(.0625)*e[.,1:100];
y = x*beta + e;

The matrix y is (20 x 100) with each column representing a sample of size 20.
For the purposes of exploration we will add 3 regressors to the X matrix. These
are shown in Equation (20.5.2) as x4, x5 and x6 and are contained in the file
TABLE20.52 on your data disk.

format 10,6;
x = x~xa;
x; /* Eq. 20.5.2 */

We wish to examine the ability of the four criteria based on R̄2, AIC, PC and
SC to detect the correct model from the seven sets of regressors listed in Table
20.3. Write a program that will calculate each of the selection criteria for each
of the 7 models for all 100 samples.

rbar2 = zeros(100,7); /* storage matrices */
aic = zeros(100,7);
sc = zeros(100,7);
pc = zeros(100,7);

x1 = x[.,1:3]; /* 7 model specifications */
x2 = x[.,1:4];
x3 = x[.,1 2 3 5];
x4 = x[.,1 2 3 6];
x5 = x[.,1:5];
x6 = x[.,1 2 3 4 6];
x7 = x[.,1 2 3 5 6];

/* SST */
sst = sumc((y-meanc(y)’) .* (y-meanc(y)’));

model = 1; /* start do-loop */
do while model le 7;
model;
if model == 1; x = x1; /* select model */
elseif model == 2; x = x2;
elseif model == 3; x = x3;
elseif model == 4; x = x4;
elseif model == 5; x = x5;
elseif model == 6; x = x6;

CHAPTER 20. BIASED ESTIMATION 207

else; x = x7;
endif;

b = y/x; /* ols estimates */
k1 = cols(x); /* K1 */
ssei = sumc((y-x*b) .* (y-x*b));/* SSE */

/* Selection criteria as defined in Table 20.2 */

rbar2[.,model] = 1 - ((t-1)/(t-k1)) .* (ssei ./ sst);
aic[.,model] = ln(ssei/t) + 2*k1/t;
sc[.,model] = ln(ssei/t) + k1*ln(t)/t;
pc[.,model] = (ssei/(t-k1)) .* (1+k1/t);

model = model + 1;
endo; /* end do-loop */

To count the number of times each model is selected under each criterion use
the MAXINDC and MININDC to return the indices of respective model choices
and count the number taking values 1,...,7.

let v = 1 2 3 4 5 6 7;
rbar2F = counts(maxindc(rbar2’),v);
aicF = counts(minindc(aic’),v);
scF = counts(minindc(sc’),v);
pcF = counts(minindc(pc’),v);
table = rbar2f~aicF~pcF~scF;

format 4,2;
table;

Chapter 21

Multicollinearity

21.1 Introduction

Economists and other social scientists use nonexperimental data. That is, the
data does not come from a controlled experiment. One frequent problem with
such data is that it is multicollinear. In this chapter the nature of the mul-
ticollinearity problem is discussed. Methods of detection are presented and
various “cures” proposed.
An example of the consequences of multicollinearity for the least squares esti-
mator is provided by the Klein-Goldberger consumption function. LOAD the
data in file TABLE21.1 on your data disk and check it.

load dat[20,5] = table21.1;
format 10,6;
dat;

The dependent variable in the model is consumption (C) and the explanatory
variables are three types of income (W, P, A). Construct the y vector and X
matrix.

t = rows(dat);
y = dat[.,2];
x = ones(t,1)~dat[.,3 4 5];
k = cols(x);

Use PROC OLS, written in Chapter 6, to obtain estimates of the parameters.
Make sure that the proc is in memory or where GAUSS can find it. Compare
your results to those in Table 21.2.

{b,covb} = myols(x,y);

Construct the 95

208

CHAPTER 21. MULTICOLLINEARITY 209

stderr = sqrt(diag(covb));
lb = b - 2.12 .* stderr;
ub = b + 2.12 .* stderr;
lb~ub;

21.2 The Statistical Consequences of Multicollinear-
ity

In this Section the statistical consequences of multicollinearity on the least
squares estimator are presented. In particular, multicollinearity adversely af-
fects the sampling variance of the OLS estimator.

21.3 Detecting the Presence, Severity, and Form
of Multicollinearity

Various strategies for detecting the nature of multicollinear data are discussed in
this Section. In Section 21.3.2 the Klein-Goldberger model is used to illustrate
these techniques.
First, construct the correlation matrix for the explanatory variables using the
standardization in Equation 21.3.2.

xs = x[.,2 3 4];
xc = xs - meanc(xs)’;
ssq = diag(xc’xc);
xc = xc ./ sqrt(ssq)’;
corr = xc’xc;
corr;

Calculate the determinant of the correlation matrix and its inverse. The diago-
nal of the inverse correlation matrix contains the variance inflation factors.

detcorr = det(corr);
invcorr = inv(corr);
"det corr : " detcorr;
" vif : " diag(invcorr)’;

Use PROC OLS to calculate the auxiliary regressions in Table 21.4. If these
three lines are executed as a block, a touch to the space bar will let the next
line to execute.

cls; {b1,cov} = myols(ones(t,1)~xs[.,2 3],xs[.,1]); wait;
cls; {b2,cov} = myols(ones(t,1)~xs[.,1 3],xs[.,2]); wait;
cls; {b3,cov} = myols(ones(t,1)~xs[.,1 2],xs[.,3]);

The R2 values for the auxiliary regressions can also be obtained from the inverse
of the correlation matrix.

CHAPTER 21. MULTICOLLINEARITY 210

auxr2 = 1 - (1 ./ diag(invcorr));
"aux R2 :" auxr2’;

To calculate Theil’s multicollinearity effect regress y on the explanatory vari-
ables, deleting one at a time.

cls; {b1,cov} = myols(ones(t,1)~xs[.,1 2],y); wait;
cls; {b2,cov} = myols(ones(t,1)~xs[.,1 3],y); wait;
cls; {b3,cov} = myols(ones(t,1)~xs[.,2 3],y);

Calculate Theil’s measure.

r2 = .9527;
Theil = r2 - (r2 - .9526) - (r2 - .9513) - (r2 - .8426);
"Theil’s Measure" Theil;

Write PROC COLLIN which calculates the characteristic roots and condition
numbers of X’X in Table 21.5 as well as the table of variance proportions in Table
21.6. The argument X will be either the original X matrix or the normalized X
matrix given by Equation 21.3.3. Place PROC COLLIN in a file and run it.

proc collin(x);
local *;

/* Calculate char. roots and vectors in descending order */

{lam,p} = eigrs2(x’x);
lam = rev(lam);
p = (rev(p’))’;

/* Calculate and print condition numbers */

ratio = lam[1,1] ./ lam;
condno = sqrt(ratio);
format 10,7;
"Characteristic roots " lam’;
"Ratio " ratio’;
"Condition numbers " condno’;

/* Calculate and print variance proportions */

prop = (p^2) ./ lam’;
propsum = sumc(prop’);
prop = prop ./ propsum ;
?; format 10,3;
"Collinearity Diagnostic Table";
prop’;

CHAPTER 21. MULTICOLLINEARITY 211

retp("");

endp;

Apply collinearity diagnostics to the original X matrix.

collin(x);

Apply the collinearity diagnostics to the normalized X matrix.

ssq = diag(x’x);
xn = x ./ sqrt(ssq)’;
collin(xn);

21.4 Solutions to the Multicollinearity Problem

In this Section various ways of introducing nonsample information are offered
as solutions to the problems caused by collinear data. The first is the use of
exact restrictions. Use PROC RLS written in Chapter 20 to impose the Klein-
Goldberger restrictions, discussed on page 876 of ITPE2, singly and jointly.
Make sure PROC RLS is in memory or where GAUSS can find it. Compare
your results to those in Table 21.7.
Use the first restriction alone.

let r1[1,4] = 0 -.75 1 0;
rr = 0;
{br,covbr} = rls(x,y,R1,rr);

Use the second restriction alone.

let r2[1,4] = 0 -.625 0 1;
{br,covbr} = rls(x,y,R2,rr);

Use the two restrictions together.

R = r1|r2;
rr = zeros(2,1);
{br,covbr} = rls(x,y,r,rr);

The use of stochastic restrictions in this chapter is somewhat different than in
Chapter 20. The reason is that here it is not assumed that the error variance
is known. The appropriate modification of Equation 20.2.15 is made in PROC
MIXED given here. It takes as arguments x, y, r, rr, and psi and returns the
mixed estimator and its estimated covariance matrix.

CHAPTER 21. MULTICOLLINEARITY 212

proc (2) = MIXED(x,y,R,rr,psi);
local t,k,b,sse,sighat2,covbm,bm;

t = rows(x);
k = cols(x);
b = y/x;
sse = (y-x*b)’(y-x*b);
sighat2 = sse/(t-k);

covbm = invpd(x’x./sighat2 + R’*invpd(psi)*R);
bm = covbm*(x’y./sighat2 + R’*invpd(psi)*rr);
?;
"Mixed Estimation Results";
?;
" R || rr" r~rr;
" Est :" bm’;
" Std. Err. :" sqrt(diag(covbm))’;
retp(bm,covbm);

endp;

Use PROC MIXED first with prior variance 1/64.

psi = eye(2) ./ 64;
{bm,covbm} = MIXED(x,y,r,rr,psi);

Then using prior variance 1/256.

psi = eye(2) ./ 256;
{bm,covbm} = MIXED(x,y,r,rr,psi);

Compare your results to those in Table 21.8.
In Section 21.4.3 the ridge regression estimator is presented. Write PROC
HKBRIDGE to compute the noniterative and iterative versions of the ridge es-
timator using the Hoerl-Kennard-Baldwin estimator of ”k” given in Equation
21.4.12. The proc takes x and y in unstandardized form as arguments and
returns the iterative estimates and estimated covariance matrix.

proc (2) = HKBRIDGE(x,y);
local *;
t = rows(x); /* Standardize X and y */
k = cols(x);
xs = x[.,2:k];
xc = xs - meanc(xs)’;
ssq = diag(xc’xc);
std = sqrt(ssq);
xc = xc ./ std’;
corr = xc’xc;

CHAPTER 21. MULTICOLLINEARITY 213

yc = y - meanc(y);

bc = yc/xc; /* OLS */
sighat2 = (yc - xc*bc)’(yc - xc*bc)/(t-k);

khat = (k - 1)*sighat2 ./ (bc’bc); /* Eq. 21.4.12 */
bridge = invpd(corr + khat .* eye(k-1)) * xc’yc;

/* Eq. 21.4.13 */

q = invpd(corr + khat .* eye(k-1));
covridge = sighat2 .* q * corr * q; /* Eq. 21.4.4 */

w = diagrv(eye(k-1),1 ./ std); /* W-inv */
bridge = w*bridge; /* Unstandardize */
covridge = w*covridge*w;
stderr = sqrt(diag(covridge));

"HKB-noniterative Ridge Estimator"; /* Print */

?;
" khat : " khat;
" Est : " bridge’;
" Std. Err. : " stderr’;

crit = 1; /* define constants */
kold = khat;
iter = 1;

do until (crit le 1e-6) or (iter ge 20); /* begin loop */
khat = (k-1) * sighat2 ./ (bridge’bridge);
crit = abs(khat - kold);
bridge = invpd(corr + khat .* eye(k-1)) * xc’yc;
kold = khat;
iter = iter + 1;
endo;

q = invpd(corr + khat .* eye(k-1));
covridge = sighat2 .* q * corr * q; /* Eq. 21.4.4 */

w = diagrv(eye(k-1),1 ./ std); /* Unstandardize */
bridge = w*bridge;
covridge = w*covridge*w;
stderr = sqrt(diag(covridge));

?;

CHAPTER 21. MULTICOLLINEARITY 214

"HKB-iterative Ridge Estimator"; /* Print */
?;
" khat : " khat;
" Est : " bridge’;
" Std. Err. : " stderr’;

retp(bridge,covridge);
endp;

Now use PROC HKBRIDGE to obtain the ridge regression estimates of the pa-
rameters, other than the intercept, as shown in Table 21.9.

{bridge,covridge} = HKBRIDGE(x,y);

Chapter 22

Robust Estimation

In this chapter estimation procedures are considered which are ”robust” to
changes in the data generation process. In particular stress is placed on robust-
ness to nonnormal errors. A variety of regression diagnostics are introduced and
illustrated.

22.1 The Consequences of Nonnormal Distur-
bances

In this section the properties of estimators under assumptions of finite and
infinite error variances are summarized.

22.2 Regression Diagnostics

This section introduces the algebraic forms of a list of regression diagnostics.
These will be illustrated in Section 22.4

22.3 Estimation Under Multivariate-t Errors

Multivariate-t errors are given as an example of nonnormal errors. The dif-
ference between independent and uncorrelated errors is noted and maximum
likelihood estimation for the independent error case is described. This estima-
tor is illustrated in the following Section.

22.4 Estimation Using Regression Quantiles

To introduce the concept of a regression quantile the simple model of the mean
is used, Equation 22.4.1. Construct a vector y containing the data at the bottom
of page 900 of ITPE2.

215

CHAPTER 22. ROBUST ESTIMATION 216

let y = 2 3 5 8 9 9 11 12 15;

Obtain an estimate of the 0.25 quantile as shown on the top of page 901.

t = rows(y);
theta = .25;
n = trunc(theta*t) + 1;
n;
est = y[n,1];
est;

To illustrate that the 0.25 quantile can also be defined as a solution to the
minimization problem in Equation 22.4.3, calculate the objective function as
the sum of two components as in Table 22.1 for various values of β. For each
value of β the values of y that are greater than or equal to it are defined and the
component of the objective function calculated. The results are accumulated in
the matrix store. The objective function is minimized for β = 5.

store = zeros(9,4);
beta = 2;
do while beta le 10;

select = y .>= beta;
term1 = sumc(select .* (theta.* abs(y - beta)));
term2 = sumc((1-select) .* ((1-theta) .* abs(y - beta)));
fnval = term1 + term2;
store[beta-1,.] = beta~term1~term2~fnval;
beta = beta + 1;

endo;
"Table 22.1 ";
store;

To illustrate the use of regression diagnostics and robust estimation data based
on independent t-errors, with 1 degree of freedom, is used. First, let us see what
this p.d.f. looks like. The equation for the p.d.f. is given in Equations 22.5.2
and 22.5.3. Write a proc to compute the p.d.f. values given the values of ν and
σ.

proc PDFT(e,nu,sig);
local *;
c1 = gamma((nu+1)/2) * (nu*sig^2)^(nu/2) ./

(gamma(.5)*gamma(nu/2));

pdft = c1 .* (nu*(sig^2) + e.*e)^(-(1+nu)/2);
retp(pdft);

endp;

Set the values of ν and σ, calculate the p.d.f. values of the t distribution and
plot them.

CHAPTER 22. ROBUST ESTIMATION 217

nu = 1;
sig = 2;

e = seqa(-8,.02,801);
t = pdft(e,nu,sig);
library qgraph;
xy(e,t);

Note that the t-distribution with 1 degree of freedom is very flat and has thick
tails. Thus the probability of getting large absolute errors is greater than with
normal errors.
Table 22.2 in the text gives values of the dependent variable y generated from
the model in Equation 22.5.1 with true parameter values β1 = 0, β2 = 1 and
β3 = 1, the given x values and independent t-errors. To construct the t-errors
use equation 22.5.4 with z1 the first 40 observations from file NRANDOM.DAT
and z2 the second group of 40 observations. Construct the errors and compare
them to the last column of Table 22.2 in the text.

open f1 = nrandom.dat;
e = readr(f1,80);
f1 = close(f1);

z1 = e[1:40,.];
z2 = e[41:80,.];

e = (sig .* z1) ./ sqrt(z2^2);
e’;

Now LOAD the data in file TABLE22.2 on the data disk, construct X and y
and examine.

load dat[40,4] = table22.2;
t = 40;
x = ones(t,1)~dat[.,2 3];
let beta = 0 1 1;
y = x*beta + e;
y~x;

Use PROC MYOLS which was written in Chapter 6 to obtain least squares esti-
mates of the parameters. Calculate estimated standard errors in the usual way,
though we know that with t(1) errors the OLS estimator has neither mean nor
variance. See Table 22.4.

{b,covb} = MYOLS(x,y);

The first regression diagnostic considered is teh Bera-Jarque test for normally
distributed errors. The test statistic is given in Equation 22.2.7 and is based
on the moment estimators described in Equation 22.2.6. Write a proc that will
compute the test statistic and p-value given X and y.

CHAPTER 22. ROBUST ESTIMATION 218

proc BERAJAR(x,y);
local *;

t = rows(x);
k = cols(x);
b = y/x; /* OLS */
e = y - x*b; /* residuals */
sigtil2 = sumc(e^2)/t; /* moments */
mu3 = sumc(e^3)/t;
mu4 = sumc(e^4)/t;

/* Eq. 22.2.7 */
term1 = (mu3^2)/(6*sigtil2^3);
term2 = (mu4 - (3 .* sigtil2^2))^2

/ (24 * sigtil2^4);
lam = t*(term1 + term2);
pval = cdfchic(lam,2);

" Bera-Jarque test for Normality";
?;
"lam " lam;
"pval " pval;
retp("");

endp;

Use PROC BERAJAR to test the normality of the regression errors.

BERAJAR(x,y);

As noted, the hypothesis that the errors are normal is rejected at usual signifi-
cance levels.
The other regression diagnostics illustrated are the leverage of an observation,
studentized residuals, DFBETAS and DFFITS. Write a proc to calculate these
values and print out a table, like Table 22.3 in the text, in which observations
selected using the rule of thumb cutoffs (Section 22.2.2 and page 908) are dis-
played. This proc is long so place it in a convenient file and run it to store it
into memory.

proc DIAGNOSE(x,y);
local t,k,b,h,obs,selh,sighat2,sigt2,estar,se,stid,c,dfbeta,

selbeta,selfits,sel,table;

t = rows(x);
k = cols(x);
b = y/x; /* OLS */

/* Calculate leverage values */

CHAPTER 22. ROBUST ESTIMATION 219

h = diag(x*invpd(x’x)*x’); /* Eq. 22.2.8 */
obs = seqa(1,1,t);
selh = (h .>= 2*k/t); /* Find large h values */

/* Calculate Studentized residuals */

sighat2 = e’e/(t-k);

sigt2 = (t-k)*sighat2/(t-k-1) - /* Eq. 22.2.16 */
((e^2)/(t-k-1)) ./ (1-h);

estar = e ./ sqrt(sigt2 .* (1-h)); /* Eq. 22.2.15 */
selstud = (abs(estar) .>= 2); /* Find large values */

/* Calculate DFBETAS */

c = invpd(x’x)*x’;
dfbeta = (c’ .* (estar .*. ones(1,k))) /* Eq. 22.2.18 */

./ sqrt((1-h) .*. diag(invpd(x’x))’);

dfbeta = dfbeta[.,2:k];
selbeta = abs(dfbeta) .>= (2/sqrt(t)); /* Find large values */

/* Calculate DFFITS */

dffits = sqrt(h ./ (1-h)) .* estar; /* Eq. 22.2.21 */
selfits = (abs(dffits) .>= 2*(sqrt(k/t)));/* Select lg. values */

/* Find obs. with at least one significant diagnostic */

sel = selh~selstud~selbeta~selfits;
sel = sumc(sel’);
sel = sel .>= 1;
sel = selif(obs,sel);
table = sel~e[sel,.]~estar[sel,.]~h[sel,.]~

dfbeta[sel,.]~dffits[sel,.];
table;
retp(table);
endp;

Use PROC DIAGNOSE to print out a table like Table 22.3 in the text. It will not
be identical due to the fact that the table in the text identifies other observations
as well.

table223 = diagnose(x,y);

CHAPTER 22. ROBUST ESTIMATION 220

Given that nonnormal errors have been identified the use of robust estimators
may be called for. Regression quantiles and trimmed least squares use linear
programming techniques which will not be covered here. Instead we will use the
maximum likelihood estimation technique, under the assumption of independent
t-errors as described in Section 22.3. The maximum likelihood estimates satisfy
the four equations 22.3.9 to 22.3.12. To obtain estimates that satisfy those
constraints we will iterate using the OLS estimates as starting values.

bmle = b;
crit = 1;
nu = 1;
iter = 1;
do until (crit le 1.e-6) or (iter ge 25);
emle = y - x*bmle;
sig2mle = emle’emle/t;
nusig2 = (nu + 1) * sig2mle; /* Eq. 22.3.12 */
wt = 1 ./ (1 + (emle^2)./nusig2); /* Eq. 22.3.11 */
wx = wt .* x; /* Weight obs */
wy = wt .* y;
newb = invpd(x’wx)*x’wy; /* Eq. 22.3.9 */
crit = maxc(abs(bmle-newb));
bmle = newb;
iter = iter + 1;
iter~crit~bmle’;
endo;

Calculate the asymptotic covariance matrix as given in Equation 22.3.13 and
print the results.

covml = ((nu + 3)*nusig2 / (nu+1)) * invpd(x’x);
se = sqrt(diag(covml));
"bmle " bmle’;
"se " se’;

Appendix A

Linear Algebra and Matrix
Methods

In this section the use of GAUSS matrix operations is illustrated. These op-
erations are used throughout the text.

A.1 Definition of Matrices and Vectors

A matrix is a rectangular array. A vector is a single row or column. When
defining a matrix in GAUSS using the LET command the matrix is assumed
to be a vector unless dimensions are given. For example

let x[5,1] = 3 9 0 -5 1;
x;

or

let x = 3 9 0 -5 1;
x;

The transpose of a column vector is a row vector.

x’;

An identity matrix is specified as

I = eye(3);
I;

The diagonal of a square matrix can be extracted as

ivec = diag(I);
ivec’;

221

APPENDIX A. LINEAR ALGEBRA AND MATRIX METHODS 222

The diagonal of a square matrix can be inserted as

let dvec = 1 2 3;
d = diagrv(I,dvec);
d;

Matrix equality requires that two matrices be equal element by element, which
means they must be of the same dimension. The equality symbol (=) in
GAUSS means a bit more however. It is truly an “assigment” operator, where
the symbol on the left-hand-side is replaced by whatever is on the right-hand-
side. Thus for example,

d = sumc(d);
d;

is legal and simply means that the symbol d is assigned the value of sumc(d),
where SUMC sums the elements of the the columns of its matrix argument.
Matrix equality can be checked using the relational operator == (or EQ) which
returns a value of 1 or 0 depending upon whether two matrices are equal el-
ement by element. See the GAUSS manual for further explanation of RE-
LATIONAL OPERATORS, ELEMENTWISE OPERATORS and LOGICAL
OPERATORS.

A.2 Matrix Addition and Subtraction

Formally, matrix addition and subtraction requires that the matrices involved
be of the same dimension.

let A[2,2] = 6 8
-2 4;

let B[2,2] = 0 -3
9 7;

C = A + B;
C;

GAUSS commands are somewhat more flexible in that it offers “elementwise”
operations. To add or subtract a constant to every element of a matrix.

C = 5 + A;
C;

To add a row to each row.

let d[1,2] = 9 1;
C = A + d;
C;

APPENDIX A. LINEAR ALGEBRA AND MATRIX METHODS 223

To add a column to each column.

let d = 2 3;
C = A + d;
C;

A.3 Matrix Multiplication

Matrices must be conformable for multiplication.

let D[2,3] = 3 -8 1
9 2 5;

F = A*D;
F;

Inner products of vectors and matrices can be shortened.

F = A’*A;
F;

or

F = A’A;
F;

Scalar multiplication is defined as

F = 5*A;
F;

Elementwise multiplication (.*) can be used to multiply corresponding elements,
corresponding rows or columns.

/* Multiply corresponding elements */
F = A .* B;
F;

/* Elementwise multiply each row of A by d */
let d[1,2] = .5 1;
F = A .* d;
F;

/* Elementwise multiply each column of A by e */
let e = 3 2;
F = A .* e;

F;

APPENDIX A. LINEAR ALGEBRA AND MATRIX METHODS 224

Elementwise divison (./) works in the same way. Note that A ./ B would result
in a divison by zero, which is to be avoided.

F = A ./ d;
F;

F = A ./ e;
F;

Another useful elementwise operater is exponentiation, (^).

F = A^2;
F;

A.4 Trace of a Square Matrix

GAUSS does not have a trace operator, thus to sum diagonal elements combine
SUMC and DIAG as

tr = sumc(diag(A));
tr;

A.5 Determinant of a Square matrix

The GAUSS determinant function is DET.

c = det(A);
c;

A.6 The Rank of a Matrix and Linear Depen-
dency

The rank of a matrix is the number of linearly independent rows or columns. A
square matrix with full rank (i.e., rank equals dimension) is nonsingular and has
an inverse and a nonzero determinant. GAUSS has a function, RANK, which
computes the rank of a matrix by counting its number of nonzero “singular
values”. More is given in Section A.11.

A.7 Inverse Matrix and Generalized Inverse

The inverse of a square nonsingular matrix can be found in several ways in
GAUSS. The relevant functions are INV, INVPD and SOLPD. Use INV to
find the matrix inverse of a general, nonsingular matrix.

APPENDIX A. LINEAR ALGEBRA AND MATRIX METHODS 225

inva = inv(A);
inva;
check = inva*A;
check;

If the matrix is positive definite (Section A.14) and symmetric then the function
INVPD can be used and is faster than INV.

/* AA is a positive definite and symmetric matrix */
AA = A’A;
AA;
aainv = invpd(AA);
aainv;
check = aainv*AA;
check;

The function SOLPD will be explained in the following section.
GAUSS does provide a command to find the generalized (Moore-Penrose) in-
verse, PINV.

A.8 Solutions for Systems of Simultaneous Lin-
ear Equations

To solve a system of equations like Equation A.8.2 the matrix A must be non-
singular. If that is true then the matrix inverse function can be used to solve
for the unknowns x. Using the matrix A already in memory,

let b = 2 1;
x = inva*b;
check = A*x;
check;

CHECK is identical to the vector B as x is the solution to the system of equations
and thus satisfies the equality.
If A is positive definite then the faster function SOLPD can be used. Using AA
created just above for A,

x = solpd(b,AA);
check = AA*x;
check;

SOLPD can also be used to invert a positive definite matrix.

aainv = solpd(eye(2),AA);
check = aainv*AA;
check;

APPENDIX A. LINEAR ALGEBRA AND MATRIX METHODS 226

A.9 Characteristic Roots and Vectors of a Square
Matrix

The characteristic roots and vectors of a square matrix are found by solving the
characteristic polynomial (A.9.2) for lambda and then finding vectors x which
solve (A.9.1). If the square matrix is symmetric then the characteristic roots
are real. Otherwise they may not be. GAUSS provides functions that finds
the characteristic roots and vectors for both of these cases.
First, for symmetric matrices use the functions EIGRS (roots only) or EIGRS2
(roots and vectors). For example, using the matrix AA.

{r,v} = eigrs2(AA);
r~v;

Note that GAUSS returns the roots in ascending order of magnitude. The
Characteristic vectors are found in the columns of V and are in the order of the
characteristic roots. Check that the first characteristic root and vector solve
(A.9.1).

c = (AA - r[1,1]*eye(2))*v[.,1];
c;

If the square matrix is not symmetric use the functions EIGRG or EIGRG2.
These functions return the real and complex parts of the roots and vectors.
Using the example in the text,

let A[2,2] = 5 -3
4 -2;

{rr,ri,vr,vi} = eigrg2(A);
rr~ri;
vr~vi;

Note that in this example the roots are real and returned in descending order.
The characteristic vectors are real as well. As the text notes, characteristic
vectors are not unique with respect to sign, and in this case GAUSS returns
the the positive ones.

A.10 Orthogonal Matrices

An orthogonal matrix is one whose transpose is its inverse. As noted in the
text, the characteristic vectors of a symmetric matrix form an orthogonal set.
The matrix V containing the characteristic vectors of the symmetric matrix AA
is an example.

I1 = v’v;
I1;

APPENDIX A. LINEAR ALGEBRA AND MATRIX METHODS 227

I2 = v*v’;
I2;

Furthermore, AA*v = v*diag(lambda) where diag(lambda) is a diagonal ma-
trix with the characteristic roots on the diagonal. To illustrate,

m1 = AA*v;
m2 = v*diagrv(eye(2),r);
m1~m2;

A.11 Diagonalization of a Symmetric Matrix

Using the results in A.10 and A.11 we can construct a matrix P that “diagonal-
izes” a positive definite and symmetric matrix. First, note that the matrix of
characteristic vectors diagonalizes a symmetric matrix and returns a diagonal
matrix with the characteristic roots on the diagonal.

lam = v’*AA*v;
lam~r;

We can further diagonalize a matrix to an identity by using the matrix V post-
multiplied by a diagonal matrix whose nonzero elements are the reciprocals of
the square roots of the characteristic roots.

P = V*diagrv(eye(2),1 ./ sqrt(r));
W = P’*AA*P;
W;

It is useful to know that the rank of a matrix A is given by the number of nonzero
characteristic roots of A’A. In GAUSS the rank of a matrix is calculated from
the number of nonzero “singular values” of A, which are in fact the square roots
of the characteristic roots of A’A. The function that does this is RANK. The
command that performs the singular value decomposition is SVD.
A related transformation is the Cholesky decomposition, CHOL, which factors
a matrix (X) into the product X = Y’Y where Y is upper triangular.

A.12 Idempotent Matrices

An idempotent matrix is one which when multiplied by itself yields itself again.
To illustrate an econometricians favorite idempotent matrix

let X[5,2] = 1 5
1 7
1 3
1 1

APPENDIX A. LINEAR ALGEBRA AND MATRIX METHODS 228

1 0;

M = eye(5) - X*invpd(X’X)*X’;

The matrix M is symmetric and idempotent.

Q = M*M;
format 8,4;
Q;
?;
M;

The characteristic roots of a symmetric, idempotent matrix are ones and zeros
with the number of unit roots being its rank.

lam = eigrs(M);
lam;

Furthermore the trace of an idempotent matrix is also equal to its rank.

sumc(diag(M));

A.13 Quadratic Forms

A quadratic form in x is defined in (A.13.1). The sign of the quadratic form is
related to the characteristics of the matrix, A, as is illustrated in the following
section.

A.14 Definite Matrices

Definite matrices have many useful properties as listed here. These will be used
frequently throughout the text.

A.15 Kronecker Product of Matrices

The Kronecker product of two matrices is defined in (A.15.1). The GAUSS
operator .*. yields this product.

Let A[2,2] = 1 3
2 0;

Let B[2,3] = 2 2 0
1 0 3;

C = A .*. B;
C;

Properties of this operator are listed in the text. Particularly useful is Equation
A.15.6.

APPENDIX A. LINEAR ALGEBRA AND MATRIX METHODS 229

A.16 Vectorization of Matrices

Vectorization of a matrix means that its columns are “stacked” one atop the
other as in (A.16.1). In GAUSS this can be accomplished using the RESHAPE
function. For example, use the matrix B in the previous section.

vecb = reshape(B’,6,1);
vecb;

Note that the transpose of B was reshaped as this function reshapes the rows
of a matrix. Alternatively the GAUSS function VEC can be used.

vecb = vec(B);
vecb;

A.17 Vector and Matrix Differentiation

Useful rules for differentiation are given in this section. Take particular care to
understand the definitions of gradient, Jacobian and Hessian.

A.18 Normal Vectors and Multivariate Normal
Distribution

Transformations of multivariate normal random vectors play a large role in
statistics and are related to hypothesis testing and confidence interval estimation
in this book. Especially useful is Equation A.18.6 which gives the distribution
of linear transformations of multivariate normal random vectors.

A.19 Linear, Quadratic, and Other Nonlinear
Functions of Normal Random Vectors

This Section extends the results in A.18 to quadratic and linear forms in multi-
variate normal random vectors. Chisquare, Student’s-t and the F- distribution
are defined and related. The gamma function is given by the GAUSS func-
tion GAMMA. GAUSS also includes functions for the p.d.f. and c.d.f. of
N(0,1) random variables (PDFN & CDFN) as well as the complement of the
normal c.d.f. (CDFNC). Also provided, and useful for finding “p-values” are
complements to the distribution functions of the t (CDFTC), F (CDFFC) and
chi-square (CDFCC).

A.20 Summation and Product Operators

GAUSS provides functions that sum (SUMC) and multiply (PRODC) columns
of matrices. The factorial operator is the exclamation symbol “!”.

