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Preface

These notes were originally designed to accompany the Summer 2012 and Summer
2013 incarnations of Math 31 at Dartmouth College. This course is the introductory
undergraduate-level abstract algebra course at Dartmouth; it is aimed at math
majors, especially those who are not necessarily planning to attend graduate school
in mathematics. That being said, Math 31 covers all the material one would expect
to see in a first abstract algebra course at most schools (and then some).

These notes owe their existence in large part to my inability to choose an ap-
propriate textbook for Math 31. The two that I have thought to be “the one” at
various times are:

• Abstract Algebra by I. N. Herstein

• Abstract Algebra: A First Course by Dan Saracino

I used Herstein’s book during the summer 2012 term, and Saracino was the offi-
cial course textbook for summer 2013. Each book has shortcomings (as does any
textbook), and these notes represent an attempt to address such imperfections. In
doing so, I have pulled from my own knowledge of algebra, as well as from many
supplementary sources. In particular, I have consulted the following books to some
extent:

• A First Course in Abstract Algebra by John Fraleigh

• Contemporary Abstract Algebra by Joseph Gallian

• Abstract Algebra by John A. Beachy and William D. Blair

• A Book of Abstract Algebra by Charles C. Pinter

Based on my statements thus far, you may think that I despise all of the abstract
algebra books that are currently in print. This is not true at all—there are many
fine books on the list above, and many others that I have not mentioned. The truth
is that I have not been able to find a book that covers the basics of abstract algebra
in the exact style and order that I prefer. I would need to deviate greatly from most
of these books, thus risking the “flow” of the course. I would also need to take care
in assigning homework problems—the propositions and theorems that I choose to
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vi Preface

leave as exercises are not always treated that way by the author. These personal
prejudices—and nothing else—are what have given me the motivation to write this
manuscript.

I should mention that Herstein’s book is probably my favorite out of those listed
above—it is certainly the best one for emphasizing the abstract in abstract algebra. I
also have a bit of a bias toward Fraleigh, which is a great book for a more lightweight
algebra course (though it is not as easy as many people would make it out to be).
Therefore, these two books have probably influenced me the most in the design
and writing of these notes. I have also attempted to include historical anecdotes
in the discussion—many of these are taken from the first chapter of Pinter’s book,
and from Unknown Quantity: A Real and Imaginary History of Algebra by John
Derbyshire. (While the author of the last book is of questionable character, he does
tell a good story.)

To the Student

If you are reading these notes in order to learn abstract algebra, there are a few
things to keep in mind. I have designed this text largely from my lecture notes,
albeit with additional examples and explanation peppered throughout. Therefore,
it is written in a way that strongly reflects my teaching style. I pose questions to
the reader quite often. Since the material can be quite abstract, I try to motivate
new concepts through familiar examples and ideas. If I believe that the proof of a
particular result would make a good exercise, I have left it as such. Finally, I have
included some of my favorite homework problems as exercises at the end of each
section.

Perhaps this description appeals to you. If so, then I hope you enjoy reading
these notes. They should make you feel as though you are taking a course in abstract
algebra with me (though without the pressure of my homework and exams!), so
the tone is very conversational. I have also included some anecdotes regarding
the history of abstract algebra, as well as some applications and previews of more
advanced topics in the field. Altogether, I am trying to tell a story, and thus I hope
that the notes are fairly readable.

Finally, I should provide some warnings to you. Even though I have taught
this course twice, I still consider these notes to be quite raw. I expect that there
will be typographical errors—and possibly other errors—so I hope that you will
forgive them. There will also be places where the exposition is a bit shaky; I am
still searching for the best way to explain certain topics. Finally, these notes are
woefully incomplete when it comes to the overall field of algebra. There are many
interesting topics that I have not been able to fit into my courses, so they do not
appear here. (There are even some things that I have included that might not fit
into an actual course.) However, there are many great books where these topics can
be found, and I will try to direct you there when the time comes. In all, I have tried
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to write a basic, self-contained introduction to elementary abstract algebra—the
fundamentals of group theory, and a treatment of rings and fields that emphasizes
polynomials. It will be up to you to decide whether I have succeeded.
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Chapter 1

Introduction

To fully appreciate (and understand) any new topic in mathematics, it always helps
to relate that topic to one’s prior knowledge before fully diving in. This introductory
chapter is designed to serve this purpose—we will informally introduce some of the
ideas behind abstract algebra from a historical perspective, and then discuss some
familiar examples for the purpose of motivation.

1.1 What is Abstract Algebra?

In order to answer the question posed in the title, there are really two questions that
we must consider. First, you might ask, “What does ‘abstract’ mean?” You also
probably have some preconceived notions about the meaning of the word “algebra.”
This should naturally lead you to ask, “How does this course relate to what I
already know about algebra?” We will see that these two questions are very much
intertwined. The second one is somewhat easier to address right now, so we will
start there.

1.1.1 History

If you’ve spent any time looking at suggested textbooks, you have probably noticed
that “abstract algebra” looks very different from the algebra you know. Many of
the words in the table of contents are likely unrecognizable, especially in the context
of high school algebra. However, this new notion of abstract algebra does relate to
what you already know—the connections just aren’t transparent yet. We will shed
some light on these connections by first discussing the history of abstract algebra.
This will set the stage for the beginning and the end of the course, and the tools
that we develop in between will allow us to link the ideas of modern algebra with
your prior knowledge of the subject.

In high school, the word “algebra” often means “finding solutions to equations.”
Indeed, the Persian poet-mathematician Omar Khayyám defined algebra to be the

1



2 Introduction

“science of solving equations.”1 In high school, this probably meant that you were
solving linear equations, which look like

ax + b = 0,

or quadratic equations, of the form

ax2 + bx + c = 0

Methods for solving these equations were known even in ancient times.2 Indeed,
you learned to solve quadratics by factoring, and also by the quadratic formula,
which gives solutions in terms of square roots:

x =
−b ±

√
b2 − 4ac

2a
.

You may have also learned to factor cubic polynomials, which have the form

ax3 + bx2 + cx + d.

Techniques were known to ancient mathematicians, including the Babylonians, for
solving certain types of cubic equations. Islamic mathematicians, including Omar
Khayyám3, also made significant progress. However, what about a general formula
for the roots? Can we write down a formula, like the quadratic formula, which gives
us the roots of any cubic in terms of square roots and cube roots? There is a formula,
which we won’t write down here, but it took quite a longtime for mathematicians
to find it.

The general formula for cubics4 was discovered in Italy during the Renais-
sance, by Niccoló Fontana Tartaglia. As was the case with many mathematicians,
Tartaglia led an interesting and somewhat tragic life. Born in 1500, Tartaglia was
not his real name—it is actually an Italian word meaning “the stammerer.” As
a child, he suffered a sabre attack during the French invasion of his hometown of
Brescia, which resulted in a speech impediment. He was entirely self-taught, and
was not only a great mathematician, but also an expert in ballistics. In 1535, he
found a general method for solving a cubic equation of the form

x3 + ax2 + b = 0,

1Khayyám was not the first to use the term algebra. The Arabic phrase al-jabr, meaning “bal-
ancing” or “reduction” was first used by Muhammad ibn al-Khwārizmi.

2This statement deserves clarification. The ancients were able to solve quadratic equations,
provided that the solutions didn’t involve complex numbers or even negative numbers.

3It is quite extraordinary that Khayyám was able to make such progress. He lacked the formal
symbolism that we now have, using only words to express problems. Also, negative numbers were
still quite mysterious at this time, and his solutions were usually geometric in nature.

4Again, this formula does not work in full generality. Tartaglia was only able to deal with cubics
which had nonnegative discriminant—for such cubics, the solution did not involve square roots of
negative numbers. These cubics are the ones which have exactly one real root.
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i.e., one with no x term. As was customary in those days, Tartaglia announced his
accomplishment, but he kept the details secret. He eventually entered into a “math
duel” with Antonio Fior, who had learned a method for solving cubics of the form

x3 + ax + b = 0

from his mentor, Scipio del Ferro. These “duels” were not duels in the more familiar
and brutal sense, but public competitions in problem solving. The adversaries would
exchange lists of problems, and each competitor would attempt to solve more than
the other. A few days beforehand, Tartaglia extended his method to handle Fior’s
brand of cubic equations as well. Within 2 hours, he solved all of Fior’s problems,
and Fior solved none of Tartaglia’s.

His victory over Fior brought Tartaglia a reasonable amount of fame, and in
particular it brought him to the attention of the mathematician (and all-around
scoundrel5) Gerolamo Cardano. Born in 1501, Cardano was an accomplished math-
ematician and physician, and he was actually the first person to give a clinical
description of typhus fever. He was also a compulsive gambler and wrote a manual
for fellow gamblers, which was actually an early book on probability. Eventually,
Tartaglia cut a deal with Cardano—he divulged his secret method to Cardano in
exchange for help in obtaining a job with the military as a ballistics adviser. Car-
dano was actually writing an algebra book, titled Ars Magna (“The Great Art”),
in which he collected all of the algebra that was known in Europe at the time. He
published Tartaglia’s result, while acknowledging del Ferro for his discovery of the
solution for cubics with no x2 term. Cardano gave Tartaglia the appropriate credit
for rediscovering this result. Tartaglia was furious at this blatant breach of trust,
and the two had a long feud after that. Despite this, the formula is now known as
the Cardano-Tartaglia formula in honor of both men.

After the question of solving cubics was resolved, people turned their attention
to the quartic equation:

x4 + ax3 + bx2 + cx + d = 0.

Lodovico Ferrari, who was Cardano’s personal servant, found the formula. He had
learned mathematics, Latin, and Greek from Cardano, and he had actually bested
Tartaglia in a duel in 1548. He reduced the problem to that of solving an equation
involving the so-called resolvent cubic, and then used Tartaglia’s formula. In fact,
this work led Cardano to his decision to publish Tartaglia’s work, since he needed
it in order to describe Ferrari’s result.

After Ferrari’s work, the obvious next step was to try to unearth general methods
for finding the roots of fifth (and higher) degree polynomials. This was not so easy.
It took over 200 years before any real progress was made on this question. In the
early 19th century, two young mathematicians independently showed that there is
no general formula for the roots of a quintic polynomial.

5At least one author describes him as a “piece of work.”
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The first of these two young men was Niels Henrik Abel, who proved his result in
1824. He was Norwegian, and he died from tuberculosis 5 years after publishing his
work (at the age of 26). The other young prodigy, who has one of the best-known
stories among mathematicians, was a French radical by the name of Évariste Galois.
He did much of his work around 1830, at the age of 18, though it wasn’t published
until about 15 years later. His story was very tragic, beginning in his teenage year’s
with his father’s suicide. He was then refused admission to the prestigious École
Polytechnique on the basis that his solutions to the entrance exam questions were
too radical and original. He eventually entered the École Normale, but was expelled
and imprisoned for political reasons. Even his groundbreaking work was largely
ignored by the preeminent French mathematicians of his day, including Cauchy,
Fourier, and Poisson. Last but not least, he was killed in a duel (under mysterious
circumstances) at the age of 20. Fortunately, Galois entrusted his work to a friend
on the night before the duel, and it was published posthumously 15 years later.

In proving that there is no “quintic formula,” Abel and Galois both essentially
invented what is now known as a group. In particular, Galois studied groups of
permutations of the roots of a polynomial. In short, he basically studied what
happens when you “shuffle” the roots of the polynomial around. Galois’ ideas led
to a whole field called Galois theory, which allows one to determine whether any
given polynomial has a solution in terms of radicals. Galois theory is regarded as
one of the most beautiful branches of mathematics, and it usually makes up a whole
course on its own.

This is the context in which groups (in their current form) began to arise. Since
then, the study of groups has taken off in many directions, and has become quite
interesting in its own right. Groups are used to study permutations, symmetries, and
cryptography, to name a few things. We’ll start off by studying groups abstractly,
and we will consider interesting examples of groups along the way. Hopefully this
discussion will give you an idea of where groups come from, and where your study
of algebra can eventually lead.

1.1.2 Abstraction

We’ve just discussed where some of the ideas in a course on abstract algebra come
from historically, but where do we go with them? That is, what is the real goal of
a course like this? That’s where the “abstract” part comes in.

In many other classes that you’ve taken, namely calculus and linear algebra,
things are very concrete with lots of examples and computations. In this class,
there will still be many examples, but we will take a much more general approach.
We will define groups (and other algebraic structures) via a set of desirable axioms,
and we will then try to logically deduce properties of groups from these axioms.
To give you a preview, let me say the following regarding group theory. A group
will basically be a set (often consisting of numbers, or perhaps matrices, but also of
other objects) with some sort of operation on it that is designed to play the role of
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addition or multiplication. Additionally, we’ll require that the operation has certain
desirable arithmetic properties. In the second part of the course, we will study
objects called rings. These will arise when we allow for two different operations on
a set, with the requirement that they interact well (via a distributive law). Along
the way, we will try to do as many examples as possible. Some will come from things
that are familiar to you (such as number systems and linear algebra), but some will
be totally new. In particular, we will emphasize the role of groups in the study of
symmetry.

Despite the concrete examples, there will still be an overarching theme of classi-
fication and structure. That is, once we’ve defined things such as groups and rings
and proven some facts about them, we’ll try to answer much broader questions.
Namely, we’ll try to determine when two groups are the same (a concept called
isomorphism), and when we can break a group down into smaller groups. This
idea of classification is something that occurs in pretty much every branch of math
(algebra, topology, analysis, etc.). It may seem overly abstract, but it is paramount
to the understanding of algebra.

We will start off slowly in our abstract approach to algebra—we’ll begin with a
couple of motivating examples that should already be familiar to you. Then we’ll
study one which is more interesting, and perhaps less familiar. Once we’ve done
these, we’ll write down the actual definition of a group and begin to study these
objects from an “abstract” viewpoint.

1.2 Motivating Examples

As a precursor to group theory, let’s talk a little bit about some structures with
which you should already be familiar. We will see shortly that these objects will
turn out to be simple examples of groups.

1.2.1 The Integers

Let Z denote the set of all integers. Of course we have an arithmetic operation on
Z, namely the one given by addition. That is, given two integers, we can add them
together to obtain a new integer. We’ll let ⟨Z,+⟩ denote the set of integers endowed
with the operation of addition. (At this point, we’ll pretend that we don’t know
how to do anything else yet, such as multiplying integers.)

What desirable properties does ⟨Z,+⟩ have? First of all, what happens if I try
to add three integers, say

a + b + c?

Formally, addition is an operation that just takes in two integers and produces a
new integer. Therefore, to make sense of the above expression, we would have to
break things down into steps. We could first add a and b, then add c to the result:

a + b + c = (a + b) + c
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On the other hand, we could add b and c, and then add a:

a + b + c = a + (b + c).

Both are legitimate ways of defining a + b + c. Fortunately, they turn out to be the
same, and it doesn’t matter which way we add things. That is to say, addition on Z
is associative. You could also point out that addition is commutative—we can
write our integers in either order when adding them. There is also a special element
of Z that acts as an identity with respect to addition: for any n ∈ Z, we have

n + 0 = n.

Recall that middle/high school algebra is all about solving simple equations. For
example, if I have the equation

x + 5 = 7,

how do I find x? I need to subtract 5 from both sides. Since we only know how to
add integers, it would be more appropriate to say that we should add −5 to both
sides, which gives x = 2. Now imagine instead that I wrote the equation

x + 5 = 0.

Then the solution would instead be x = −5. What we are really saying here is that
every integer n has the property that

n + (−n) = 0,

and we say that n has an additive inverse, −n. It is the presence of an additive
inverse that lets us solve simple equations like x+5 = 7 over the integers. In summary,
addition on Z has three nice properties:

• associativity,

• the existence of an identity element, and

• the existence of additive inverses.

These are the properties that we would really like to have in a group, so that we
can perform basic arithmetic. Notice that we’ve left out commutativity—indeed,
we won’t always require it to hold. (We will soon see an important example of such
an algebraic object.)

What if I now pretend that we can only multiply integers: ⟨Z, ⋅⟩? What prop-
erties do we have now? Well, multiplication is still associative. There is also a
multiplicative identity:

n ⋅ 1 = 1 ⋅ n = n
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for all n ∈ Z. What about inverses? Given n ∈ Z, is there always an integer x so that

n ⋅ x = 1?

No—it even fails if we take n = 2. In fact, it turns out that only 1 and −1 have
multiplicative inverses. Thus we have just shown that ⟨Z, ⋅⟩ does not satisfy our list
of axioms, since not every integer possesses a multiplicative inverse. Therefore, it
will not fit our eventual definition of a group.

1.2.2 Matrices

Let’s now turn to another example that you should remember from your linear
algebra class. You likely spent a lot of time there studying properties of matrices,
particularly those belonging to the set

Mn(R) = {n × n matrices with entries in R}.

You saw that you can add matrices by simply adding corresponding entries, and
you also learned how to multiply matrices (which is slightly more complicated).

Let’s think about ⟨Mn(R),+⟩ first. Is the operation associative? The answer is
of course yes, since addition of real numbers is associative. Is there an identity?
Yes—the zero matrix is an additive identity. How about inverses? Well, if A is a
matrix, −A is its additive inverse. Thus ⟨Mn(R),+⟩ satisfies the axioms. We should
also note that the operation in question is commutative.

What about ⟨Mn(R), ⋅⟩? It should have been pointed out in your linear algebra
class that matrix multiplication is associative. There is also an identity, namely the
identity matrix, which has the property that

A ⋅ I = I ⋅A = A

for all A ∈ Mn(R). What about inverses? Given an n × n matrix A, can I always
find a matrix B so that

AB = BA = I?

We know from linear algebra that the answer is no. Quite a bit of time is spent
discussing the properties of singular and nonsingular matrices. In particular, non-
singular matrices turn out to be invertible, in the sense that they have multiplicative
inverses. Therefore, if we were to restrict our attention to the set

GLn(R) = {A ∈ Mn(R) ∶ A is invertible},

then GLn(R) does satisfy the axioms. Note that GLn(R) is not commutative, since
matrix multiplication isn’t. This is exactly why we didn’t include commutativity
on our list of axoms—we will eventually encounter many interesting examples of
groups for which the operation fails to be commutative.
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1.3 The Integers mod n

Now let’s try to build an interesting example that you may or may not have seen
before: the set of integers mod n. This example will serve two purposes: we’ll
use this as motivation for the study of groups, and it will provide an avenue for
introducing some facts about the integers that we will need later on.

So far we’ve decided that Z (under addition) and the set of invertible n–by–n
matrices (under matrix multiplication) have three nice properties, namely associa-
tivity, an identity element, and the presence of inverses. There is another set that
has these properties, and it will be built from the integers using an operation called
modular arithmetic (or “clock” arithmetic). Let’s start with a specific example.

Example 1.3.1. Consider the set

{0,1,2,3,4,5}.

We can define an “addition operation” +6 on this set in the following way: to “add”
two elements a and b of this set,

1. Add a and b as integers: a + b.

2. Divide a + b by 6 and take the remainder. This is a +6 b.

(This second step will be called “reduction mod 6.”) In other words, we ignore
multiples of six and only look at the remainder. For example, to compute 2+6 5, we
add 2 and 5 and then take the remainder:

2 + 5 = 7 = 6 ⋅ 1 + 1,

so 2 +6 5 = 1. (Another way of writing this last calculation is

2 + 5 = 7 ≡ 1 mod 6,

where the notation “7 ≡ 1 mod 6” simply means that 7 and 1 leave the same remain-
der when divided by 6.) By adding and then reducing in this way, we ensure that
the given set is closed under the operation +6.

Exercise 1.1. For practice, try computing the following two examples:

(a) 3 +6 1

(b) 2 +6 4

Aside 1.3.2. The operation that we’ve defined above is often described as “clock
arithmetic.” This is an apt name, since we can think of the hours on a clock as the
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integers {0,1, . . . ,11} (where we are interpreting 12 o’clock as 0), and compute time
by working mod 12. For example, if it’s 11 o’clock right now, in 4 hours it will be

11 +12 4 = 15 ≡ 3 mod 12,

or 3 o’clock. We could do a similar thing for minutes by instead working mod 60,
or we could compute with a 24-hour clock by working mod 24.

Note that there is really nothing special about 6 (or 12, or 24, or 60) in the
example above—we can do this sort of thing for any integer n. That is, given n ∈ Z,
we can look at the set

Zn = {0,1,2, . . . , n − 1},

endowed with the operation of “addition mod n.” We define this operation +n in
exactly the same way as above: to add two elements a, b ∈ Zn, do the following:

1. Add a and b as integers: a + b.

2. Divide a + b by n and take the remainder. This is a +n b.

Unfortunately, this definition is not very precise. In fact, it would probably please
very few mathematicians. One of the things that you will learn in this class is to be
careful and precise in your exposition of mathematical ideas. Now is a good time to
start.

In the previous example, we actually employed a fact about the integers that
you have probably used many times without really thinking about it. Specifically,
we used the fact that we can always divide two integers to obtain a quotient and
remainder. You’ve probably been using this idea since elementary school, when
you first learned long division. Therefore, it may seem like second nature, but you
should understand that it really is a theorem about the integers.

Theorem 1.3.3 (Division algorithm). Let a and n be integers, with n > 0. Then
there exist unique integers q and r, with 0 ≤ r ≤ n − 1, such that

a = qn + r.

Aside 1.3.4. In general, theorems are statements which require proof. Therefore,
when we state something as a theorem we will usually follow up by proving it.
However, it would be better to simply get to the important things, and also to
ease you into the idea of writing proofs. Therefore, in the beginning we’ll be a
little selective about what we choose to prove. In particular, we will not prove the
Division Algorithm. You’ve seen many examples of it in action throughout your
lives, and there are many proofs available in the literature (see Saracino, Lemma
2.1, for example) if you’re interested in reading it.



10 Introduction

As far as the Division Algorithm goes, we’re interested in the (unique) remainder.
This remainder happens to always lie between 0 and n − 1, so we can think of it
as an element of Zn. In other words, if we fix n ∈ Z, then any a ∈ Z determines a
unique element of Zn. Let’s give this element a name.

Definition 1.3.5. Let a,n ∈ Z, and write a = qn+ r. We denote the remainder r
by a, or [a]n, and call it the remainder of a mod n.

We’ll usually use the notation [a]n, since it emphasizes the role of n.

Example 1.3.6. Let a = 19 and n = 3. Then

a = 19 = 6 ⋅ 3 + 1 = 6n + 1,

so the remainder is
[a]n = [19]3 = 1.

It will be useful to discuss situations where two integers yield the same element
of Zn. This leads us to define the notion of congruence mod n.

Definition 1.3.7. Let a, b ∈ Z, and let n be a positive integer. We say that a is
congruent to b mod n, written

a ≡ b mod n,

if [a]n = [b]n. In other words, a and b are congruent if they leave the same remainder
when divided by n.

Example 1.3.8. Are 19 and 7 congruent mod 3? Yes—we already saw that [19]3 =

1, and
7 = 2 ⋅ 3 + 1,

so [7]3 = 1 as well. Therefore, 7 ≡ 19 mod 3. However, 9 is not congruent to 19 mod
3, since

9 = 3 ⋅ 3 + 0,

so [9]3 = 0.

Now we have all the tools we need in order to properly define addition mod n.

Definition 1.3.9. Let Zn = {0,1,2, . . . , n − 1} denote the set of integers mod n.
We define the sum of two elements a, b ∈ Zn by

a +n b = [a + b]n.
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Aside 1.3.10. What we are really saying here is that the elements of Zn are not
really integers per se, but families of integers, all of which have the same remainder.
Families like this are what we will eventually call equivalence classes. We will
eventually see that the correct formulation of Zn is done in terms of equivalence
classes. However, the definition we have given here is perfectly valid and it gives us
a straightforward way of thinking about Zn for our current purposes.

You will soon find that, when you are trying to prove mathematical statements,
it is very useful to have different formulations of certain mathematical concepts.
With this in mind, we will introduce another way to characterize congruence, which
will be quite useful. Suppose that a ≡ b mod n. What can we say about a− b? Well,
by the Division Algorithm, there are integers p, q such that

a = qn + [a]n and b = pn + [b]n.

Now

a − b = qn + [a]n − pn − [b]n = (q − p) ⋅ n + ([a]n − [b]n).

But [a]n = [b]n, so a− b = (q − p) ⋅n. In other words, a− b is a multiple of n. It goes
the other way too—if n divides a− b, then it has to divide [a]n − [b]n. But [a]n and
[b]n both lie strictly between 0 and n− 1, so −n < [a]n − [b]n < n. The only multiple
of n in this interval is 0, which forces [a]n = [b]n. Thus we have essentially proven:

Proposition 1.3.11. Two integers a and b are congruent mod n if and only if
n divides a − b.

By “divide,” we mean the following:

Definition 1.3.12. We say that an integer n divides another integer m if there
exists c ∈ Z such that n = cm.

Now let’s get on with our study of Zn. We’ll look first at ⟨Zn,+n⟩. Does it satisfy
the axioms that we came up with? We’ve set up addition in such a way that Zn is
automatically closed under the operation, so there are no worries there. We need
to check that addition on Zn is associative—this ought to be true, since addition is
associative on Z. However, this is something that we really do need to check. If we
let a, b, c ∈ Zn, then

(a +n b) +n c = [a + b]n +n c = [[a + b]n + c]n ,

while

a +n (b +n c) = a +n [b + c]n = [a + [b + c]n]n .
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Are these the same? To check this, we will need to see that

[a + b]n + c ≡ a + [b + c]n mod n.

To do so, we’ll use Proposition 1.3.11. That is, we will check that these two integers
differ by a multiple of n. Well, we know that

a + b = qn + [a + b]n

for some q ∈ Z, and
b + c = pn + [b + c]n

for some p ∈ Z, by the Division Algorithm. But then

([a + b]n + c) − (a + [b + c]n) = (a + b − qn) + c − a − (b + c − pn)

= −qn + pn

= (p − q) ⋅ n.

Therefore, [a + b]n + c ≡ a + [b + c]n mod n, so +n is associative.
The other axioms are much easier to check. The identity element is clearly 0,

and the additive inverse of a ∈ Zn is just n − a, since

a +n (n − a) = [a + n − a]n = [0]n = 0.

(Conveniently enough, n − a = [−a]n.) The operation +n is even commutative, so
⟨Zn,+n⟩ satisfies all of the axioms that we came up with.

Now let’s look at a different operation on Zn. It is entirely possible to multiply
elements of Zn by simply defining

a ⋅n b = [a ⋅ b]n,

just as with addition.

Example 1.3.13. Working mod 6, we have

2 ⋅ 4 = [8]6 ≡ 2 mod 6

and
3 ⋅ 5 = [15]6 ≡ 3 mod 6.

Let’s consider ⟨Zn, ⋅⟩. Does it satisfy the axioms? We’ve constructed it in such
a way that it is obviously closed, and associativity works pretty much like it did for
addition. Also, the multiplicative identity is just 1, and ⋅n is commutative. However,
what about inverses? I claim that they don’t always exist. For example, in Z6, 2
has no multiplicative inverse:

2 ⋅ 2 = 4 ≡ 4 mod 6
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2 ⋅ 3 = 6 ≡ 0 mod 6

2 ⋅ 4 = 8 ≡ 2 mod 6

2 ⋅ 5 = 10 ≡ 4 mod 6

We could also phrase this observation in terms of solving equations: the fact that
2 has no multiplicative inverse is equivalent to saying that there is no x ∈ Z6 such
that

2x ≡ 1 mod 6.

This leads naturally to a couple of questions. Which elements do have inverses?
Once we know that something has an inverse, how do we find it? In the case of Z6,
it turns out that only 1 and 5 have inverses. What is so special about 1 and 5 in
this example? To help you out, here’s another example: the invertible elements of
Z12 are,

{1,5,7,11}.

and in Z5,
{1,2,3,4}

make up the invertible elements. What is special in each case? The key fact is that
the invertible elements in Zn are exactly the ones that share no divisors (other than
1) with n. It turns out that this actually characterizes the invertible elements in
Zn. In other words, we’re about to write down a theorem that will tell us, once and
for all, which elements of Zn have multiplicative inverses. In order to state this in
the most concise way, let’s write down some new language first.

Definition 1.3.14. Let a, b ∈ Z.

• The greatest common divisor of a and b, denoted by gcd(a, b), is the
largest positive integer that divides both a and b.

• We say that a and b are relatively prime if gcd(a, b) = 1.

This definition tells us that in order to determine whether a number a is invertible
in ⟨Zn, ⋅⟩, we need to check that gcd(a,n) = 1. It would therefore be nice to have
an efficient way of computing greatest common divisors. Indeed we have a tool,
called the Euclidean algorithm, which makes it easy to find gcd(a,n), and also
to compute the inverse itself.

1.3.1 The Euclidean Algorithm

We are going to introduce the Euclidean algorithm for the purpose of finding in-
verses. However it is extremely useful in many contexts, and we will use it when we
begin investigating properties of certain kinds of groups. Because of this, we will
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spend some time becoming comfortable with it so that we have it at our disposal
from now on.

As mentioned above, the Euclidean algorithm is first and foremost a method for
finding the greatest common divisor of two integers. Say, for example, that I want
to find the gcd of 24 and 15. You may be able to spot right away that it is 3, but
it won’t be so easy when the numbers are larger. The Euclidean algorithm will be
quite efficient, even when the numbers are big. Let’s try something and see where
it leads. We begin by dividing 15 into 24:

24 = 1 ⋅ 15 + 9.

Now take the remainder and divide it into 15:

15 = 1 ⋅ 9 + 6.

Divide the current remainder into the previous one,

9 = 1 ⋅ 6 + 3,

and repeat:
6 = 2 ⋅ 3 + 0.

Now stop. When we get a remainder of zero, we stop, and we look back at the
previous remainder. In this case, the last nonzero remainder is 3, which happens to
be the gcd that we were seeking. It turns out that this works in general—here is
the general procedure for the Euclidean algorithm that summarizes what we have
just done.

Euclidean algorithm: Given integers n and m (suppose that m < n)a,
gcd(n,m) can be computed as follows:

1. Divide m into n, and use the Division Algorithm to write

n = q0m + r0.

2. Now divide the remainder r0 into m, and apply the Division Algorithm
again to write

m = q1r0 + r1,

i.e., to obtain a new quotient and remainder.

3. Continue this process—divide the current remainder into the previous
one using the Division Algorithm.

4. Stop when you obtain a remainder of zero. The previous (nonzero) re-
mainder is gcd(n,m).

aIf n = m, then we know what the greatest common divisor is. Therefore it is safe to
assume that one of the integers is bigger than the other.
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Example 1.3.15. Let’s try this out on some larger numbers, where it is harder
to see what the gcd might be. Let’s try to find gcd(105,81), say. We divide each
remainder into the previous divisor:

105 = 1 ⋅ 81 + 24

81 = 3 ⋅ 24 + 9

24 = 2 ⋅ 9 + 6

9 = 1 ⋅ 6 + 3

6 = 2 ⋅ 3 + 0

We’ve reached a remainder of 0, so we stop. The last nonzero remainder is 3, so

gcd(105,81) = 3.

Example 1.3.16. Now try to find gcd(343,210).

Solution. Run through the Euclidean algorithm until we hit 0:

343 = 1 ⋅ 210 + 133

210 = 1 ⋅ 133 + 77

133 = 1 ⋅ 77 + 56

77 = 1 ⋅ 56 + 21

56 = 2 ⋅ 21 + 14

21 = 1 ⋅ 14 + 7

14 = 2 ⋅ 7 + 0

Then we see that gcd(343,210) = 7.

We mentioned that the Euclidean algorithm not only lets us find gcds, and thus
show that a number is invertible in Zn, but that it can actually help us find the
inverse. Note that if we worked backwards in our examples, we could write the gcd
as a linear combination (with integer coefficients) of the two numbers:

gcd(24,15) = 3

= 1 ⋅ 9 − 1 ⋅ 6

= 2 ⋅ 9 − 1 ⋅ 15

= 2 ⋅ (24 − 1 ⋅ 15) − 1 ⋅ 15

= 2 ⋅ 24 − 3 ⋅ 15

We simply work our way up the list of remainders, collecting like terms until we
reach the two integers that we started with. Similarly, in our second example we
would have

gcd(105,81) = 3
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= 1 ⋅ 9 − 1 ⋅ 6

= 1 ⋅ 9 − (24 − 2 ⋅ 9)

= 3 ⋅ 9 − 1 ⋅ 24

= 3 ⋅ (81 − 3 ⋅ 24) − 1 ⋅ 24

= 3 ⋅ 81 − 10 ⋅ 24

= 3 ⋅ 81 − 10(105 − 1 ⋅ 81)

= 13 ⋅ 81 − 10 ⋅ 105

Hopefully you get the idea, and you could work out the third example.

Exercise 1.2. Check that

gcd(343,210) = 18 ⋅ 210 − 11 ⋅ 343.

Through these examples, we have (in essence) observed that the following the-
orem holds. It is sometimes called the extended Euclidean algorithm, or Bézout’s
lemma.

Theorem 1.3.17. Let n,m ∈ Z. There exist integers x and y such that

gcd(n,m) = nx +my.

Using this theorem, it’s not hard to determine precisely which elements of Zn
have multiplicative inverses. This also brings us to our first proof.

Theorem 1.3.18. An element a ∈ Zn has a multiplicative inverse if and only if
gcd(a,n) = 1.

Proof. Suppose that gcd(a,n) = 1. Then by Bézout’s lemma, there are integers x
and y such that

ax + ny = 1.

Then, since ax + ny − ax = ny is a multiple of n,

ax ≡ ax + ny mod n

≡ 1 mod n.

This implies that a is invertible. What’s the inverse? Why, it’s [x]n, since

a ⋅n [x]n = [a ⋅ [x]n]n = 1.
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On the other hand, suppose a is invertible. Then there exists an integer x so

ax ≡ 1 mod n.

But this means that [a ⋅ x]n = 1, i.e.,

ax = qn + 1,

or
ax − qn = 1.

Since gcd(a,n) divides both a and n, it divides ax − qn, so it divides 1. Since the
gcd is always positive, it must be 1.

As advertised, this theorem tells us not only which elements are invertible, but
how to explicitly compute the inverse.

Example 1.3.19. We mentioned before that 3 is invertible in Z5. What is its
inverse? We use the Euclidean algorithm:

5 = 1 ⋅ 3 + 2

3 = 1 ⋅ 2 + 1

2 = 2 ⋅ 1 + 0

so of course gcd(5,3) = 1. We also have

1 = 1 ⋅ 3 − 1 ⋅ 2

= 1 ⋅ 3 − (5 − 3)

= 1 ⋅ 5 + 2 ⋅ 3,

so the inverse of 3 is 2.

To summarize this discussion on Zn and the Euclidean algorithm, we have shown
that every element of the set

Z×n = {a ∈ Zn ∶ gcd(a,n) = 1}

has a multiplicative inverse, so ⟨Z×n, ⋅⟩ satisfies the group axioms. With all of these
preliminaries out of the way, we are now in a position to give the formal definition
of a group in the next chapter, where we’ll also begin to investigate some more
interesting examples.
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Additional Exercises for Chapter 1

1.3. Find gcd(a, b) and express gcd(a, b) in the
form ma + nb for:

(a) (116,−84)
(b) (85,65)
(c) (72,26)
(d) (72,25)

1.4. Verify that the following elements of ⟨Zn, ⋅⟩
are invertible, and find their multiplicative in-
verses.

(a) 4 in Z15

(b) 14 in Z19



Chapter 2

Group Theory

This chapter contains the bulk of the material for the first half of the course. We
will study groups and their properties, and we will try to answer questions regarding
the structure of groups. In particular, we will try to determine when two groups are
the same, and when and how a group can be built out of smaller groups. Along the
way we will encounter several new and interesting examples of groups.

2.1 Definitions and Examples of Groups

Now that we have given some motivation for the study of groups, and we have gotten
some preliminaries out of the way, it is time to nail down the formal definition of
a group. We are headed for more abstraction—we take things like addition and
multiplication for granted, and we want to be able to talk about more general types
of operations on other sets. The reason for doing so is really twofold—by working
in the most general setting, we can obtain results about many different objects at
once. That is, results about abstract groups filter down to all of the examples that
we know (and the ones we don’t know yet). Once we’ve established the abstract
definition of a group, we will first see how our motivating examples fit into the
framework of group theory, and then we’ll start discussing new examples of groups.
Before we can write down this definition, however, we need to talk about binary
operations, which will play the role of addition or multiplication in our groups.

2.1.1 Binary Operations

So far in our motivating examples we’ve talked about some sets endowed with “oper-
ations” that satisfy certain nice properties. The reason we did this was to motivate
the definition of a group. At times in this discussion we have been a little vague,
and we have waved our hands more than once. This will come to an end now. Since
we are learning to think like mathematicians, we need to learn to be precise when
we are defining things. Therefore, we’re going be very careful in defining groups.

19
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The first thing we need to make precise is this notion of “operation.” We haven’t
been precise at all so far, and we’ve only given examples of the sorts of operations
that we’re looking for. Let’s give a definition of an abstract type of operation which
will generalize addition and multiplication.

Definition 2.1.1. Let S be a set. A binary operation on S is a mapping

∗ ∶ S × S → S,

which we will usually denote by ∗(a, b) = a ∗ b.

Let’s try to dissect this definition a little. First of all, “binary” simply indicates
that the operation takes in two elements of S and spits out a new element. Also,
we’ve written ∗ as a function from S×S to S, which means two things in particular:

1. The operation ∗ is well-defined: given a, b ∈ S, there is exactly one c ∈ S such
that a ∗ b = c. In other words, the operation is defined for all ordered pairs,
and there is no ambiguity in the meaning of a ∗ b.

2. S is closed under ∗: for all a, b ∈ S, a ∗ b is again in S.

This tells us two things that we need to keep an eye out for when checking that a
mapping S ×S → S is a binary operation. With that in mind, let’s talk about some
examples (and nonexamples).

Example 2.1.2. Here are some examples of binary operations.

• Addition and multiplication on Z are binary operations.

• Addition and multiplication on Zn are binary operations.

• Addition and multiplication on Mn(R) are binary operations.

The following are nonexamples.

• Define ∗ on R by a ∗ b = a/b. This is not a binary operation, since it is not
defined everywhere. In particular, a ∗ b is undefined whenever b = 0.

• Define ∗ on R by a ∗ b = c, where c is some number larger than a + b. This is
not well-defined, since it is not clear exactly what a∗ b should be. This sort of
operation is fairly silly, and we will rarely encounter such things in the wild.
It’s more likely that the given set is not closed under the operation.

• Define ∗ on Z− {0} by a∗ b = a/b. Then ∗ is not a binary operation, since the
ratio of two integers need not be an integer.
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• Define ∗ on Rn by v ∗ w = v ⋅ w, the usual dot product. This is not a binary
operation, because v ⋅w /∈ Rn (unless n = 1).

• Recall that GLn(R) is the set of invertible n × n matrices with coefficients in
R. Define ∗ on GLn(R) by A ∗ B = A + B, matrix addition. This is not a
binary operation, since GLn(R) is not closed under addition. For example, if
A ∈ GLn(R), then so is −A, but A + (−A) = 0 is clearly not invertible.

• On the other hand, matrix multiplication is a binary operation on GLn(R).
Recall from linear algebra that the determinant is multiplicative, in the sense
that

det(AB) = det(A)det(B).

Therefore, if A and B both have nonzero determinant, then so does AB, and
GLn(R) is closed under multiplication. You may even recall the formula for
the inverse of a product: (AB)−1 = B−1A−1.

Exercise 2.1. Define H = {n2 ∶ n ∈ Z+} to be the set of all perfect squares in Z.
Determine whether the usual addition and multiplication of integers give binary
operations on H.

We’ve probably spent enough time talking about simple examples of binary
operations. It’s time to talk about some of the useful properties that will be desirable
for our operations to have.

Definition 2.1.3. A binary operation ∗ on a set S is commutative if

a ∗ b = b ∗ a

for all a, b ∈ S.

Example 2.1.4. Let’s determine whether some of our known examples of binary
operations are actually commutative.

1. + and ⋅ on Z and Zn are commutative.

2. Matrix multiplication is not commutative (on both Mn(R) and GLn(R)).

As we’ve pointed out already, commutativity will be “optional” when we define
groups. The really important property that we would like to have is associativity.

Definition 2.1.5. A binary operation ∗ on a set S is associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c)

for all a, b, c ∈ S.
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Why is associativity important to have around? We often take it for granted in
Z, but how about other settings? Well, a binary operation only lets you combine
two elements of a set. What if you wanted to combine three? Say we have three
elements a, b, c ∈ S, and we want to write down something of the form

a ∗ b ∗ c.

Of course if ∗ is simply addition of integers, there is no need to worry. However, in
general there are two possible ways to do this. We could compute a ∗ b and then
multiply by c,

(a ∗ b) ∗ c,

or we could multiply b and c, and then multiply by a,

a ∗ (b ∗ c).

Both are reasonable definitions of a∗b∗c. It would be nice if they agreed, and that’s
why we’ll require associativity.

Example 2.1.6. The following are examples of associative (and nonassociative)
binary operations.

1. + and ⋅ on Z (and Zn) are associative.

2. Matrix multiplication is associative.

3. Subtraction on Z is a binary operation, but it is not associative. For example,

(3 − 5) − 1 = −2 − 1 = −3,

while
3 − (5 − 1) = 3 − 4 = −1.

4. The cross product on R3 is a binary operation, since it combines two vectors
to produce a new vector in R3. However, it is not associative, since1

a × (b × c) = (a × b) × c − b × (c × a).

5. (Composition of functions) Let S be a set, and define

F(S) = {functions f ∶ S → S} .

Define a binary operation on F(S) by composition: given f, g ∈ F(S), define

f ∗ g = f ○ g.

1This formula is just about the next best thing to associativity. It says that the cross product
satisfies something called the Jacobi identity, which is important in the study of algebraic objects
known as Lie algebras.
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This is indeed a binary operation, since the composition of two functions is
again a function S → S, i.e., it is in F(S). Is it associative? We need to show
that if f, g, h ∈ F(S), then (f ○ g) ○ h = f ○ (g ○ h). To show that two functions
are equal, we need to show that their values at every element of S are equal.
For any x ∈ S, we have

(f ○ g) ○ h(x) = (f ○ g)(h(x)) = f(g(h(x)))

and
f ○ (g ○ h)(x) = f((g ○ h)(x)) = f(g(h(x))).

In other words, (f ○g)○h(x) = f ○(g○h)(x) for all x ∈ S, so (f ○g)○h = f ○(g○h),
and composition of functions is associative.

2.1.2 Groups

At this point we’ve surely driven the concept of associativity home, so let’s get on
with defining groups in a precise way. As we’ve mentioned before, the benefit of
working in such generality is the fact that we will be able to unify all of our examples
under one umbrella. We can prove results about many different examples at once,
rather than having to consider many different cases.2

Definition 2.1.7. A group is a set G equipped with a binary operation ∗ ∶

G ×G→ G satisfying the following axioms.

1. Associativity: For all a, b, c ∈ G, we have

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2. Identity: There exists an element e ∈ G with the property that

e ∗ a = a ∗ e = a

for all a ∈ G.

3. Inverses: For every a ∈ G, there is an element b ∈ G with the property that

a ∗ b = b ∗ a = e.

To be concise, we’ll often write ⟨G,∗⟩ to distinguish the operation on G. If the
operation is understood, we’ll just write G for the group.

Given an element a ∈ G, is not difficult to show the element b in the third axiom
is unique. Therefore, we will usually write it as a−1, and call it the inverse of a.

2In Saracino’s words, we have an “economy of effort.”



24 Group Theory

Exercise 2.2. Show that inverses in a group are unique. That is, for each a ∈ G,
prove that there is exactly one element b ∈ G satisfying a ∗ b = b ∗ a = e.

Remark 2.1.8. This seems like a good place to make some remarks about how one
should read math. Reading a math book is an active process—you need to stop and
think about the material frequently, and it helps to have a pen and paper handy to
check things on your own. In particular, when you come across a definition, it is
extremely helpful to think about two things:

• Immediately try to think of examples that satisfy that definition.

• Think about why the definition is useful. Why are we bothering to make this
definition, and why does it say what it says?

We’ll address both of these points presently.

Once we start investigating more complex ideas involving groups, it will be nice
to have some examples of groups to fall back on. We’ve already seen some in our
motivating discussion, and we’ll add in some others that may also be familiar (or
perhaps less familiar).

Example 2.1.9. Here are some examples of groups.

1. ⟨Z,+⟩ is a group, as we have already seen.

2. ⟨Mn(R),+⟩ is a group.

3. ⟨Zn,+n⟩ is a group.

Here are some nonexamples.

4. ⟨Z, ⋅⟩ is not a group, since multiplicative inverses do not always exist. However,
we could try to restrict our attention to the set of elements that do have
multiplicative inverses. Indeed, ⟨{1,−1}, ⋅⟩ is a group. (We do need to be
careful here—the restriction of a binary operation to a smaller set need not
be a binary operation, since the set may not be closed under the operation.
However, {1,−1} is definitely closed under multiplication, so we indeed have
a group.)

5. ⟨Mn(R), ⋅⟩ is not a group, since inverses may fail to exist. However, ⟨GLn(R), ⋅⟩
is a group. We already saw that it is closed under matrix multiplication, and
that the other axioms hold as well.

6. ⟨Zn, ⋅n⟩ is not a group, again because inverses fail. However, ⟨Z×n, ⋅n⟩ will be
a group. Again, we just need to verify closure: if a, b ∈ Z×n, then a and b are
both relatively prime to n. But then neither a nor b shares any prime divisors
with n, so ab is also relatively prime to n. Thus ab ∈ Z×n.
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Here are some other examples that we have not discussed yet, but should be
familiar to you nonetheless.

Example 2.1.10. 1. Just as Z is a group under addition, so are

Q = {rational numbers}

R = {real numbers}

C = {complex numbers}.

These are all groups under addition, but not multiplication. Since Z is only
a group under addition, we’ll usually write Z for the additive group ⟨Z,+⟩
(and likewise for Q, R, and C), with the understanding that the operation is
addition.

2. Let Q× = Q − {0} = {a/b ∈ Q ∶ a ≠ 0}, and consider ⟨Q×, ⋅⟩. We claim that this
is a group. Multiplication is certainly associative, and the identity is 1. Given
a rational number a/b ∈ Q×, the inverse is just b/a:

a

b
⋅
b

a
= 1.

Similarly, we could define R× = R − {0} and C× = C − {0}, and these would be
groups under multiplication. (The inverse of a nonzero element a is simply
a−1 = 1/a in both cases.)

3. Let Rn = {(a1, . . . , an) ∶ a1, . . . , an ∈ R}, equipped with the operation of coor-
dinatewise addition:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn).

Then ⟨Rn,+⟩ is a group. Associativity follows from that for addition of real
numbers, the identity is the zero vector, and the inverse of a vector is just
its negative. More generally, any vector space is a group—we simply “forget”
about scalar multiplication and view it as a group under addition.

We will introduce many more examples of groups as we move through the course.
However, now that we’ve seen some basic examples, let’s address the second point
that we made above. Why does the definition of a group look the way it does?
We want to come up with a general sort of object that subsumes the objects we’re
used to (such as number systems, vector spaces, and matrices), so the “set with a
binary operation” part makes sense. We already talked about why associativity is
important. But why do we require that there be an identity and inverses? Well, it
all comes down to solving equations! (After all, that is what “algebra” originally
meant.) Suppose we are given a group G, and we write down the equation

a ∗ x = b,
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for a, b, x ∈ G. How could we solve for x? Multiply on the left by a−1:

a−1 ∗ (a ∗ x) = a−1 ∗ b Ô⇒ (a−1 ∗ a) ∗ x = a−1 ∗ b (associativity)

Ô⇒ e ∗ x = a−1 ∗ b (inverses)

Ô⇒ x = a−1 ∗ b (identity)

In short, groups are algebraic structures, and it is good to be able to solve equations
within them.

We’ll often break our study of groups down into different collections of groups
that satisfy certain properties. Therefore, let’s introduce a couple of adjectives for
describing groups. We mentioned before that commutativity is “optional” when
it comes to groups. Groups that have commutative operations are special, and
therefore we have a special name for them.

Definition 2.1.11. A group ⟨G,∗⟩ is said to be abelian if ∗ is commutative, i.e.

a ∗ b = b ∗ a

for all a, b ∈ G. If a group is not commutative, we’ll say that it is nonabelian.

Abelian groups are named in honor of Niels Henrik Abel, who is mentioned in
the historical discussion at the beginning of these notes. Except for GLn(R), all
the groups we’ve seen so far are abelian. Soon we’ll see two interesting examples of
nonabelian groups, the symmetric and dihedral groups.

Another useful way to describe groups is via their size. Rather than saying “size”
or “cardinality”, we speak of the order of a group.

Definition 2.1.12. The order of a group G, denoted by ∣G∣, is the number of
elements in G.

If a group G has infinitely many elements, we will write ∣G∣ = ∞3 and say that G
has infinite order.

Example 2.1.13. Most of the examples we have seen so far are infinite groups. In
particular, ∣Z∣ =∞.

We already know lots of examples of infinite groups, but such groups are actually
quite hard to understand from a structural standpoint (with the exception of Z).
We’ll be more interested in finite groups.

3Here we are not worrying about the true cardinality of the group as a set. We only care
whether the group has finitely many elements or not, and if it does, we define ∣G∣ to be the number
of elements in G.
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Definition 2.1.14. A group G is said to be finite if ∣G∣ <∞.

One of the reasons that we study finite groups is that it is much easier to analyze
their structure, and we’ll be able to classify many types of finite groups (meaning
we can organize them into families with similar properties). Therefore, we’d like to
have lots of examples at our disposal. Of course, we’ve already seen two examples
of finite groups, namely the groups that arise from the study of modular arithmetic.

Example 2.1.15. 1. For any n, the additive group ⟨Zn,+n⟩ is a finite (abelian)
group, with ∣Zn∣ = n. We will usually suppress the +n and simply write Zn for
this group.

2. Similarly, ⟨Z×n, ⋅⟩ is a finite (abelian) group. Its order is a little harder to
determine. We know that ∣Z×n∣ will be the number of elements a ∈ Zn that are
relatively prime to n. If you’ve taken a class in number theory, then you know
that this number is given by the Euler phi function:

∣Z×n∣ = ϕ(n).

If you haven’t seen ϕ, don’t worry about it. We will discuss it later when we
need it.

We will produce two more families of finite groups very soon, namely the sym-
metric and dihedral groups to which we have already alluded.

2.1.3 Group Tables

Now we’ll make a slight detour to talk about a tool for working with finite groups.
One of the things that makes finite groups easier to handle is that we can write
down a table that completely describes the group—we simply list the elements out
and multiply “row by column.”

Example 2.1.16. Let’s look at Z3, for example. We’ll write down a “multiplication
table” that tells us how the group operation works for any pair of elements. As we
mentioned, each entry is computed as “row times column”:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

(Of course we have to remember that “times” really means “plus” in this example.)
This is called a group table (or a Cayley table).
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Group tables can get pretty tedious when the order of the group is large, but
they are handy for analyzing fairly small groups. In particular, let’s look at groups
of order 1, 2, and 3. If we have a group of order one, there is really only one thing
to do. The lone element must be the identity e, and e ∗ e = e, so the group table
must be:

∗ e

e e

Suppose next that we have a group of order two, so that the group contains the
identity e and some other element a with a ≠ e. Then e ∗ a = a ∗ e = a, and since a
must have an inverse (and the only option is a), we must have a ∗ a = e. Therefore,
the group table must look like:

∗ e a

e e a

a a e

Finally, suppose we have a group of order three. Then there are three distinct
elements: the identity e, and two other elements a and b. The first row and first
column are easy to fill in, since e is the identity. We are then left to determine a∗a,
a∗b, b∗a, and b∗b. We claim first that it is impossible to have a∗a = e. If a∗a = e,
then b ∗ b = e as well, since b must have an inverse. (We can’t have b = a−1, since
inverses are unique.) But then we must have either a ∗ b = a or a ∗ b = b. In the first
case,

b = e ∗ b = (a ∗ a) ∗ b = a ∗ (a ∗ b) = a ∗ a = e,

which contradicts the fact that group has three elements. Similar reasoning shows
that a ∗ b ≠ b. The hypothesis that got us into all this trouble was that a ∗ a = e, so
we can’t have a = a−1. Also, a ∗ a ≠ a; if it were, then

e = a−1 ∗ a = a−1 ∗ (a ∗ a) = (a−1 ∗ a) ∗ a = e ∗ a = a,

which is not true. Therefore, we must have a ∗ a = b instead. Since a must have an
inverse (and it must be b),

a ∗ b = b ∗ a = e.

Finally, b ∗ b = a, since

b ∗ b = b ∗ (a ∗ a) = (b ∗ a) ∗ a = e ∗ a = a.

Consequently, the group table must be:

∗ e a b

e e a b

a a b e

b b e a
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In particular, we have shown that for groups of order 3 or less, there is really only
one group of each order, since there was only one way that we could fill in each
group table. (In language that we’ll develop later, there is only one group of each of
these orders up to isomorphism.) Also, any group of order 1, 2, or 3 is abelian. To
see this, we can simply note that the group table is symmetric about the diagonal.
It is left as an exercise to show that groups of order 4 and 5 are abelian. The result
does not extend to order 6—we will see two groups of order 6 which are not abelian.
As you can see, group tables can be quite useful, and we will look at them again
once we’ve defined the symmetric and dihedral groups.

Exercise 2.3. Show that any group of order 4 is abelian. (Hint: Compute all
possible Cayley tables. Up to a reordering of the elements, there are two possible
tables.)

Exercise 2.4. Show that any group of order 5 is abelian. (Hint: There is only
one possible Cayley table, up to relabeling.)

2.1.4 Remarks on Notation

Now we’ll make one last note on working with general groups. We will get really
sick of writing ∗ all the time, so we will oftentimes suppress the operation ∗, and
simply write

ab = a ∗ b.

when working with arbitrary groups. If we are dealing with a specific example
(such as the integers under addition), we’ll still write the operation to make things
clear. In keeping with this convention, we’ll also have a shorthand way of denoting
a product of an element a with itself. We’ll write

a2 = a ∗ a,

and in general

an = a ∗ a ∗⋯ ∗ a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

.

We can also define negative powers by

a−n = (a−1)
n
.

These notational conventions will make it much easier to write down computations
when we are working with groups. The point of all this is that computations in
an arbitrary group will behave very much like usual multiplication, except that
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things may not always commute. (In fact, matrix multiplication might be the best
operation to keep in mind.) Also, you should remember that if we are dealing with
the additive group Z, an really means

an = a + a +⋯ + a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

= na.

This goes to show that one has to be careful when writing down computations in a
group, since we usually write things multiplicatively.

2.2 The Symmetric and Dihedral Groups

We are now ready to introduce our first really interesting examples of (finite) non-
abelian groups, which are called the symmetric and dihedral groups. (These are
actually families of groups, one for each positive integer.) Not only will they give
examples of finite nonabelian groups, but we will see that their elements are quite
different from the examples that we have been considering so far.

2.2.1 The Symmetric Group

The symmetric group is one of the most important examples of a finite group, and
we will spend quite a bit of time investigating its properties.4 It will arise as a
special case of the set SX of bijections from a set X back to itself, so let’s begin
there.

Before we can proceed, we need some preliminaries on functions. We’ll need
some of these facts later on when we discuss homomorphisms, so we will work a
little more generally than is absolutely necessary right now.

Let X and Y be nonempty sets. Recall that a function f ∶ X → Y is, at least
informally, a rule which assigns to each element x ∈X a unique element f(x) ∈ T :

x↦ f(x).

We’re eventually going to look at a particular class of functions from a set to itself.
To do this, we’ll need to know what it means for a function f ∶ X → Y to be
one-to-one (or injective) and onto (or surjective).

Definition 2.2.1. A function f ∶X → Y is one-to-one or injective if whenever
x1, x2 ∈ X with f(x1) = f(x2), then x1 = x2. Equivalently, if x1 ≠ x2, then
f(x1) ≠ f(x2), or different inputs always yield different outputs.

4One author (Herstein) even devotes an entire chapter to it in his book.
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Example 2.2.2. 1. Let X = {1,2,3} (or any set with three elements), and define
f ∶X →X by f(1) = 2, f(2) = 1, and f(3) = 1. We can represent this mapping
pictorially as

3

2

1

3

2

1

f

This function is not injective, since 2 and 3 both map to 1.

2. Define f ∶ R → R by f(x) = x2. This function is not injective, since f(1) =

f(−1) = 1, for example.

3. On the other hand, define g ∶ R→ R by g(x) = x. This function is injective.

Definition 2.2.3. A function f ∶ X → Y is onto or surjective if for any y ∈ Y ,
there exists an x ∈X such that f(x) = y.

Intuitively, f is surjective if every element of Y is “hit” by f , or lies in the image
of f .

Example 2.2.4. 1. The function f ∶ {1,2,3} → {1,2,3} described in the previ-
ous example is not onto, since no element is mapped to 3 by f .

2. The function f ∶ R→ R given by f(x) = x2 is not onto.

3. If we define g ∶ R→ R by g(x) = x, then this is a surjective function.

Any function that is both one-to-one and onto is of particular importance, so we
have a special name for such objects.

Definition 2.2.5. A function f ∶ X → Y is bijective (or simply a bijection) if
f is both one-to-one and onto.

The proofs of the following statements would all be good exercises to try on your
own, but we will reproduce them here anyway.
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Proposition 2.2.6. Let X,Y , and Z be sets, and let f ∶ X → Y and g ∶ Y → Z
be functions.

1. If f and g are both one-to-one, then so is g ○ f .

2. If f and g are both onto, then so is g ○ f .

3. If f and g are both bijections, then so is g ○ f .

Proof. Let’s start with the first one. Assume f and g are one-to-one, and suppose
x1, x2 ∈X with g ○ f(x1) = g ○ f(x2). This means that

g(f(x1)) = g(f(x2)),

and since g is one-to-one, f(x1) = f(x2). But f is also one-to-one, so x1 = x2. Thus
g ○ f is one-to-one.

Now let’s handle the question of surjectivity. Suppose f and g are both onto,
and let z ∈ Z. We need to produce an x ∈X such that g ○ f(x) = z, i.e., g(f(x)) = z.
Since g is onto, there exists a y ∈ Y such that g(y) = z. Also, f is onto, so there
exists an x ∈X such that f(x) = y. Putting this together, we get

g ○ f(x) = g(f(x)) = g(y) = z,

so g ○ f is onto.

The third statement follows from the first two. If f and g are bijective, then
they are both one-to-one and onto. But then g ○ f is one-to-one by (a), and g ○ f is
onto by (b), so g ○ f is bijective.

Now let’s formally define SX , the set of bijections from a set X to itself. We will
then proceed prove that SX is a group under composition.

Definition 2.2.7. Let X be a set. We define

SX = {f ∶X →X ∶ f is a bijection}.

Note that Proposition 2.2.6(c) tells us that SX is closed under composition of
functions. In other words, composition defines a binary operation on SX . But
what kind of operation is it? Why, it’s associative! We already verified this in
Example 2.1.6(5). Unfortunately, it is not a commutative operation. To see this, let
X = {1,2,3}, and define f and g by the following diagrams:



2.2 The Symmetric and Dihedral Groups 33

3

2

1

3

2

1

f

3

2

1

3

2

1

g

Then

g ○ f(1) = g(f(1)) = g(2) = 3,

but

f ○ g(1) = f(g(1)) = f(2) = 1,

so g ○ f ≠ f ○ g. Thus SX will provide a new example of a nonabelian group.
To finish checking that SX is a group, we need to verify the existence of an

identity and inverses. For the first one, recall that any set X has a special bijection
from X to X, namely the identity function idX :

idX(x) = x

for all x ∈X. Note that for any f ∈ SX , we have

f ○ idX(x) = f(idX(x)) = f(x)

and

idX ○ f(x) = idX(f(x)) = f(x)

for all x ∈ S. Thus idX ○ f = f ○ idX = f for all f ∈ SX , so idX serves as an identity
for SX under composition. Finally, what do we know about any bijection? Why, it
has an inverse, in the sense that there is another function that “undoes” it. More
specifically, if f ∈ SX and y ∈ X, there is an x ∈ X such that f(x) = y (since f
is onto). But f is also one-to-one, so this x is unique. Therefore, we can define
f−1(y) = x. You can then check that

f ○ f−1(y) = f(f−1(y)) = f(x) = y = idX(y)

and

f−1 ○ f(x) = f−1(f(x)) = f−1(y) = x = idX(x),

so f−1 really is an inverse for f under composition. Therefore, by making all of
these observations, we have established the following result:

Proposition 2.2.8. For any set X, SX forms a group under composition of
functions.
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If X is an infinite set, then SX is fairly hard to understand. One would have
to be quite brave to try to work with it. Things are much more tractable (and
interesting) when X is finite. Suppose then that X is finite, say with n elements.
It doesn’t really matter what X is; it only matters that X has n elements. That
is, we can label the elements of X to be whatever we want (say, numbers, people,
flavors of ice cream, etc.), so we could simply assume that X is the set

X = {1,2, . . . , n}.

In this case we call SX the symmetric group on n letters, and we usually denote
it by Sn.

An element of Sn is a bijection from {1,2, . . . , n}→ {1,2, . . . , n}. In other words,
it rearranges the numbers 1, . . . , n. Pictorially, we could represent the bijection σ of
{1,2,3} defined by σ(1) = 2, σ(2) = 1, and σ(3) = 3 with the diagram5

3

2

1

3

2

1

σ

What we’re really trying to get at here is that an element of Sn can be thought of
as a permutation of the numbers 1 through n.

Definition 2.2.9. Sn is the set of all permutations of the set {1,2, . . . , n}.

How many permutations of {1, . . . , n} are there? In order to define a permutation
σ of {1, . . . , n}, we need to determine where to send each number. There are n choices
for σ(1), and there are n − 1 choices for σ(2). There are n − 2 choices for σ(3), and
so on, until we reach σ(n), for which we only have one choice. In other words, we
have observed that the total number of permutations of {1, . . . , n} is

n(n − 1)(n − 2)⋯2 ⋅ 1 = n!.

Phrased in the language of group theory, we have shown that

∣Sn∣ = n!.

One of the nice things about working with permutations on finite sets is that we
can completely describe what they do. However, it would be annoying if we had

5Algebraists usually represent elements of the symmetric group by Greek letters, such as σ and
τ , so we’ll slip into that usage now as well. Note that the permutation that we are calling σ here
is the same as the bijection that we called f earlier.
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to specify σ(1), σ(2), . . . , σ(n) separately each time, so we’ll introduce a concise
notation for representing a permutations. In particular, we can write down a table
that completely describes a given permutation, called two-line notation:

σ = (
1 2 ⋯ n

σ(1) σ(2) ⋯ σ(n)
)

For example, suppose σ ∈ S3 is given by the picture that we considered earlier, i.e.,
σ(1) = 2, σ(2) = 1, and σ(3) = 3. Then we have

σ = (
1 2 3
2 1 3

) .

Of course if we are going to represent permutations in this way, it would help to
know how multiplication works in this notation. As an example, let

τ = (
1 2 3
2 3 1

)

Then remember that multiplication is really just composition of functions:

στ = (
1 2 3
2 1 3

)(
1 2 3
2 3 1

)

= (
1 2 3

σ(τ(1)) σ(τ(2)) σ(τ(3))
)

= (
1 2 3

σ(2) σ(3) σ(1)
)

= (
1 2 3
1 3 2

)

On the other hand, what is τσ?

τσ = (
1 2 3
2 3 1

)(
1 2 3
2 1 3

) = (
1 2 3
3 2 1

)

In other words, one moves right to left when computing the product of two permu-
tations. First one needs to find the number below 1 in the rightmost permutation,
then find this number in the top row of the left permutation, and write down the
number directly below it. Then repeat this process for the rest of the integers 2
through n.

In the example above, note that στ ≠ τσ, so what have we shown? We have
actually verified that S3 is nonabelian. Indeed, this holds for all larger symmetric
groups as well.
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Proposition 2.2.10. For n ≥ 3, Sn is a nonabelian group.

Proof. Let σ, τ ∈ S3 be defined as in the example, and suppose that n > 3. Define
σ̃, τ̃ ∈ Sn by

σ̃(i) =

⎧⎪⎪
⎨
⎪⎪⎩

σ(i) if 1 ≤ i ≤ 3

i if i > 3,

and similarly for τ̃ . Then the computation that we performed in S3 shows that
σ̃τ̃ ≠ τ̃ σ̃, so Sn is nonabelian.

It would be entirely feasible to compute the group table for Sn, at least for
relatively small n. We’ll display the group table for S3 here, though we won’t
perform any of the computations explicitly. (There are 6 ⋅ 6 = 36 different products
to compute, and these are left to the interested reader.) Label the elements of S3

as follows:

ι = (
1 2 3
1 2 3

) µ1 = (
1 2 3
1 3 2

)

ρ1 = (
1 2 3
2 3 1

) µ2 = (
1 2 3
3 2 1

)

ρ2 = (
1 2 3
3 1 2

) µ3 = (
1 2 3
2 1 3

)

Then the group table for S3 is:

∗ ι ρ1 ρ2 µ1 µ2 µ3

ι ι ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ι µ3 µ1 µ2

ρ2 ρ2 ι ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ι ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ι ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ι

The labeling of the elements may look odd at this point, but we will see a good
reason for it quite soon.
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2.2.2 The Dihedral Group

Now it’s time to talk about another interesting nonabelian group, the dihedral
group. Again, we’re actually going to be dealing with a family of groups, one for
each positive integer. Suppose we have a triangle, and we label the vertices 1, 2,
and 3:

1

3

2

We can rotate the triangle counterclockwise by 120○ and obtain a triangle with the
same orientation, albeit with the vertices relabeled:

1

3

2 3

2

1

We could also rotate by 240○:

1

3

2 2

1

3

Call these two transformations r1 and r2, respectively. We could also reflect the
triangle across any of the angle bisectors to obtain a relabeling of the vertices:

1

3

2 1

2

3

Label the reflection depicted above as m1, and let m2 and m3 denote the reflections
across the line bisecting angles 2 and 3 (in the original labeling of the triangle),
respectively. Define the identity transformation i to be the one that simply
leaves the triangle unmoved. The set

{i, r1, r2,m1,m2,m3}



38 Group Theory

is called the set of symmetries of the triangle. Its elements are exactly the trans-
formations of the triangle that reorder the vertices in a way that respects adjacency.
(That is, two adjacent vertices are still adjacent after applying any of these trans-
formations.) It is not hard to check (via brute force, if necessary) that this set forms
a group under composition, which we denote by D3 and call the third dihedral
group. More generally, we can define the nth dihedral group Dn to be the set of
symmetries of a regular n-gon equipped with the operation of composition.

Definition 2.2.11. The group Dn is the set of all symmetries of the regular
n-gon under composition of transformations.

Naturally, we could ask ourselves what the order of Dn should be. In general, there
will be n rotations (including the identity transformation) and n reflections, so

∣Dn∣ = 2n.

Of course we should talk about how to multiply two symmetries of an n-gon.
Again, we need to think of multiplication as composition of functions. For example,
suppose we wanted to compute r1m1 in D3. We would first have to apply m1 to the
triangle, and then apply r1:

1

3

2

m1

1

2

3

r1

2

1

3

We see from this picture that r1m1 = r2. By doing this for all possible pairs of
elements, we could write down the group table for D3:

∗ i r1 r2 m1 m2 m3

i i r1 r2 m1 m2 m3

r1 r1 r2 i m3 m1 m2

r2 r2 i r1 m2 m3 m1

m1 m1 m2 m3 i r1 r2

m2 m2 m3 m1 r2 i r1

m3 m3 m1 m2 r1 r2 i



2.3 Basic Properties of Groups 39

After switching Roman letters to Greek letters, you might notice that this table
is the same as the one we constructed for S3. (This is why we labeled the elements
of S3 in the way that we did.) We have essentially shown that S3 and D3 are
isomorphic groups: they are fundamentally the same group dressed up in different
disguises. In this case, it is not too hard to see how one could identify D3 with S3,
since the elements of D3 can be viewed as permutations of the vertices. In general,
we can view elements of Dn as permutations of the vertices of the regular n-gon,
but we cannot realize all permutations in this way when n ≥ 4. In other words, we
will see that Dn and Sn are not the same in general. Of course one way to see this
at this point is to notice that ∣Dn∣ = 2n but ∣Sn∣ = n!, and these numbers are only
equal when n = 3.

2.3 Basic Properties of Groups

Now that we’ve defined groups and we have some interesting examples in our toolkit,
it’s time to start investigating properties of groups. We’ll start of with some simple
properties before we really get into the bigger questions regarding the structure and
classification of groups. At the very least, this will simplify some of the routine
calculations that we need to make when working with groups.

Proposition 2.3.1. Let G be a group. The identity element e ∈ G is unique,
i.e., there is only one element e of G with the property that

ae = ea = a

for all a ∈ G.

Proof. For this proof, we need to use the standard mathematical trick for proving
uniqueness: we assume that there is another gadget that behaves like the one in
which we’re interested, and we prove that the two actually have to be the same.
Suppose there is another f ∈ G with the property that

af = fa = a

for all a ∈ G. Then in particular,

ef = fe = e.

But since e is an identity,
ef = fe = f.

Therefore,
e = ef = f,

so e is unique.
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The next result has to do with solving equations, which was our original moti-
vation for requiring that inverses exist. It’s called cancellation.

Proposition 2.3.2 (Cancellation laws). Let G be a group, and let a, b, c ∈ G.
Then:

(a) If ab = bc, then b = c.

(b) If ba = ca, then b = c.

Proof. (a) Suppose ab = ac. Multiply both sides on the left by a−1:

a−1(ab) = a−1(ac).

By associativity, this is the same as

(a−1a)b = (a−1a)c,

and since a−1a = e, we have

eb = ec.

Since e is the identity, b = c. The same sort of argument works for (b), except we
multiply the equation on the right by a−1.

The cancellation laws actually give us a very useful corollary. You may have
already guessed that this result holds (particularly in light of Exercise 2.2, but we
will prove here that inverses in a group are unique.

Corollary 2.3.3. Let G be a group. Every a ∈ G has a unique inverse, i.e. for
each a ∈ G there is exactly one element a−1 with the property that

aa−1 = a−1a = e.

Proof. Let a ∈ G, and suppose that b ∈ G has the property that ab = ba = e. Then in
particular,

ab = e = aa−1,

and by cancellation, b = a−1. Thus a−1 is unique.

While we are on the topic of inverses, we will prove two more results about them.
The first tells us what happens when we “take the inverse twice,” and the second
gives us a rule for determining the inverse of a product of two group elements.



2.3 Basic Properties of Groups 41

Proposition 2.3.4. If a ∈ G, then (a−1)−1 = a.

Proof. By definition, a−1(a−1)−1 = e. But a−1a = aa−1 = e as well, so by uniqueness
of inverses, (a−1)−1 = a.

Recall from linear algebra that if A,B ∈ GLn(R), we have a formula for (AB)−1;
it is simply B−1A−1. In general there is a rule for determining the inverse of a
product of two group elements, which looks just like the rule for matrices—it is the
product of the inverses, but in the reverse order.

Proposition 2.3.5. For any a, b ∈ G, (ab)−1 = b−1a−1.

Proof. We’ll explicitly show that b−1a−1 is the inverse of ab by computing:

(ab)(b−1a−1) = ((ab)b−1)a−1

= (a(bb−1))a−1

= (ae)a−1

= aa−1

= e.

Of course we also need to check that (b−1a−1)(ab) = e, which works pretty much the
same way:

(b−1a−1)(ab) = b−1(a−1(ab))

= b−1((a−1a)b)

= b−1(eb)

= b−1b

= e.

Thus (ab)−1 = b−1a−1, since inverses are unique.

In order to be thorough and rigorous, we needed to check that b−1a−1 was a
two-sided inverse in the previous proof. It would be quite annoying if we had to do
this all the time, and you may be wondering if there is a shortcut. There is one,
which allows us to check that two group elements are inverses of each other simply
by multiplying them in only one of the two possible orders. To prove it, we’ll use
the following proposition.
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Proposition 2.3.6. For any a, b ∈ G, the equations ax = b and xa = b have unique
solutions in G.

Proof. The solution to ax = b is x = a−1b, and for xa = b it is x = ba−1. These are
unique since inverses are unique.

Proposition 2.3.7. Let G be a group, and let a, b ∈ G. If either ab = e or ba = e,
then b = a−1.

Proof. This really amounts to solving the equation ax = e (or xa = e). We know
from Proposition 2.3.6 that there is a unique solution, namely x = a−1e = a−1 (in
either case). Therefore, if ab = e or ba = e, then b is a solution to either ax = e or
xa = e, so b = a−1.

Exercise 2.5. Prove that if G is a group and a, b ∈ G with ab = a, then b = e.

2.3.1 The Order of an Element

Recall that we’ve developed some shorthand notation for writing out computations
in groups. For one, we have been suppressing the binary operation ∗, and we simply
write ab in place of a ∗ b. We also developed simpler notation for expressing powers
of an element—we write

an = a ∗ a ∗⋯ ∗ a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

for n ∈ Z+, and negative powers are defined in terms of the inverse:

a−n = (a−1)n.

In addition, we define a0 = e. Note that this we have written these equations for
an arbitrary group—if we’re dealing with an additive group (like Z or Zn), then we
would really write an as

a +⋯ + a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

= na.

We will generally write things multiplicative, but we will keep this additive conven-
tion in mind when we are working with certain specific examples.

Now let G be a group, and let a ∈ G. We’re going to investigate the things that
we can do with powers of a. Therefore, it will be helpful to assign some notation to
the set of all powers of a.
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Definition 2.3.8. Given a group G and an element a ∈ G, we define

⟨a⟩ = {an ∶ n ∈ Z} = {. . . , a−2, a−1, e, a, a2, a3, . . .}.

The first observation that we will make is that the familiar “exponent rules”
hold for an arbitrary group element.

Proposition 2.3.9. Let G be a group, and let a ∈ G.

(a) anam = an+m for all n,m ∈ Z.

(b) (an)−1 = a−n for all n ∈ Z.

(c) (an)m = anm for all n,m ∈ Z.

The proof is straightforward and makes a good exercise, so we will leave it to
the reader as such.

Exercise 2.6. Prove Proposition 2.3.9.

Now we’ll investigate what happens when we keep taking powers of an element.
Let’s use a specific example to get started.

Example 2.3.10. Consider the group G = Z12. Let’s compute the “powers” of
some elements. (Recall that in this group “power” really means “multiple”.) We’ll
calculate the powers of 2 first:

1 ⋅ 2 = 2

2 ⋅ 2 = 2 +12 2 = 4

3 ⋅ 2 = 2 +12 2 +12 2 = 6

4 ⋅ 2 = 8

5 ⋅ 2 = 10

6 ⋅ 2 = [12]12 = 0

7 ⋅ 2 = [14]12 = 2

8 ⋅ 2 = [16]12 = 4

and so on. What about powers of 3?

1 ⋅ 3 = 3
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2 ⋅ 3 = 3 +12 3 = 6

3 ⋅ 3 = 3 +12 3 +12 3 = 9

4 ⋅ 3 = [12]12 = 0

5 ⋅ 3 = [15]12 = 3

6 ⋅ 3 = [18]12 = 6

and so on. Notice that both lists repeat after a while. In particular, we reach 0
(i.e., the identity) after a certain point. We quantify this phenomenon by saying
that these elements have finite order.

Definition 2.3.11. Let G be a group. We say that a ∈ G has finite order if
there exists n ∈ Z+ such that an = e. The smallest such integer is called the order
of a, denoted by ∣a∣ (or in some books as o(a)). If no such integer exists, we say
that a has infinite order.

Example 2.3.12. 1. The identity element in any group has order 1.

2. In Z12, we have seen that ∣2∣ = 6 and ∣3∣ = 4.

3. In D3, the order of the reflection m1 is 2. (This is true of all reflections in
D3.) Also, ∣r1∣ = ∣r2∣ = 3.

4. In Z, 5 has infinite order, as do all other elements.

We started this discussion by observing that the elements 2,3 ∈ Z12 have finite
order. Do all the elements of Z12 have finite order? Yes—in fact, one can directly
check that for all a ∈ Z12,

12 ⋅ a = 0,

for example. How could we show that all elements have finite order without checking
every single element? We need to think about the real reason that an element of
Z12 must have finite order—the group is finite, so there are only so many places to
put the powers of a given element. (Remember the Pigeonhole Principle?) We can
quantify this observation with the following proposition.

Proposition 2.3.13. Let G be a finite group. Then every element a ∈ G has
finite order.

Proof. Consider the set

{an ∶ n ≥ 0} = {e, a, a2, . . .} ⊆ G.
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Since G is finite, this list of powers can’t be infinite. (This follows from the Pigeon-
hole Principle, for instance. We have an infinite list of group elements that must fit
into only finitely many slots.) Therefore, two different powers of a must coincide,
say ai = aj , with j ≠ i. We can assume that j > i. Then

aj−i = aja−i = aia−i = e,

so a has finite order. (In particular, ∣a∣ ≤ j − i.) Since a ∈ G was arbitrary, the result
follows.

Remark 2.3.14. There are two questions that we could ask here. First, you may
be wondering if the converse of Proposition 2.3.13 holds. That is, if G is a group
in which every element has finite order, is G necessarily finite? The answer to this
question is no—there are examples of infinite groups in which every element has
finite order, but we do not have the tools yet to describe them.

On the other hand, if G is an infinite group, can we have elements of finite
order? Yes—for example, 1 and −1 have finite order in Z. (The first one is a bit of a
cheat—the identity element of a group always has order 1.) For a more interesting
example, we can look to GLn(R): if we let

A = (
0 1
1 0

) ,

then

A2 = (
0 1
1 0

)

2

= (
1 0
0 1

) ,

Thus the matrix A has order 2. It’s also easy to see why this should be true if we
think about the linear transformation that A represents—it reflects the plane R2

across the line y = x. That is, it interchanges the two standard basis vectors:

e1

e2

Ae2

Ae2

Ô⇒

Let’s get on with proving some more basic facts about order. First, we’ll relate
the order of an element to that of its inverse.
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Proposition 2.3.15. Let G be a group and let a ∈ G. Then ∣a∣ = ∣a−1∣.

Proof. Suppose first that a has finite order, with ∣a∣ = n. Then

(a−1)n = a−n = (an)−1 = e−1 = e,

so ∣a−1∣ ≤ n = ∣a∣. On the other hand, if we let m = ∣a−1∣, then

am = ((a−1)−1)m = (a−1)−m = ((a−1)m)−1 = e,

so n ≤m. Thus n =m, or ∣a∣ = ∣a−1∣.
Now suppose that a has infinite order. Then for all n ∈ Z+, we have an ≠ e. But

then
(a−1)n = a−n = (an)−1 ≠ e

for all n ∈ Z+, so a−1 must have infinite order as well.

Our next proposition completely describes the integers m for which am = e—they
are simply the multiples of ∣a∣.

Proposition 2.3.16. Let G be a group, and let a ∈ G be an element of finite
order. If m ∈ Z, then am = e if and only if ∣a∣ divides m.

Proof. Let n = ∣a∣. If n ∣m, it is easy. Write m = nd for some d ∈ Z. Then

am = and = (an)d = ed = e.

On the other hand, ifm ≥ n, we can use the Division Algorithm to writem = qn+r
with 0 ≤ r < n. Then

e = am = aqn+r = aqnar = (an)qar = ear = ar,

so ar = e. But r < n, and n is the smallest positive power of a which yields the
identity. Therefore r must be 0, and n divides m.

Note that Proposition 2.3.16 tells us something more general about powers of a:
when we proved that elements of finite groups have finite order, we saw that ai = aj

implied that aj−i = e. But this means that n = ∣a∣ divides j − i by Proposition 2.3.16.
In other words, i and j must be congruent mod n.

Proposition 2.3.17. Let G be a group, and suppose a ∈ G is an element of finite
order n. Then ai = aj if and only if i ≡ j mod n.
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Along the same lines, we observed that if ai = aj with j > i, then aj−i = e, so
a must have finite order. Taking the contrapositive of this statement, we get the
following result.

Proposition 2.3.18. Let G be a group, and suppose a ∈ G is an element of
infinite order. Then the powers of a are all distinct. (That is, ai = aj if and only
if i = j.)

Finally, if we know that a has order n, then how can we find the orders of other
powers of a? It turns out that there is a nice formula in terms of the greatest
common divisor.

Theorem 2.3.19. Let G be a group and suppose a ∈ G an element of finite order
n. Then for all m ∈ Z,

∣am∣ =
n

gcd(m,n)
.

Proof. Let d = gcd(m,n). Then

(am)n/d = amn/d = (an)m/d = em/d = e.

However, we need to check that n/d is the smallest positive integer which gives the
identity. Suppose that k ∈ Z+ and (am)k = e. Then

amk = e,

so n ∣mk by the previous proposition. It follows that n/d divides (m/d)k. Now we
claim that gcd(n/d,m/d) = 1: first use Bézout’s lemma to write

d = nx +my

for some x, y ∈ Z. Dividing by d, we get

1 = (n/d)x + (m/d)y,

so n/d and m/d have to be relatively prime. (Any common divisor would have
to divide this linear combination, hence it would divide 1.) This means that n/d
divides k.6 In particular, n/d ≤ k, so ∣am∣ = n/d.

6This requires a general fact from number theory. If a, b, c ∈ Z with a ∣ bc and gcd(a, b) = 1, then
a must divide c.
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2.4 Subgroups

We spent the last section studying groups from a very close-up perspective. In par-
ticularly, we were almost exclusively focused on facts involving individual elements
of groups. We will now begin to study groups with a much wider lens, and analyze
both the internal structure of a group and the relationships between different groups.
We will start to consider more interesting questions, like how groups are connected
to each other via functions—the concept of homomorphism and isomorphism—and
how they are built out of smaller groups. Thus we are interested in questions of
classification and structure:

• Classification: When are two groups the same or different? If we are dealing
with a mysterious new example of a group, perhaps it is just a more familiar
group in disguise.

• Structure: How is a group built out of smaller pieces? When working with a
big, complicated group, we might be able to break the group up into smaller
pieces, which are then easier to analyze.

We’ve already seen some primitive examples that foreshadow the classification prob-
lem. At this point we will start laying the foundation for the structure problem.
Eventually we’ll want to tear down groups into smaller bits, which will make the
larger group easier to understand. To do this, we need to know what these “bits”
really are.

Obviously we want to look at subsets of a group G, but we don’t just want any
old subset of G. We should only consider subsets that carry information about the
group structure on G. These subsets we have in mind are called subgroups of G.

Definition 2.4.1. Let ⟨G,∗⟩ be a group. A subgroup of G is a nonempty subset
H ⊆ G with the property that ⟨H,∗⟩ is a group.

Note that in order for H to be a subgroup of G, H needs to be a group with
respect to the operation that it inherits from G. In other words, H and G always
carry the same binary operation. Also, we’ll write

H ≤ G

to denote that H is a subgroup of G. Finally, if we want to emphasize that H ≤ G
but H ≠ G, we will say that H is a proper subgroup of G.

In order to think about how to show that a subset of a group is actually a
subgroup, let’s work with an example.

Example 2.4.2. Let’s look at the group Z (under addition, of course). Define

2Z = {even integers} = {2n ∶ n ∈ Z}.

Is 2Z a subgroup of Z? We need to check that 2Z itself forms a group under addition:
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• Closure: If a, b ∈ 2Z, then a = 2n and b = 2m for some n,m ∈ Z. Then

a + b = 2n + 2m = 2(n +m) ∈ 2Z,

so 2Z is indeed closed under addition.

• Associativity: Is there even anything to check here? No—the operation on
Z is already associative, so nothing changes when we pass to a subset of Z.

• Identity: The identity for addition on Z is 0, which is even: 0 = 2 ⋅ 0 ∈ 2Z.

• Inverses: If a ∈ 2Z, then a = 2n for some n ∈ Z, and −a = −2n = 2(−n) ∈ 2Z.

Therefore, ⟨2Z,+⟩ is a group, hence it is a subgroup of Z.

In general, we want to be able to check whether a subset of a group is actually
a subgroup. Fortunately, this example tells us exactly how to do it.

To check that H ≤ G, one needs to verify the following:

1. H is closed under the operation on G.

2. The identity element e ∈ G is in H.

3. For every a ∈H, its inverse a−1 is in H.

Example 2.4.3. Naturally, it would be helpful to look at some examples of sub-
groups.

1. Every group G has two special subgroups, namely

{e} and G.

These are called the trivial subgroups of G.7

2. We saw earlier that 2Z is a subgroup of Z. There is nothing special about 2
in this example: for any n ∈ Z+,

nZ = {na ∶ a ∈ Z}

is a subgroup of Z. The exact same computations that we performed for 2Z
will show that nZ ≤ Z.

3. The rational numbers Q form an additive subgroup of R.

7Many books will reserve the phrase “trivial subroup” only for the identity subgroup {e}. The
group G is sometimes referred to as the improper subgroup.
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4. Here is an example from linear algebra. Consider the n-dimensional vector
space Rn. Then Rn is, in particular, an abelian group under addition, and any
vector subspace of Rn is a subgroup of Rn.8 If H is a subspace of Rn, then
it is closed under addition, and closure under scalar multiplication guarantees
that 0 ∈H and for v ∈H, −v = −1 ⋅ v ∈H.

5. Let Dn be the nth dihedral group, and let

H = {i, r1, r2, . . . , rn−1}

be the set of rotations in Dn. Then H ≤Dn. It is closed, since the composition
of two rotations is another rotation, the identity i ∈H, and for any 1 ≤ j ≤ n−1,

r−1
j = rn−j ,

which is again in H.

6. Let GLn(R) be our usual group of invertible n × n matrices under matrix
multiplication, and define

SLn(R) = {A ∈ GLn(R) ∶ det(A) = 1} .

Then SLn(R) ≤ GLn(R). To see that it is closed, we recall that det(AB) =

det(A)det(B), so if A,B ∈ SLn(R),

det(AB) = det(A)det(B) = 1 ⋅ 1 = 1,

and AB ∈ SLn(R). The identity matrix surely has determinant 1, and if
A ∈ SLn(R), then

det(A−1) =
1

det(A)
=

1

1
= 1,

so A−1 ∈ SLn(R). Therefore, SLn(R) is a subgroup of GLn(R), called the
special linear group.9

8A word of caution about this statement: any subspace of Rn is necessarily a subgroup, but
there are plenty of subgroups that are not vector subspaces. For example, the rational vector space
Qn is an additive subgroup of Rn, but it is not a real subspace. It is a Q-subspace, however, which
goes to show that the field of scalars is critical when talking about subspaces of vector spaces. Even
worse, the set

Zn = {(a1, a2, . . . , an) ∶ ai ∈ Z}
is a subgroup of Rn, called a lattice, but it is not a vector space of any kind. (If you’re feeling
extra brave/curious, it is an example of a more general object, called a module.)

9You might wonder what makes the special linear group “special.” If we view the matrices in
GLn(R) as invertible linear transformations from Rn to itself, then the elements of SLn(R) are
precisely the transformations that preserve volume and orientation.
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7. Here’s our last example, and a more interesting one at that. Exercise 2.3 leads
you to the observation that there are two distinct groups of order 4, and both
are abelian. One of them is of course Z4, and the other is a new example—it
is called the Klein 4-group and denoted by V4.10 If we write V4 = {e, a, b, c},
then the elements satisfy the relations

a2 = b2 = c2 = e

and

ab = c, bc = a, ca = b.

Note that V4 is abelian by Exercise 2.311, and that exercise also shows that Z4

and V4 really are different groups, since they have completely different Cayley
tables. We will now observe this in a different way, by checking that they
have different subgroup structures. First, we claim that the only nontrivial
subgroup of Z4 is H = {0,2}. It’s easy to check that this is a subgroup, but
why is it the only one? We will prove a result to this effect quite soon, or we
could observe that the other possible proper subgroups are

{0,1},{0,3},{0,1,2},{0,1,3},{0,2,3},

and it is easy to check that none of these are closed under addition. On the
other hand, V4 has three subgroups (in addition to {e} and V4 itself):

{e, a},{e, b},{e, c}.

We therefore know all the subgroups of these two groups, and we can represent
this pictorially with something called a subgroup lattice diagram:

{0}

{0,2}

Z4

{e}

{e, b}

V4

{e, a} {e, c}

10The notation V4 comes from Felix Klein’s mother tongue, German. The German word for four
is vier, so his group is known as Viergruppe.

11You could also check that if G is a group with the property that x2 = e for all x ∈ G, then G
must be abelian.
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As we have already insinuated, we will sometimes be able to tell when two
groups are different by studying these sorts of lattice diagrams. For example,
Z4 has only one subgroup of order 2, while V4 has three such subgroups. This
is one indication that these are indeed different groups. (If you go on to study
the field known as Galois theory at all, you will see that subgroup diagrams
are quite important in that context.)

2.4.1 Subgroup Criteria

Aside from directly verifying the appropriate axioms, there are a couple of other
criteria one can use to show that a subset of a group is actually a subgroup. When
dealing with specific examples, it is often easiest to simply verify the axioms. How-
ever, when proving things about subgroups it can be useful to use one of the follow-
ing characterizations. The first one shows that we can collapse the usual subgroup
axioms into a single condition.

Theorem 2.4.4. Let G be a group. A nonempty subset H ⊆ G is a subgroup if
and only if whenever a, b ∈H, ab−1 ∈H.

Proof. Suppose that H ≤ G, and let a, b ∈ H. Then b−1 ∈ H, so ab−1 ∈ H since H is
closed.

Conversely, suppose that ab−1 ∈ H for all a, b ∈ H. Then for any a ∈ H, we can
take a = b and conclude that

e = aa−1 ∈H,

so H contains the identity. Since e ∈H, for any a ∈H we have

a−1 = ea−1 ∈H,

so H is closed under taking inverses. Finally, we claim that H is closed under the
group operation. If a, b ∈H, then b−1 ∈H, so b−1a−1 ∈H, and therefore

ab = ((ab)−1)
−1

= (b−1a−1)−1 ∈H.

Thus H is closed, hence a subgroup of G.

The next criterion is quite interesting. It obviously reduces the number of things
that one needs to check, but it only works for a finite subset of a group G.

Theorem 2.4.5. Let G be a group and H a nonempty finite subset of G. Then
H is a subgroup if and only if H is closed under the operation on G.
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Proof. If H is a subgroup, then it is obviously closed by hypothesis.
On the other hand, we are assuming that H is closed, so we need to verify that

e ∈H and that for every a ∈H, a−1 ∈H as well. Since {e} ≤ G, we may assume that
H is nontrivial, i.e. that H contains an element a distinct from the identity. Since
H is closed, the elements

a, a2, a3, . . .

are all in H, and since H is finite, this list cannot go on forever. That is, we must
eventually have duplicates on this list, so

ai = aj

for some 1 ≤ i < j ≤ ∣H ∣. Since i < j, j − i ≥ 0 and we have

ai = aj = aj−iai,

and using cancellation, we get
aj−i = e.

Therefore, e ∈H. Now observe that j − i − 1 ≥ 0, so aj−i−1 ∈H, and

aaj−i−1 = aj−i = e,

so a−1 = aj−i−1 ∈H. Therefore, H is a subgroup of G.

This theorem has an easy corollary, which is useful when the group is finite.

Corollary 2.4.6. If G is a finite group, a nonempty subset H ⊆ G is a subgroup
of G if and only if it is closed under the operation on G.

2.4.2 Cyclic Subgroups

Some of the examples that we have mentioned are actually cases of very special
kinds of subgroups, called cyclic subgroups. Suppose G is a group, and let a ∈ G.
Earlier, we defined shorthand notation for the set of all powers of a:

⟨a⟩ = {aj ∶ j ∈ Z} .

In fact, the results of Proposition 2.3.9 show that ⟨a⟩ is a subgroup of G:

• Closure: aiaj = ai+j ∈ ⟨a⟩ for all i, j ∈ Z.

• Identity: e = a0 ∈ ⟨a⟩.

• Inverses: Since aja−j = aj−j = a0 = e, we have (aj)−1 = a−j ∈ ⟨a⟩ for all j ∈ Z.

In other words, every element of a group G “generates” a whole subgroup of G. We
attach a special name to such subgroups.
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Definition 2.4.7. Let G be a group and a ∈ G. The subgroup ⟨a⟩ is called the
cyclic subgroup generated by a.

When we say that a “generates” ⟨a⟩, we mean that that ⟨a⟩ is created entirely
out of the element a. In a certain sense, ⟨a⟩ is the smallest possible subgroup of G
which contains a. Let’s try to make this more precise. If H ≤ G and a ∈H, then H
must contain the elements

a, a2, a3, . . . ,

since H is closed. It also must contain e and a−1, hence all of the elements

. . . , a−2, a−1, e, a, a2, . . . ,

i.e. all powers of a. That is, ⟨a⟩ ⊆H, and we have proven the following fact:

Theorem 2.4.8. Let G be a group and let a ∈ G. Then ⟨a⟩ is the smallest
subgroup of G containing a, in the sense that if H ≤ G and a ∈H, then ⟨a⟩ ⊆H.

Of course we’ve already encountered several examples of cyclic subgroups in our
studies thus far.

Example 2.4.9. 1. Our first example of a subgroup, 2Z ≤ Z, is a cyclic sub-
group, namely ⟨2⟩. Similarly, nZ is cyclic for any n ∈ Z.

2. The subgroup consisting of all the rotations in Dn,

H = {i, r1, r2, . . . , rn−1} ≤Dn,

is cyclic since H = ⟨r1⟩.

3. All the proper subgroups of Z4 and V4 that we listed are cyclic. In addition,
Z4 is a cyclic subgroup of itself, but V4 is not.

4. The trivial subgroup {e} is always a cyclic subgroup, namely ⟨e⟩.

Cyclic subgroups are useful in part because they allow us to gather information
about an element of G by studying the subgroup that it generates. Properties of the
subgroup are reflected in those of the element, and vice versa. One example is the
relationship between the order of an element and the order of the associated cyclic
subgroup:

Theorem 2.4.10. Let G be a group. For each a ∈ G, we have ∣⟨a⟩∣ = ∣a∣.
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Proof. Suppose first that a has infinite order. Then by Proposition 2.3.18, the
elements of ⟨a⟩ are all distinct. It follows that ∣⟨a⟩∣ =∞.

Now suppose a has finite order, say n = ∣a∣. Recall that ai = aj if and only if
i ≡ j mod n, so the elements of ⟨a⟩ are

e, a, a2, a3, . . . , an−1,

of which there are n.

2.5 Cyclic Groups

We saw in the last section that every element of a group G generates a cyclic
subgroup of G. Is it possible that G could be a cyclic subgroup of itself? That
is, can a single element a “generate” the whole group G? Of course the answer is
yes—we already remarked that Z4 is a cyclic subgroup of itself, and the same is
true of any cyclic subgroup (viewed as a group in its own right). There are many
examples of this special family of groups.

Definition 2.5.1. A group G is called cyclic if G = ⟨a⟩ for some a ∈ G. The
element a is called a generator for G.

Cyclic groups are extremely well-understood. We’ll see that they have very nice
properties, and we can completely classify them almost immediately. First, let’s do
some examples, many of which we have already seen.

Example 2.5.2. 1. One of our first examples of a group is actually a cyclic one:
Z forms a cyclic group under addition. What is a generator for Z? Both 1
and −1 generate it, since every integer n ∈ Z can be written as a “power” of 1
(or −1):

n = n ⋅ 1 = 1 + 1 +⋯ + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

.

Thus,
Z = ⟨1⟩ = ⟨−1⟩.

These are actually the only two generators.

2. How about a finite cyclic group? For any n, Zn is cyclic, and 1 is a generator
in much the same way that 1 generates Z. There are actually plenty of other
generators, and we can characterize them by using our knowledge of greatest
common divisors. We’ll postpone this until we’ve made a couple of statements
regarding cyclic groups.

3. The Klein 4-group is not cyclic, since every non-identity element has order 2.
If it were cyclic, it would contain an element of order 4.
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4. The dihedral group D3 is not cyclic. The rotations all have order 3, so

⟨r1⟩ = ⟨r2⟩ = {i, r1, r2}.

On the other hand, all of the reflections have order 2, so

⟨m1⟩ = {i,m1}, ⟨m2⟩ = {i,m2}, ⟨m3⟩ = {i,m3}.

5. The group ⟨Q,+⟩ is not cyclic. Suppose to the contrary that it is cyclic, and
let p

q be a generator. Let r
s ∈ Q, and assume it is written in lowest terms (i.e.,

gcd(r, s) = 1) and that gcd(q, s) = 1. Since p
q generates Q, there exists n ∈ Z

such that

n ⋅
p

q
=
r

s
,

or nps = qr. In particular, s divides qr. However, this is impossible, since we
have assumed s is relatively prime to both q and r.

Now let’s start making some fundamental observations regarding cyclic groups.
First, if G = ⟨a⟩ is cyclic, how big is it? We already saw the answer in Theorem
2.4.10, which showed that our overloading of the word “order” was appropriate after
all.

Theorem 2.5.3. If G = ⟨a⟩ is cyclic, then ∣G∣ = ∣a∣.

If we pair this result with Theorem 2.3.19, we can characterize the generators of
any finite cyclic group.

Proposition 2.5.4. The generators of a finite cyclic group G = ⟨a⟩ of order n
are precisely the elements ar for which gcd(r, n) = 1.

Proof. By Theorem 2.3.19,

∣ar ∣ =
n

gcd(r, n)
.

Note that ar generates G if and only if ∣ar ∣ = n. If ar has order n, then ∣⟨ar⟩∣ = n and
⟨ar⟩ ⊆ ⟨a⟩. Since both sets have the same (finite) number of elements, they must be
the same. On the other hand, if ⟨ar⟩ = ⟨a⟩, then

∣ar ∣ = ∣⟨ar⟩∣ = ∣⟨a⟩∣ = n.

Now note that ∣ar ∣ = n precisely when gcd(r, n) = 1.
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Remark 2.5.5. As a special case, this proposition allows us to characterize the
generators of Zn. Recall that Zn = ⟨1⟩. Remember that we have to be careful
here—when we write something like am in an arbitrary group, we mean “multiply
a by itself m times,” where “multiply” should be interpreted as whatever the group
operation happens to be. In particular, the operation in Zn is addition, so am really
means

a + a +⋯ + a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m times

=m ⋅ a.

Therefore, the generators of Zn are precisely the elements of the form r ⋅ 1, where
gcd(r, n) = 1. In other words, an element a ∈ Zn is a generator for the cyclic group
Zn if and only if gcd(a,n) = 1.

On a related note, let G = ⟨a⟩ be a finite cyclic group with n = ∣G∣ = ∣a∣. If we
take any element b ∈ G and compute bn, what do we get? Well, we know that b = ai

for some i ∈ Z, so
bn = (ai)n = ain = (an)i = (a∣a∣)i = ei = e.

Therefore:

Theorem 2.5.6. Let G be a finite cyclic group. Then for any element b ∈ G, we
have b∣G∣ = e.

If we combine this result with Proposition 2.3.16, then what can we say about
∣b∣ in relation to ∣G∣? We must have that ∣b∣ divides ∣G∣.

Proposition 2.5.7. Let G be a finite cyclic group. For any b ∈ G, ∣b∣ divides ∣G∣.

These last two results are not as serendipitous as they may seem at first glance.
These phenomena for cyclic groups actually hold for any finite group. Once we have
established Lagrange’s theorem in the next section, we’ll see why this is true.

Finally, the astute reader will notice a key similarity between all of the examples
of cyclic groups that we’ve listed above: they are all abelian. It is not hard to see
that this is always the case.

Theorem 2.5.8. Every cyclic group is abelian.

Proof. Let G be a cyclic group and let a be a generator for G, i.e. G = ⟨a⟩. Then
given two elements x, y ∈ G, we must have x = ai and y = aj for some i, j ∈ Z. Then

xy = aiaj = ai+j = aj+i = ajai = yx,

and it follows that G is abelian.
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The converse to Theorem 2.5.8 is far from true. In particular, the Klein 4-group
is an abelian group of order 4, but we have already observed that it is not cyclic. In
fact, V4 is the smallest example of a non-cyclic group (abelian or not).

2.5.1 Subgroups of Cylic Groups

It is quite easy to analyze the structure of cyclic groups in great detail. As a start,
we can completely describe the subgroups of any cyclic group.

Theorem 2.5.9. Any subgroup of a cyclic group is cyclic.

Proof. Let G = ⟨a⟩ be a cyclic group and let H be a subgroup of G. We may assume
that H ≠ {e}, since {e} is already known to be cyclic. Then H contains an element
other than e, which must have the form am for some m ∈ Z, since G is cyclic. Assume
that m is the smallest positive integer for which am ∈ H. We claim that H = ⟨am⟩.
To do this, we need to show that if an ∈H, then an is a power of am.

Suppose that an ∈H, and use the Division Algorithm to write n = qm+ r, where
0 ≤ r <m. Then

an = aqm+r = aqmar = (am)qar.

Since H is a subgroup, (am)−q ∈H, hence (am)−qan ∈H, and it follows that

ar = (am)−qan

is in H. But r <m and we have assumed that m is the smallest positive integer such
that am ∈H, so we must have r = 0. In other words, an = (am)q, so an ∈ ⟨am⟩. Since
an was an arbitrary element of H, we have shown that H ⊆ ⟨am⟩. Since am ∈H, we
also have ⟨am⟩ ⊆H, so H = ⟨am⟩, and H is cyclic.

This theorem has a particularly nice corollary, which tells us a lot about the
structure of Z as an additive group.

Corollary 2.5.10. The only subgroups of Z are the cyclic subgroups nZ, where
n ∈ Z.

Proof. The cyclic subgroups of Z are simply nZ = ⟨n⟩ for any n ∈ Z. By the theorem,
the only subgroups of Z are the cyclic ones, so we are done.

The next corollary is quite interesting. Recall that if G = ⟨a⟩ is a finite cyclic
group of order n and aj ∈ G, we have a formula for the order of aj :

∣aj ∣ =
n

gcd(j, n)
.
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This tells us something in particular, which we actually proved earlier: if aj ∈ ⟨a⟩,
then ∣aj ∣ divides ∣⟨a⟩∣. In particular, the order of the cyclic subgroup generated by
aj must divide the order of ⟨a⟩. This holds more generally—in fact, it is true for
any finite group, as we will see when we prove Lagrange’s theorem. However, a
partial converse holds for cyclic groups (but not all groups): if m divides the order
of a group G, then G has a subgroup of order m. Moreover, if a cyclic group has a
subgroup of a given order, then that subgroup is unique.12

Corollary 2.5.11. Let G = ⟨a⟩ be a cyclic group of order n. If m is a positive
divisor of m, then G has exactly one subgroup of order m.

Proof. First we need to show that G even has a subgroup of order m whenever m ∣ n.
Well, suppose that m ∣ n, and put b = an/m. Then by Theorem 2.3.19,

∣b∣ =
n

gcd(n/m,n)
=

n

n/m
=m.

Therefore, ⟨b⟩ has m elements, so G has a subgroup of order m.
Now we need to show that G only possesses one subgroup of order m. Suppose

that aj is another element of order m, so that ⟨aj⟩ has m elements. Then

∣aj ∣ =
n

gcd(j, n)
=m =

n

gcd(n/m,n)
= ∣b∣.

Therefore, gcd(j, n) = gcd(n/m,n) = n/m. In particular, n/m divides j, so we can
write

j = r(n/m)

for some r ∈ Z. Then
aj = arn/m = (an/m)r = br,

so aj ∈ ⟨b⟩. This forces ⟨aj⟩ ⊆ ⟨b⟩, and since both sets have the same (finite) number
of elements, ⟨aj⟩ = ⟨b⟩.

Example 2.5.12. Let’s use this corollary to write down all of the subgroups of Z12.
We know that there will be one of each order that divides 12, and these divisors are
1, 2, 3, 4, 6, and 12. The order 1 subgroup is just {0}, and for order 12 we have the
whole group Z12. For the others, we need to find an element of that order. We can
see that 6 has order 2, so {0,6} is our order 2 subgroup. For order 3, we can use 4
as the generator, so {0,4,8} is the subgroup. For order 4, we have 3 ∈ Z12, and the
subgroup is {0,3,6,9}. Finally, 2 has order 6, and the subgroup is {0,2,4,6,8,10}.
Therefore, the subgroup lattice of Z12 looks like:

12These latter two statements fail miserably for arbitrary finite groups. If m divides the order of
the group, there need not be a subgroup of order m. (It is true for abelian groups, however.) Also,
if a subgroup of order m exists, it need not be unique. (Look at the Klein 4-group, for example.)
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⟨0⟩

⟨4⟩ ⟨6⟩

⟨2⟩ ⟨3⟩

Z12

2.5.2 Classification of Cyclic Groups

As one final word on cyclic groups, we should mention that these groups are very
easy to classify. They have a very rigid structure, as evidenced by some of the results
we have proven regarding their elements and subgroups. Indeed, we can go even
further—there are really only two flavors of cyclic group: finite (where we really
have one cyclic group for each positive integer) and infinite.

Let’s think about what happens in the infinite case first. If we have an infinite
cyclic group G = ⟨a⟩, then a has infinite order, and the group elements are simply

G = {aj ∶ j ∈ Z} .

How does the group operation work? We have

ajak = aj+k,

so we can multiply two elements by simply adding the exponents as integers. We
haven’t formally introduced the concept of isomorphism yet, but the map aj ↦ j
will allow us to set up an isomorphism between the infinite cyclic group G and Z.
That is, there is only one infinite cyclic group up to isomorphism, namely Z.

Things are almost as easy in the finite case as well. Suppose that G = ⟨a⟩ is a
finite cyclic group of order n. Then to add two elements, we have

ajak = aj+k.

However, we have to remember that in doing this, j+k may have exceeded the order
of the group, and we can reduce it. That is, we can write

j + k = nq + r,
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so

ajak = aj+k = anq+r = anqar = ear = ar.

Therefore, multiplication corresponds to addition of the exponents modulo n. We’ll
see that this allows us to identify G with the elementary cyclic group Zn. In other
words, there is only one finite cyclic group of each order n ∈ Z+.

2.6 Lagrange’s Theorem

In our investigation of cyclic groups, we noticed one thing—that if G = ⟨a⟩ is finite,
the order of any element divides the order of the group. This implies something
else: if H ≤ ⟨a⟩, then we know that H = ⟨am⟩ for some m ∈ Z, and

∣H ∣ = ∣⟨am⟩∣ = ∣am∣ divides ∣a∣ = ∣G∣.

Put more plainly, the order of any subgroup divides the order of the group. This
is no accident—it holds much more generally. In fact, it is true not just for cyclic
groups, but for any finite group and any subgroup.

Theorem 2.6.1 (Lagrange). Let G be a finite group and H be a subgroup of G.
Then ∣H ∣ divides ∣G∣.

We’re not going to prove Lagrange’s theorem yet. The proof isn’t hard, but we
don’t quite have the right tools for writing it down yet. We need to develop some
new language in order to properly prove it. The concepts that we’ll talk about will
be really important for the rest of the course, but the first thing they will buy us is
a proof of Lagrange’s theorem.

The idea of the proof will be the following: given a finite group G and H ≤ G,
we want to “carve up” G into a collection of subsets, all of which are determined by
the subgroup H. We will first need to figure out what these subsets should be.

H

The proper way to say this is that we want to partition G. In order to do this, we
need to talk about equivalence relations.



62 Group Theory

Remark 2.6.2. Lagrange’s theorem is a statement about finite groups, but we are
going to look at arbitrary groups for this part. A lot of the techniques (specifically
the idea of cosets) will be important in a more general setting.

Before we formally introduce equivalence relations, let’s do an example for mo-
tivation. It should be eerily familiar, or it will be once we’re done with it.

Example 2.6.3. Let’s look at our favorite group—Z. We just saw that the only
subgroups of Z are those of the form nZ, for n ∈ Z+. Let’s take 3Z, for example.
What if we start “translating” this subgroup by integers? That is, we add a fixed
integer to each element of 3Z:

3Z + 0 = {. . . ,−6,−3,0,3,6, . . .}

3Z + 1 = {. . . ,−5,−2,1,4,7, . . .}

3Z + 2 = {. . . ,−4,−1,2,5,8, . . .}

This is depicted on the color-coded number line below:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

What if we keep translating? We just get the same sets all over again:

3Z + 3 = 3Z + 0

3Z + 4 = 3Z + 1

and so on. Also, do these “translates” of 3Z have any overlap? No—if two of the
sets are distinct, then they are actually completely disjoint. Finally, they fill up all
of Z, in the sense that their union is Z. In other words, every integer belongs to one
of the sets on this list.

What do you notice about the elements of each of these sets? They are all
congruent mod 3:

3Z + 0 = {a ∈ Z ∶ a ≡ 0 mod 3}

3Z + 1 = {a ∈ Z ∶ a ≡ 1 mod 3}

3Z + 2 = {a ∈ Z ∶ a ≡ 2 mod 3}

In fact, we could say that these sets are determined by the relationship of “congru-
ence mod 3”—two integers a and b fall into the same “translate” if and only if they
are congruent mod 3, i.e., if and only if 3 divides a − b.

Before moving on, let’s recap the key observations that we’ve made in this ex-
ample. By shifting around the subgroup 3Z, we obtain translates of the subgroup
such that:
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1. Two integers a, b ∈ Z belong to the same translate if and only if a ≡ b mod 3.

2. Distinct translates are disjoint.

3. Their union is all of Z.

These three conditions are the ones we would like to be able to encode in more
general groups. Note that the latter two conditions say that we have partitioned
Z, which you may know corresponds to defining an equivalence relation on Z.

2.6.1 Equivalence Relations

In mathematics, when one wants to partition a set, the natural way to do it is with
something called an equivalence relation. These objects are important throughout
mathematics, and not just in the field of algebra. This means that we are about to
step away from algebra for a moment and talk about some even more abstract ideas
(if you can believe such a thing). The primary examples will be from algebra, of
course, but these sorts of concepts are ubiquitous throughout mathematics. They
are used in algebra, topology, analysis, combinatorics, and other fields. Therefore,
this will be a good place for you to encounter them.

Even though equivalence relations are fairly abstract, we’ll use congruence mod
n as a guiding example. In that case, we have some very nice things going on. There
are three things in particular that we can single out:

1. If a ∈ Z, then a ≡ a mod n.

2. If a, b ∈ Z and a ≡ b mod n, then b ≡ a mod n.

3. If a, b, c ∈ Z with a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

These are the properties that we will eventually want equivalence relations to pos-
sess. Before we can properly define them, we need to make the word “relation”
precise.

Definition 2.6.4. Let S be a set. A relation on S is a set R ⊆ S × S.

Remark 2.6.5. The definition above is the formal, precise way of describing a
relation. It is not a particularly helpful way in which to think about relations. You
should simply think of a relation as a way to “pair off” elements of S. To this end,
we will usually write x ∼ y to mean (x, y) ∈ R, and we will say that “x is related to
y.” We will usually refer to ∼ as the relation, and not worry too much about the
proper definition.

We will not concern ourselves with general relations. Our main interests will lie
in relations that behave like “congruence mod n.”
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Definition 2.6.6. Let S be a set. An equivalence relation on S is a relation
∼ on S satisfying the following three properties:

1. Reflexivity: a ∼ a for all a ∈ S.

2. Symmetry: If a, b ∈ S and a ∼ b, then b ∼ a.

3. Transitivity: If a, b, c ∈ S with a ∼ b and b ∼ c, then a ∼ c.

We will usually think of an equivalence relation as a way of pairing off elements
of S by equivalence. If a ∼ b, we will usually say that “a is equivalent to b.”

The whole point of introducing equivalence relations is to obtain a method of
partitioning a group. Therefore, we will of course be interested in subsets of S that
are somehow “determined” by an equivalence relation.

Definition 2.6.7. Given a ∈ S, define

[a] = {b ∈ S ∶ b ∼ a} .

We call [a] the equivalence class of a, and a is called a representative13 of
the equivalence class.

Example 2.6.8. Here are some examples of equivalence relations.

1. This is one of the most important examples, and it’s the one we’ve already
seen. Fix n ∈ Z, and define ∼ on Z by a ∼ b if and only if a ≡ b mod n. We have
already checked that this is an equivalence relation. What are the equivalence
classes? For a ∈ Z, we have

[a] = {b ∈ Z ∶ b ≡ a mod n} = nZ + a.

2. Define ∼ on R by a ∼ b if a = b. Then ∼ is an equivalence relation:

• Reflexive: For any a ∈ R, a = a, so a ∼ a.

• Symmetric: If a, b ∈ R and a = b, then b = a, so a ∼ b implies that b ∼ a.

• Transitive: If a, b, c ∈ R with a = b and b = c, then a = c.

What are the equivalence classes? Each class consists of a single element:

[a] = {a}.

13Note that an equivalence class may have many representatives. In fact, a representative is just a
chosen element of the equivalence class, so any element of the class can be taken as a representative.
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3. Define ∼ on GLn(R) by A ∼ B if det(A) = det(B). It’s easy to see that this is
an equivalence relation, and that

[A] = {B ∈ GLn(R) ∶ det(B) = det(A)} .

4. This example is really the prototypical equivalence relation, in the sense that
any equivalence relation can be viewed in this way. Let S be any set, and let
{Si} be a partition of S. That is, Si ⊆ S for all i, S = ⋃Si, and the Si are
pairwise disjoint:

Si ∩ Sj = ∅

if i ≠ j. We call the Si the cells of the partition. We can define an equivalence
relation ∼ on S by a ∼ b if and only if a and b belong to the same cell Si.
It is easy to check that ∼ is reflexive, symmetric, and transitive, hence an
equivalence relation.

Exercise 2.7. Verify that the relation ∼ defined in Example 2.6.8(4) is an equiv-
alence relation.

Aside 2.6.9. While we’re on the topic of specific examples, let’s make a couple
of comments regarding Z with the relation of congruence mod n. Note that the
equivalence classes are simply congruence classes mod n: every element of the class
[a] is congruent to a mod n. Thus all elements of [a] = nZ + a yield the same
element of Zn when reduced mod n. Therefore, the equivalence classes nZ + a can
be identified with elements of Zn. We will see soon that this is really the correct
way to view Zn. The elements of Zn are actually the equivalence classes mod n,
and we define modular addition and multiplication by

[a] + [b] = [a + b]

and
[a][b] = [ab].

Of course, we would need to know that these operations are well-defined, meaning
they don’t depend on the choice of representatives for the equivalence classes. We’ll
take care of that when we revisit Zn later on. We will discuss these ideas in more
detail when we encounter quotient groups, of which Zn will be the foremost example.

Now let’s return to general equivalence relations. We said that we were intro-
ducing them to allow us to partition sets, so we should check that they actually do
this. We’ve already seen that a partition of a set S actually imposes an equivalence
relation on S, so we are really checking that equivalence relations and partitions go
hand in hand.
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Theorem 2.6.10. Let ∼ be an equivalence relation on a set S. The equivalence
classes of ∼ partition S, in the sense that:

1. Given a, b ∈ S, either [a] ∩ [b] = ∅, or [a] = [b].

2. S is the union of all the equivalence classes of ∼. That is, every element of
S belongs to some equivalence class (and only one, by condition 1).

Proof. Let a, b ∈ S. Then either [a]∩ [b] = ∅, or [a]∩ [b] is nonempty. In the second
case, there is at least one element c ∈ [a] ∩ [b]. Then c ∈ [a], so a ∼ c, and c ∈ [b], so
c ∼ b. By transitivity, a ∼ b. Thus a ∈ [b], and if x ∈ [a], then x ∼ b by transitivity,
so x ∈ [b] as well. Thus [a] ⊆ [b]. By symmetry, we also have b ∈ [a], and a similar
transitivity argument shows that [b] ⊆ [a]. Thus [a] = [b].

To see that S is the union of the equivalence classes, we just need to notice that
every a ∈ S belongs to one of the equivalence classes. Specifically, a ∈ [a] since ∼ is
reflexive. Thus S is contained in the union of the equivalence classes, so in fact S
equals the union of the equivalence classes. Therefore, the equivalence classes of ∼
partition S.

2.6.2 Cosets

Let’s step back to reality now. (Or, as close to reality as abstract algebra can be.)
We are especially interested in the case where the set in question is actually a group,
and the equivalence relation has something to do with a given subgroup. That is,
we want to partition a group G into subsets, each of which is determined by some
fixed subgroup H. Once we have done this, we will able to write down a proof of
Lagrange’s theorem in a nice way. Our present goal then is to find an equivalence
relation on a group G which is somehow related to a subgroup H. There are two
very similar ones that we can define, and either one will work.

Let’s return for a moment to our key example. The relation ∼ that we defined
on Z by

a ∼ b ⇐⇒ a ≡ b mod n

is really equivalent to specifying that a ∼ b if and only if n ∣ (a − b). This in turn is
equivalent to saying that a − b ∈ nZ. Let’s try to generalize this idea to subgroups
in general.

Example 2.6.11. Let G be a group and H ≤ G. Define a relation ∼H on G by:
a ∼H b if and only if ab−1 ∈H. Is this an equivalence relation?

• Reflexive: If a ∈ G, then aa−1 = e ∈H, so a ∼H a.

• Symmetric: Suppose that a, b ∈ G and a ∼H b, so ab−1 ∈ H. To show that
b ∼H a, we need to know that ba−1 ∈H. But

ba−1 = (ab−1)−1 ∈H,
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since H is a subgroup of G. Thus b ∼H a, and the relation is symmetric.

• Transitive: Suppose that a ∼H b and b ∼H c. Is a ∼H c? We need to know
that ac−1 ∈H. Well,

ac−1 = a(b−1b)c−1 = (ab−1)(bc−1),

and ab−1 ∈H (since a ∼H b) and bc−1 ∈H (since b ∼H c), so ac−1 ∈H. It follows
that a ∼H c.

Here’s the next logical question: what are the equivalence classes of ∼H? Well,

[a]H = {b ∈ G ∶ b ∼H a} = {b ∈ G ∶ ba−1 ∈H} .

If a ∼H b, then ab−1 ∈H, i.e., there exists h ∈H such that

ba−1 = h,

or b = ha. If we define
Ha = {ha ∶ h ∈H} ,

then we have just shown that [a]H ⊆Ha. On the other hand, given b = ha ∈Ha,

ba−1 = (ha)a−1 = h(aa−1) = h ∈H,

so b ∼H a. Thus Ha ⊆ [a]H . Therefore, we have shown that the equivalence classes
are exactly

[a]H =Ha,

and we’ll generally use Ha instead of the [⋅]H notation when working in the group
case. These equivalence classes actually have a special name, which we will use
exclusively from now on.

Definition 2.6.12. Let G be a group and H ≤ G. Sets of the form Ha for a ∈ G
are called (right) cosets of H in G.

We have already established several facts regarding cosets. Let’s summarize
what we proved above.

Theorem 2.6.13. Let G be a group, H a subgroup of G, and let ∼H be the
relation on G given by

a ∼H b ⇐⇒ ab−1 ∈H.

Then ∼H is an equivalence relation, and the equivalence classes are precisely the
right cosets of H:

[a]H =Ha.
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Furthermore, if a, b ∈ G, then either Ha ∩Hb = ∅ or Ha =Hb, and

Ha =Hb ⇐⇒ ab−1 ∈H.

Finally, G is the union of all the right cosets of H, so the cosets partition G.

Two of the examples of equivalence relations that we mentioned last time are
actually the relation ∼H in disguise. In fact, this relation is meant to be a general-
ization of congruence mod n.

Example 2.6.14. 1. Consider the group Z and the subgroup H = nZ. Given
a, b ∈ Z, we have seen that a ∼H b if and only if a − b ∈ H, which is just the
additive way of writing ab−1 ∈ H. Thus ∼H is really just congruence mod n,
and the right cosets of H are

[a]H = nZ + a = {nc + a ∶ c ∈ Z},

and there are n of them, namely nZ + 0, nZ + 1, . . . , nZ + (n − 1).

2. Consider H = SLn(R) ≤ GLn(R). If A,B ∈ GLn(R), A ∼H B precisely when
AB−1 ∈ SLn(R), or

det(AB−1) = 1.

But

det(AB−1) = det(A)det(B−1) =
det(A)

det(B)
,

so A ∼H B if and only if det(A) = det(B).

3. Recall that any vector space is an abelian group under addition, and any vector
subspace is a subgroup. In particular, let G = R2 and let H be a 1-dimensional
subspace, i.e., a line through the origin. If v ∈ R2 is any vector, the coset H+v
is just a “parallel translate” of the line H.

H

v

H + v



2.6 Lagrange’s Theorem 69

4. Since Lagrange’s theorem deals with finite groups, it would probably be helpful
to look at one of those. Let’s look at the dihedral group D3, and let

H = {i, r1, r2} ,

the rotation subgroup. What are the cosets? There are only 2: H itself, and

Hm1 = {m1,m2,m3}.

(Note that we could also take m2 or m3 as a representative of the coset.)

Now that we’ve built up the appropriate machinery, let’s go ahead and use it to
formally state and prove Lagrange’s theorem.

Theorem 2.6.15 (Lagrange). Let G be a finite group. For any subgroup H ≤ G,
∣H ∣ divides ∣G∣.

Proof. Let Ha1, . . . ,Hak denote the distinct cosets of H in G. That is, a1, . . . , ak
all represent different cosets of H, and these are all the cosets. We know that the
cosets of H partition G, so

∣G∣ = #(Ha1) +⋯ +#(Hak). (2.1)

(Here # means the cardinality of the set, or simply the number of elements in that
set.) Therefore, it will be enough to show that each coset has the same number of
elements as H.

We need to exhibit a bijection between H and Hai for each i. Fix i and define
a function f ∶H →Hai by

f(h) = hai.

If we can prove that f is a bijection, then we will have

∣H ∣ = #(Hai)

for all i. This is fairly straightforward: if h1, h2 ∈H with f(h1) = f(h2), then

h1ai = h2ai,

which implies that h1 = h2 by right cancellation. Thus f is one-to-one. To see that
it is onto, let hai be an arbitrary element of Hai; then f(h) = hai.

Thus all the cosets have the same number of elements, namely ∣H ∣, and (2.1)
really says that

∣G∣ = ∣H ∣ +⋯ + ∣H ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

= k∣H ∣.

Therefore, ∣H ∣ does indeed divide ∣G∣.
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The number that we called k in the proof is actually quite useful, and we will
therefore give it a special name.

Definition 2.6.16. The number of distinct (right) cosets of H in G is called the
index of H in G, denoted by

[G ∶H].

The set of all right cosets of H in G is denoted by G/H, so

#(G/H) = [G ∶H].

Note that we can actually rephrase Lagrange’s theorem in terms of the index: if
G is a finite group and H ≤ G, then

∣G∣ = ∣H ∣[G ∶H].

We’ll now begin to see that Lagrange’s theorem has many very useful consequences.
For one, it greatly simplifies the search for subgroups of a given finite group.

Example 2.6.17. Let’s try to find all the subgroups of D3. Since ∣D3∣ = 6, we know
that the only possible orders are the divisors of 6: 1,2,3, and 6. We can then seek
out subgroups by their order:

1 ∶ {i}

2 ∶ {i,m1},{i,m2},{i,m3}

3 ∶ {i, r1, r2}

6 ∶ D3

We can even draw a lattice diagram to illustrate the subgroup structure of D3:

{i}

{i, r1, r2}

{i,m1} {i,m2} {i,m3}

D3
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Lagrange’s theorem also has a couple of easy yet powerful corollaries. One simply
states that the order of any element divides the order of the group, which we already
know for cyclic groups. The other tells us that groups of prime order are particularly
special, and they behave in a very rigid way.

Corollary 2.6.18. Let G be a finite group with ∣G∣ = n, and let a ∈ G. Then ∣a∣
divides n = ∣G∣, and

an = e.

Proof. We have already seen that ∣a∣ = ∣⟨a⟩∣, and ⟨a⟩ is a subgroup of G, so its order
divides ∣G∣ by Lagrange’s theorem. Therefore, ∣a∣ ∣ n, and we can write n = ∣a∣m for
some m ∈ Z. Then

an = a∣a∣m = (a∣a∣)
m
= e.

Corollary 2.6.19. If G is a finite group of prime order p, then G is cyclic.

Proof. Since p is prime, p ≥ 2, and G contains at least one element a with a ≠ e. By
the previous corollary, ∣a∣ divides p, and since a ≠ e, ∣a∣ ≠ 1. Since p is prime, we
must have ∣a∣ = p, so a generates G. Thus G is cyclic.

In this proof, we showed that any nonidentity element of a group G with prime
order is actually a generator for the group. This implies the following fact regarding
subgroups of such groups.

Corollary 2.6.20. If G is a finite group of prime order p, then G has no sub-
groups other than {e} and G itself.

For those of you who have taken a class in number theory, there are some inter-
esting theorems from that field which can be rephrased in terms of group theory, and
they then follow from Lagrange’s theorem. In particular, one can consider Euler’s
theorem, Fermat’s little theorem, and Wilson’s theorem from this perspective.

Remark 2.6.21. We could have defined an alternative equivalence relation on G
by a ∼H b if and only if b−1a ∈ H. Then similar computations show that ∼H is an
equivalence relation, and that the equivalence classes are

H[a] = aH = {ah ∶ h ∈H} .

These are called left cosets. We have used right cosets to prove Lagrange’s theorem,
but many texts use left cosets instead. Everything works perfectly well either way,
but we’ll stick to right cosets for now. However, we will soon need to consider
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both left and right cosets—we will study a special type of subgroup called normal
subgroups, and these will be defined14 by the relationship between left and right
cosets.

2.7 Homomorphisms

We’ve spent some time now analyzing the internal structure of groups. This was the
beginning of our study of the relationships that various groups have to one other.
In particular, we talked about what it means for one group to sit inside another
as a subgroup. Now we’ll return to the parallel problem that we’ve mentioned
previously—that of classification.

We’ve talked quite a bit about the problem of determining when two groups are
the same or different. We’ve even seen some examples of groups that appeared to be
quite different, but they were fundamentally the same. Now we want to formalize
this, and to finally talk about isomorphisms. Therefore, let’s think about what it
would take to formally show that two groups are isomorphic.

To see that two groups are isomorphic, we could use a group table argument, as
we have done before. However, that could be difficult for large groups, or simply
impossible for infinite groups. Therefore, there has to be a better way. Well, we
would need to know first that the elements of one group correspond exactly to the
elements of the other. The proper way to do this is to exhibit a bijection between
them. This certainly isn’t enough—we also need to know that the two groups have
the same group structure. That is, the bijection in question needs to take into
account the fact that the underlying sets are groups. Therefore, we need to discuss
functions between groups that respect the corresponding binary operations. This
leads to the idea of a homomorphism.

Definition 2.7.1. Let G1 and G2 be groups. A function ϕ ∶ G1 → G2 is called a
homomorphism if

ϕ(ab) = ϕ(a)ϕ(b)

for all a, b ∈ G1.

Example 2.7.2. 1. You’ve already seen an example of a homomorphism in lin-
ear algebra. If n and m are positive integers, we’ve seen that the vector spaces
Rn and Rm are abelian groups under addition. Let T ∶ Rn → Rm be a linear
transformation. Then T is a group homomorphism, since

T (v +w) = T (v) + T (w)

for all v,w ∈ Rn.

14We will actually see that there are many ways to characterize normal subgroups, and this is
one of them.
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2. Define ϕ ∶ Z→ Zn by
ϕ(a) = a mod n = [a]n.

That is, ϕ(a) is the remainder left when a is divided by n. Then ϕ is a
homomorphism, since

ϕ(a + b) = [a + b]n = [a]n +n [b]n = ϕ(a) +n ϕ(b),

since we defined [a]n +n [b]n to be [a + b]n. This homomorphism is called
reduction mod n.

3. If G1 and G2 are any groups, there is always a homomorphism ϕ ∶ G1 → G2

given by
ϕ(a) = e

for all a ∈ G1, where e denotes the identity element of G2. This is a homomor-
phism, since

ϕ(ab) = e = e ⋅ e = ϕ(a)ϕ(b)

for all a, b ∈ G1. This map is called the trivial homomorphism.

4. Let G be a group, and consider the identity map id ∶ G → G. This is a
homomorphism, since

id(a + b) = a + b = id(a) + id(b)

for any a, b ∈ G. Thus there is always a homomorphism id ∶ G → G, appropri-
ately called the identity homomorphism.

5. Define ϕ ∶ GLn(R) → R× by ϕ(A) = det(A). This is a homomorphism: if
A,B ∈ GLn(R), then

ϕ(AB) = det(AB) = det(A)det(B) = ϕ(A)ϕ(B).

Often we’ll be interested in knowing whether a homomorphism is one-to-one or
onto, or both. There are special names for these sorts of things, and some are more
commonly used than others.

Definition 2.7.3. Let ϕ ∶ G1 → G2 be a homomorphism.

• If ϕ is one-to-one, it is called a monomorphism.

• If ϕ is onto, it is called an epimorphism.

• If ϕ is bijective, it is called an isomorphism.

• An isomorphism from a group to itself is called an automorphism.
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The first two of these are used sparingly, and we will usually say that the homo-
morphism is one-to-one (respectively, onto) rather than calling it a monomorphism
(respectively, epimorphism). However, the last two are important, particularly the
concept of an isomorphism. The main reason for this is that we can now define what
it means for two groups to be isomorphic.

Definition 2.7.4. Two groups G1 and G2 are isomorphic, written

G1 ≅ G2,

if there is an isomorphism ϕ ∶ G1 → G2.

Let’s talk about some examples. In a few of these, we will formalize some of the
“isomorphisms” that we’ve seen already.

Example 2.7.5. Consider the group R (under addition, of course), and let

R+ = {a ∈ R ∶ a > 0}.

Then it is not hard to check that R+ is a group under multiplication.15 Define a
homomorphism ϕ ∶ R→ R+ by

ϕ(a) = ea = exp(a).

This is in fact a homomorphism, since

ϕ(a + b) = ea+b = eaeb = ϕ(a)ϕ(b).

Is it one-to-one? We know from calculus that the function ex passes the horizontal
line test, so it is one-to-one. What about surjectivity? Given a positive real number
c, we could define a = log(c).16 Then

ϕ(a) = ea = elog(c) = c,

so ϕ is indeed surjective. Therefore, it is an isomorphism, and R ≅ R+. Note that
we could have also defined an isomorphism in the other direction using the natural
logarithm.

Example 2.7.6. The next example is an important one. Recall that we mentioned
that cyclic groups are really boring, in that they are all either Z or Zn in disguise.
Let’s prove this once and for all.

15In fact, it is a subgroup of the multiplicative group R× of nonzero real numbers.
16We should note here that the notation log denotes the natural logarithm. Mathematicians

usually do not consider logarithms to any other bases, so it is generally assumed that the base is e.
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• Suppose that G = ⟨a⟩ is an infinite cyclic group. Define ϕ ∶ Z→ G by

ϕ(j) = aj .

We claim that this is an isomorphism. First, it is a homomorphism, since

ϕ(i + j) = ai+j = aiaj = ϕ(i)ϕ(j).

Is it one-to-one? If ϕ(i) = ϕ(j), then

ai = ϕ(i) = ϕ(j) = aj .

Since a has infinite order, ai = aj if and only if i = j. (We proved this in
Proposition 2.3.18.) To see that it is onto, observe that if b ∈ G, then b = aj

for some j ∈ Z, and ϕ(j) = aj . Thus ϕ is an isomorphism, and G ≅ Z.

• Now suppose that G = ⟨a⟩ is a finite cyclic group of order n. Define ϕ ∶ Zn → G
by

ϕ(j) = aj .

This is again a homomorphism, since if i, j ∈ Zn, then

ϕ(i +n j) = a
[i+j]n = ai+j ,

where we have used the fact that [i + j]n ≡ i + j mod n (by definition, more
or less). It follows that

ϕ(i +n j) = a
iaj = ϕ(i)ϕ(j).

Furthermore, ϕ is one-to-one: if ϕ(i) = ϕ(j), then ai = aj in G. But we proved
in Proposition 2.3.17 that ai = aj in a finite cyclic group if and only if i ≡ j
mod n, and i, j ∈ {0,1, . . . , n − 1}, so this forces i = j. It is easy to see that ϕ
is onto, since if ai ∈ G, then ϕ(i) = ai. Therefore, ϕ is an isomorphism, and
G ≅ Zn.

Therefore, we have shown that there is only one cyclic group of each order, up
to isomorphism. In summary:

Theorem 2.7.7. Let G be a cyclic group.

1. If G is infinite, then G ≅ Z.

2. If G is finite with ∣G∣ = n, then G ≅ Zn.

Since any group of prime order is cyclic by Corollary 2.6.19, we have also shown
the following.
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Theorem 2.7.8. Let p be a prime number. If G is a group of order p, then
G ≅ Zp.

2.7.1 Basic Properties of Homomorphisms

Before going further, we should mention some simple properties that are satisfied
by homomorphisms. These will be very useful to have around, so we will get them
out of the way now.

Proposition 2.7.9. Let ϕ ∶ G1 → G2 be a homomorphism.

(a) If e and e′ denote the identity elements of G1 and G2, respectively, then

ϕ(e) = e′.

(b) For all a ∈ G1,
ϕ(a−1) = ϕ(a)−1.

(c) More generally, if a ∈ G1, then

ϕ(an) = ϕ(a)n

for all n ∈ Z.

Proof. (a) Observe that
ϕ(e) = ϕ(e2) = ϕ(e)2,

so ϕ(e) is an idempotent. But you proved in an earlier exercise that a group only
has one idempotent, namely the identity. Therefore, ϕ(e) = e′. We could also argue
as follows: for any a ∈ G1, we have

ϕ(a)ϕ(e) = ϕ(ae) = ϕ(a) = ϕ(a)e′.

Left cancellation then implies that ϕ(e) = e′.
(b) If a ∈ G1, then we have

ϕ(a)ϕ(a−1) = ϕ(aa−1) = ϕ(e) = e′

by part (a). Therefore, ϕ(a−1) = ϕ(a)−1.
(c) We handled the case n = 0 in part (a). Suppose then that n ∈ Z+. We will

proceed via mathematical induction. For the base case of n = 1, we certainly have

ϕ(a1) = ϕ(a) = ϕ(a)1.



2.7 Homomorphisms 77

Suppose then that the result holds for n − 1. Then

ϕ(an) = ϕ(aan−1) = ϕ(a)ϕ(an−1) = ϕ(a)ϕ(a)n−1 = ϕ(a)n.

by the inductive hypothesis. It then follows that if n < 0, we have

ϕ(a−n) = ϕ((a−1)n) = ϕ(a−1)n = ϕ(a)−n

so the result holds for all n ∈ Z.

This last proposition might make you wonder how the order of an element be-
haves when a homomorphism is applied. In particular, you may be curious as to
whether the order of ϕ(a) relates to the order of a somehow. Indeed it does.

Proposition 2.7.10. Let G1 and G2 be groups, and let ϕ ∶ G1 → G2 be a homo-
morphism. If a ∈ G1 has finite order, then ∣ϕ(a)∣ divides ∣a∣.

Proof. Let n = ∣a∣. Then an = e, so

ϕ(a)n = ϕ(an) = ϕ(e) = e.

Thus ϕ(a)n = e, so we must have that ∣ϕ(a)∣ divides ∣a∣.

The last result is a little more high-brow, but it will be good to have around
(and it isn’t too hard to handle).

Theorem 2.7.11. Let G1,G2, and G3 be groups, and let ϕ ∶ G1 → G2 and
ψ ∶ G2 → G3 be homomorphisms.

(a) The composition ψ ○ ϕ is a homomorphism.

(b) If ψ and ϕ are both isomorphisms, then ψ ○ ϕ is an isomorphism.

(c) If ϕ is an isomorphism, then ϕ−1 is an isomorphism.

Proof. (a) Let a, b ∈ G1. Then

ψ ○ ϕ(ab) = ψ(ϕ(ab)) = ψ(ϕ(a)ϕ(b)) = ψ(ϕ(a))ψ(ϕ(b)),

since ϕ and ψ are both homomorphisms.
(b) If ϕ and ψ are isomorphisms, then ψ ○ ϕ is a homomorphism by (a), and it

is a bijection since ϕ and ψ both are, so ψ ○ ϕ is an isomorphism.
(c) Suppose that x, y ∈ G2. Then x = ϕ(a) and y = ϕ(b) for some a, b ∈ G1, so

ϕ−1(xy) = ϕ−1(ϕ(a)ϕ(b)) = ϕ−1(ϕ(ab)) = ab = ϕ−1(x)ϕ−1(y).

Thus ϕ−1 is an isomorphism as well.
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Note that this last part implies that if ϕ is an isomorphism, then ∣ϕ(a)∣ = ∣a∣ for
all a ∈ G1.

Proposition 2.7.12. If ϕ ∶ G1 → G2 is an isomorphism, then ∣ϕ(a)∣ = ∣a∣ for all
a ∈ G1.

Proof. Suppose first that a ∈ G1 has finite order. Then we showed in Proposition
2.7.10 that ∣ϕ(a)∣ divides ∣a∣. But ϕ−1 is also a homomorphism, so ∣a∣ = ∣ϕ−1(ϕ(a))∣
must divide ∣ϕ(a)∣. Since both integers divide each other, they must be the same,
and ∣a∣ = ∣ϕ(a)∣.

Now note that Proposition 2.7.10 also implies that a has finite order if and only
if ϕ(a) does. It follows that a has infinite order if and only if ϕ(a) does, so we are
done.

2.8 The Symmetric Group Redux

We’re now going to take a short detour into the symmetric group, which we in-
troduced quite some time ago. We’ve put off the details in order to develop some
more general tools for working with groups. Never fear; we’ll be going back into the
abstraction very soon, but right now we’ll try to have a little fun with Sn.

There is a good reason for shifting gears so abruptly—Sn is really the most
fundamental finite nonabelian group, so it would be very useful to understand its
structure. We will see via Cayley’s theorem that every group is really a permutation
group, in a certain sense. In fact, groups were originally thought of only as permu-
tation groups. It was Cayley who first gave the abstract definition of a group and
then proved his eponymous theorem. Therefore, if we could somehow understand
all of the subgroups of Sn, then we would understand all finite groups. This is an
ambitious goal, and it is far too much to ask for. However, understanding the sym-
metric group will give us information on it and other groups that are easily realized
as permutations (like Dn, for example).

2.8.1 Cycle Decomposition

When we originally talked about Sn, we introduced some compact notation for
writing down a permutation, called two-line notation: if σ ∈ Sn, then

σ = (
1 2 3 ⋯ n

σ(1) σ(2) σ(3) ⋯ σ(n)
) .

This is obviously a nice, short way to write down an element of Sn, and multiply-
ing two permutations in two-line notation is relatively straightforward. However,
because of its simplicity it can obscure the structure of σ, and it’s not good enough
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from the standpoint of algebra. For example, it we look at the permutation σ ∈ S8

given by

σ = (
1 2 3 4 5 6 7 8
5 3 2 4 8 6 7 1

) ,

what is really going on?

• σ fixes 4, 6, and 7.

• 2 and 3 only interact with each other, in the sense that σ sends 2 to 3 and 3
to 2.

• 1, 5, and 8 only interact with each other.

Thus we’ve written down a bunch of extra information that isn’t really necessary,
and we’ve obscured some of the structure that σ possesses in the process. The
relevant data is the fact that σ “cycles through” 1, 5, and 8 and it “cycles through”
2 and 3, while fixing all other numbers:

1

58

32

With this in mind, perhaps there is another way to write down σ that truly captures
what σ is doing. There is, and it is called the cycle decomposition of σ.

Let’s be a little more precise about what we’ve done above: if we apply σ
repeatedly to 1, we have

σ(1) = 5

σ2(1) = σ(5) = 8

σ3(1) = σ(8) = 1

σ4(1) = σ(1) = 5

and so on. We can use the shorthand notation

(1 5 8)

to indicate that σ maps 1 to 5, 5 to 8, and 8 back to 1. A permutation written this
way is called a cycle. Similarly, we have

σ(2) = 3

σ2(2) = σ(3) = 2
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and so on, so we write the cycle
(2 3)

to describe this “part” of σ. All the other numbers in the set {1,2, . . . ,8} are fixed
by σ, which we will denote by writing a cycle of length 1 for each such number. Thus
in the notation we are developing, we can decompose σ and write it as a product of
cycles:

σ = (1 5 8)(2 3)(4)(6)(7).

It is actually customary to suppress the numbers that are fixed by σ, since they
information that they encode is extraneous. Therefore, we will simply write

σ = (1 5 8)(2 3),

with it understood that any numbers not appearing are fixed.
We’ve been throwing around the word “cycle” without properly defining it. You

probably have the idea already, but we should still be rigorous.

Definition 2.8.1. A permutation of the form

σ = (i1 i2 ⋯ ik),

where σ(im) = im+1 for 1 ≤m < k and σ(ik) = i1 is called a k-cycle.

Note that there may be many different ways of expressing the same permutation
in cycle notation. For example, the cycle (5 8 1) is the same as (1 5 8), since both
cycles indicate that 1 maps to 5, 5 maps to 8, and 8 maps to 1. However, the cycles
(1 5 8) and (1 8 5) are different—the first says that 1 maps to 5, while the second
maps 1 to 8. It is important to remember that a cycle records the order in which
the numbers are “hit” as we iterate σ.

Cycles are important in that they form the building blocks of elements of Sn.
When finding the cycle decomposition of a permutation σ, we are really factoring σ
into cycles, in much the same way that one factors integers into primes.

Example 2.8.2. Let’s consider the permutation τ ∈ S9 given by

τ = (
1 2 3 4 5 6 7 8 9
4 9 6 3 7 1 8 2 5

) .

How do we write τ as a product of cycles? We start with 1, and we find the cycle
determined by it :

τ =

1 2 3 4 5 6 7 8 9

4 9 6 3 7 1 8 2 5

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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Thus we have the cycle
(1 4 3 6).

Now we go to the next smallest integer, which is 2, and we find its cycle:

τ =

1 2 3 4 5 6 7 8 9

4 9 6 3 7 1 8 2 5

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

so the cycle is
(2 9 5 7 8).

Thus
τ = (1 4 3 6)(2 9 5 7 8).

Example 2.8.3. Let’s find the cycle decomposition of σ ∈ S5, where

σ = (
1 2 3 4 5
2 3 1 5 4

) .

Well, the cycle determined by 1 is

(1 2 3),

and the smallest integer left is 4, whose cycle is

(4 5).

Therefore,
σ = (1 2 3)(4 5).

Remark 2.8.4. Note that we have written our permutations in such a way that the
cycles always start with the smallest possible integer. This is the standard way to
write permutations in cycle notation, but it is not necessary to do so. For example,
the cycles (1 2 3) and (3 1 2) are the same. You could think of them both as
encodings of the picture

1

32

As long as you write down the elements in the correct order (i.e., when going around
the cycle depicted above), it doesn’t matter where you choose to start.
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What do you notice about the cycles in the two examples above? They have no
integers in common—the precise way to say this is that they are disjoint. It’s not
much of a stretch to see that what we have done in our examples thus far would
work for any σ ∈ Sn. In other words, we have essentially observed the following
result:

Theorem 2.8.5. Every element of Sn can be written as a product of disjoint
cycles.

It’s easy enough to see that this result holds when looking at specific examples,
but you might wonder how we would prove such a statement in general. Well,
there’s actually a very orderly way of doing it that involves working with a certain
equivalence relation. In particular, if we define a relation ∼ on the set {1,2, . . . , n}
by

i ∼ j ⇐⇒ σm(i) = j

for some m ∈ Z+, then we claim that ∼ is an equivalence relation. Since σn! = id as
a consequence of Lagrange’s theorem, we have σn!(i) = i for all i. Thus i ∼ i, and ∼

is reflexive. If i ∼ j with σm(i) = j, then we have

σn!−m(j) = σn!−m(σm(i)) = σn!(i) = i,

so j ∼ i. Hence ∼ is symmetric. Finally, suppose i ∼ j and j ∼ k, with σm(i) = j and
σl(j) = k. Then

σl+m(i) = σl(σm(i)) = σl(j) = k,

so i ∼ k, and it follows that ∼ is transitive. Thus ∼ is an equivalence relation. It is
then clear that the equivalence classes would all have the following form:

[i] = {i, σ(i), σ2(i), σ3(i), . . .}

for each i ∈ {1,2, . . . , n}. But the elements of this equivalence class are precisely
the numbers that appear in the cycle that contains i! Therefore, we can use these
equivalence classes to break up σ into cycles, which shows that each element of Sn
has a cycle decomposition. Moreover, these equivalence classes partition the set
{1,2, . . . , n}, so these cycles are necessarily disjoint.

Now we know that the cycles really are the elementary pieces out of which the
elements of Sn are built. A fair question to ask would be: what’s the big deal?
The fact of the matter is that the cycle decomposition gives us lots of information
about Sn. For one, it simplifies calculations greatly. The next theorem tells us that
multiplication of disjoint cycles is very nice, though we won’t prove it.
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Theorem 2.8.6. Disjoint cycles commute. That is, if σ, τ ∈ Sn are disjoint
cycles, then στ = τσ.

As is often the case when proving things about elements of Sn, the proofs are
fairly technical and not very enlightening. Therefore, we’ll trust our intuition and
see how the proof would work via some examples.

Example 2.8.7. Let σ, τ ∈ S7 be given by

σ = (1 4 3)

and
τ = (2 5 6).

To see that σ and τ commute, we would need to check that στ(j) = τσ(j) for all
j ∈ {1,2,3,4,5,6,7}. We can ignore 7, since it is fixed by both σ and τ . For 1, we
have

στ(1) = σ(1) = 4

and
τσ(1) = τ(4) = 4,

since τ fixes both 1 and 4. Similarly, for 2 we would have

στ(2) = σ(5) = 5

and
τσ(2) = τ(2) = 5.

The calculation for the other integers is similar. Hopefully this is enough to convince
you that disjoint cycles commute in general. The proof is really nothing more than
the observations that we have made here, but it is simply harder to write down in
general.

The fact that disjoint cycles commute buys us a lot in terms of computations. For
one, when we multiply permutations together, we can switch the order of two disjoint
cycles, which can greatly simplify the procedure. Also, it lets us gain information
about permutations much more quickly that we could if we were using two-line
notation. For example, what if we wanted to find the inverse of a permutation? If
we write σ = σ1σ2⋯σm, where σ1, . . . , σm are disjoint cycles, then the inverse is

σ−1 = (σm)−1⋯(σ1)
−1,

so we simply need to know how to find the inverse of a cycle. This is easy: if we
have the cycle

τ = (i1 i2 ⋯ ik),

the inverse is simply
τ−1 = (i1 ik ik−1 ⋯ i2).
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Example 2.8.8. Let’s find the inverse of σ = (1 4 7 12)(3 9 2 5) in S12. Doing so
amounts to finding the inverses of the two cycles that make up σ. The inverse of
the first is

(1 12 7 4),

and the second is
(3 5 2 9).

Therefore,
σ−1 = (3 5 2 9)(1 12 7 4) = (1 12 7 4)(3 5 2 9),

since the cycles are disjoint.

Here’s another place where cycle decomposition is useful. Given an element of
Sn, how do we find its order? We could raise it to higher and higher powers until we
get the identity, but this could take an annoyingly long time. The answer becomes
much easier when we write the permutation as a product of disjoint cycles. First
we need to know what the order of a cycle is.

Proposition 2.8.9. The order of a k-cycle is k. That is, the order of a cycle is
simply the length of the cycle.

It is not too hard to see how to prove this, but it is unnecessarily cumbersome to
write down the proof.

Now that we know the order of a cycle, we claim that we can compute the order
of any element of Sn. Suppose that

σ = σ1σ2⋯σm

is a product of cycles, where σj is a cycle of length kj . If we raise σ to any power d,
what do we get? Since the disjoint cycles commute, we have

σd = σd1σ
d
2⋯σ

d
k.

For σd to equal the identity, we need to have σdj to equal the identity for all j.
What’s the smallest d that works? We would need that ∣σj ∣ ∣ d for all j, so d is a
multiple of kj for all j. Thus the smallest number that works is the least common
multiple of the orders of the cycles. That is,

∣σ∣ = lcm(k1, . . . , km).

Example 2.8.10. Define σ ∈ S15 by

σ = (1 4 7 3 9)(5 8)(6 12 10).

What is the order of σ? The orders of the disjoint cycles that make up σ are 5, 2,
and 3, so

∣σ∣ = lcm(5,2,3) = 30.

Obviously the order would be very hard to find otherwise, since we would have to
raise σ to the 30th power.
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2.8.2 Application to Dihedral Groups

We will see very soon that, at least in theory, a good understanding of the symmetric
group will help us understand other groups as well. (This is a consequence of a result
called Cayley’s theorem.) Of course it would be difficult to understand all groups
in this way, but the ones that can readily be realized as permutation groups will be
easier to understand. A natural class of groups to which this applies is the family
of dihedral groups.

Example 2.8.11. We’ve seen in the past that we can identify any dihedral group
Dn with a subgroup of Sn. To do this, we simply write down the permutation that
corresponds to the action of an element of Dn on the vertices of a regular n-gon.
For example, if we are looking at the rotation r2 in D3, we have the corresponding
element

r2 = (
1 2 3
3 1 2

) .

In cycle notation, this is
r2 = (1 3 2).

Therefore, cycle notation gives us a much easier way of computing products of
elements in Dn. We simply convert the symmetries to permutations, write them as
products of disjoint cycles, and then multiply.

As another example, let’s go up to a larger dihedral group, say D8. Then if we
wanted to compute the product of the reflection m across the line bisecting the side
(1,2) and the counterclockwise rotation r through 45 degrees.

4

5

67

8

1

2 3

m

7

6

54

3

2

1 8

4

5

67

8

1

2 3

r

3

4

56

7

8

1 2
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We can write
m = (1 2)(3 8)(4 7)(5 6)

and
r = (1 2 3 4 5 6 7 8),

so
mr = (1 2)(3 8)(4 7)(5 6)(1 2 3 4 5 6 7 8) = (1)(2 8)(3 7)(4 6)(5).

If we drop the one-cycles, we get

mr = (2 8)(3 7)(4 6),

and we see that mr is the reflection across the line connecting vertices 1 and 5. Thus
we can see that cycle notation has very practical uses, too, since it can simplify
computations in permutation groups.

2.8.3 Cayley’s Theorem

Before we began attacking the symmetric group again, we were looking at homomor-
phisms and isomorphisms. In particular, we formalized a couple of the isomorphisms
that we had mentioned in the past. There was another example that we ran into
earlier, which we will now examine in a more proper way. It will lead to a very
important theorem in group theory.

Example 2.8.12. We’ve just been discussing the idea of representing elements of
the dihedral group as permutations. This is something we did a long time ago, when
we observed via group tables that D3 ≅ S3. Without going into too much detail,
let’s define an actual isomorphism. We’ll do it element by element, though this is a
terrible method in general. Define ϕ ∶D3 → S3 by

ϕ(i) = ι ϕ(m1) = (2 3)

ϕ(r1) = (1 2 3) ϕ(m2) = (1 3)

ϕ(r2) = (1 3 2) ϕ(m3) = (1 2)

Then ϕ is clearly one-to-one and onto, but is it a homomorphism? Yes, though it
would be tedious to check all of the products. For example, we have

ϕ(r1m1) = ϕ(m3) = (1 2),

while
ϕ(r1)ϕ(m1) = (1 2 3)(2 3) = (1 2).

You can verify the other products by comparing the two group tables. This is
essentially what we did when we originally encountered this phenomenon, and we
simply gave each element and its image under ϕ the same label. We have thus
formally shown that D3 ≅ S3.
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Remark 2.8.13. We mentioned that in general, Dn /≅ Sn. The main obstacle is
that these two groups have different orders when n ≥ 4. However, we can always
define a monomorphism ϕ ∶Dn → Sn. For example, one of the exercises requires you
to convert two elements of D4 to permutations, and then check that this conversion
plays well with the group operations. This can be done in general, and instead of
having Dn ≅ Sn, we can say that Dn is isomorphic to a subgroup of Sn.

The statement in the previous remark holds even more generally—we’ll see that
any group is isomorphic to a subgroup of SX for some X. In particular, if ∣G∣ = n,
then G is isomorphic to a subgroup of Sn. This result is called Cayley’s theorem,
and we’ll prove it shortly.

Before we can actually prove Cayley’s theorem, there’s one small result about
homomorphisms that we’ll need. If ϕ ∶ G1 → G2 is a group homomorphism, the
image of ϕ is defined to be

ϕ(G1) = {y ∈ G2 ∶ y = ϕ(a) for some a ∈ G1} .

Then we will prove that the image of any homomorphism is always a subgroup of
the codomain.

Proposition 2.8.14. If ϕ ∶ G1 → G2 is a homomorphism, then ϕ(G1) is a
subgroup of G2.

Proof. We’ve already seen that if e1 and e2 denote the identity elements of G1 and
G2, respectively, then e2 = ϕ(e1), so the identity of G2 is in ϕ(G1). Also, if a ∈ G1,
then ϕ(a)−1 = ϕ(a−1) ∈ ϕ(G1), so ϕ(G1) is closed under taking inverses. Therefore,
we just need to check that ϕ(G1) is closed. Let x, y ∈ ϕ(G1). Then x = ϕ(a) and
y = ϕ(b) for some a, b ∈ G1, so

xy = ϕ(a)ϕ(b) = ϕ(ab) ∈ ϕ(G1).

Thus ϕ(G1) ≤ G2.

Theorem 2.8.15 (Cayley). Let G be a group. There is a one-to-one homomor-
phism ϕ ∶ G → SG, where SG denotes the set of all bijections from G to itself.
Consequently, G is isomorphic to a subgroup of SG. In particular, if ∣G∣ = n, then
G is isomorphic to a subgroup of the symmetric group Sn.

Proof. We need to figure out some way of defining a function ϕ ∶ G → SG. That is,
given an element a ∈ G, we need to define a bijection La ∶ G→ G. For a ∈ G, define

La(g) = ag
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for all g ∈ G. Is La ∈ SG, i.e., is La a bijection? If g1, g2 ∈ G and La(g1) = La(g2),
then

ag1 = ag2,

so g1 = g2 by cancellation. Thus La is one-to-one. Now let’s show that La is onto.
If g ∈ G, then

La(a
−1g) = a(a−1g) = g,

so La is in fact a bijection. Now we define ϕ ∶ G→ SG by

ϕ(a) = La.

We need to check that ϕ is a homomorphism and that it is one-to-one. First, if
a, b ∈ G, then ϕ(ab) = Lab, and for any g ∈ G, we have

Lab(g) = (ab)g = a(bg) = aLb(g) = La(Lb(g)) = La ○Lb(g),

so Lab = LaLb. That is, ϕ(ab) = ϕ(a)ϕ(b), so ϕ is a homomorphism. To see that it
is one-to-one, suppose that a, b ∈ G and that ϕ(a) = ϕ(b). Then La = Lb, so for all
g ∈ G,

ag = La(g) = Lb(g) = bg.

By cancellation, a = b, so ϕ is one-to-one. Thus G ≅ ϕ(G) ≤ SG, so G is isomorphic
to a subgroup of SG.

If G is finite, with ∣G∣ = n, then SG is simply Sn. Thus any finite group is
isomorphic to a subgroup of Sn, where n is the order of the group.

What we have shown in Cayley’s theorem is that every group can be viewed
as a group of permutations. More specifically, G can be identified with a group of
permutations of the elements of G itself. This is the primary importance of Cayley’s
theorem—it tells us that every group is a symmetry group.

2.8.4 Even and Odd Permutations and the Alternating Group

Now that we’ve talked about disjoint cycle decompositions, we’ll discuss another
way of writing permutations. To do so, we’ll think of a permutation as a procedure
which “switches” integers one pair at a time.

Example 2.8.16. Let’s view the dihedral group D4 as a group of permutations in
S4, and consider the rotation through 180○, which we have denoted by r2. We know
that we can write r2 as the product of two 2-cycles:

r2 = (1 3)(2 4).

Therefore, r2 is really given by interchanging two pairs of vertices. The same thing
happens if we look at the rotation r1, which we can view as a composition of two
reflections, which we will denote µ1 and µ2:
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1 2

34

µ1

2 1

43

µ2

4 1

23

Thus we can write r1, which is described by the 4-cycle

r1 = (1 2 3 4),

instead as a product of 2-cycles:

r1 = (1 3)(1 2)(3 4).

This signifies that the rotation can be obtained simply by swapping certain pairs of
vertices.

It turns out that we can do what we have done in the example more generally—
we can describe a permutation by simply interchanging elements two at a time. For
example, given the 3-cycle (1 3 2), we can write

(1 3 2) = (1 2)(1 3).

These 2-cycles have a special name.

Definition 2.8.17. A 2-cycle is called a transposition.

Much as we saw that we could write a permutation as a product of disjoint
cycles, we have the following result regarding transpositions.

Theorem 2.8.18. Every permutation in Sn can be written as a product of trans-
positions.

As with other results regarding Sn, we won’t prove this, but we’ll do some
examples that will give us an idea of how the proof would go.

Example 2.8.19. Let σ = (1 3 2 8)(4 6 5) ∈ S8. We can write the first cycle as

(1 3 2 8) = (1 8)(1 2)(1 3),

and the second cycle is
(4 6 5) = (4 5)(4 6).

Thus
σ = (1 8)(1 2)(1 3)(4 5)(4 6).
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Remark 2.8.20. Let’s make a few observations at this point.

1. The transpositions that make up a permutation need not be disjoint.

2. We really only need to know how to write a cycle as a product of transpositions.

3. If τ = (i1 i2 i3 ⋯ ik) is a k-cycle, we can write

τ = (i1 ik)(i1 ik−1)⋯(i1 i3)(i1 i2).

4. The decomposition into transpositions is not unique—we could toss in a bunch
of extra transpositions and get the same permutation. To see this in action,
observe that we could write the 3-cycle (1 3 2) as

(1 2)(1 3)(3 2)(3 2),

where we have effectively multiplied by the identity permutation on the right.
For a less trivial version of this phenomenon, observe that the 3-cycle (1 3 2)
is the same as (3 2 1), which decomposes into transpositions as

(3 1)(3 2).

Thus by writing the permutation in two different (but equivalent) ways, we
have obtained two different decompositions into transpositions.17

The decomposition into transpositions gives us information about the structure
of Sn. The relevant information here is the parity of a permutation.

Definition 2.8.21. A permutation σ ∈ Sn is called even if it can be written as
a product of an even number of transpositions, and odd if it is a product of an
odd number of transpositions.

We’re going to see that Sn is partitioned into even and odd permutations. To
do this, we’ll first have to see that the notions of even and odd are in fact mutually
exclusive. Since the decomposition into transpositions is far from unique, there’s no
reason a priori that a permutation couldn’t be both even and odd. Fortunately, it
is impossible.

Theorem 2.8.22. A permutation σ ∈ Sn cannot be both even and odd.

17Thanks to Sahil Seekond for pointing out this more interesting argument in class.
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Proof. We’re going to give a proof that uses linear algebra. Let {e1, e2, . . . , en} be
the standard ordered basis for Rn. We can view σ as a permutation of these basis
vectors, via the reordering

{e1, e2, . . . , en}↦ {eσ(1), eσ(2), . . . , eσ(n)} .

The trick that we will employ is to consider the determinant of the matrix whose
columns are given by the reordered basis vectors. Note that the matrix associated
to the original basis is the identity matrix:

( e1 e2 ⋯ en ) =

⎛
⎜
⎜
⎜
⎝

1 0 ⋯ 0
0 1 ⋮

⋮ ⋱ 0
0 ⋯ 0 1

⎞
⎟
⎟
⎟
⎠

= I.

We need to consider the effect that σ has on the determinant of this matrix. Recall
that the act of interchanging two columns of a matrix negates the determinant, so a
single transposition has the effect of multiplying the determinant by −1. Therefore,
if σ is odd, say

σ = σ1σ2⋯σk

where each σi is a transposition and k is odd, then we are performing column
interchanges on the identity matrix, so

det (eσ(1), eσ(2), . . . , eσ(n)) = (−1)k det(e1, e2, . . . , en) = (−1)k det(I) = −1.

On the other hand, if σ is even, say

σ = τ1τ2⋯τm

with each τi a transposition and m even, we have

det (eσ(1), eσ(2), . . . , eσ(n)) = (−1)m det(I) = 1.

These two determinants have to agree, so σ cannot be both even and odd.

Remark 2.8.23. This proof uses a couple of powerful ideas from algebra that we
won’t get to discuss in this class. The first is the idea of a group action: we let a
group act on a set (i.e., elements of the group are viewed as bijections/permutations
of the set), and we can gain information about both the group and the set in the
process. The second involves the particular case when a group acts on a vector space.
This leads to a very popular branch of algebra called representation theory.

Now that we know that nothing fishy happens regarding the parity of permuta-
tions, we can proceed.
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Definition 2.8.24. The set of all permutations in Sn is denoted by An, and it
is called the alternating group on n letters.

We’ve referred to An as a group, so we had better check it. We will verify it
directly by checking the axioms, and then we will begin the next section by exploring
a slightly more clever option. This will also lead us nicely into the next topic.

Theorem 2.8.25. An ≤ Sn.

Proof. The identity permutation can be thought of as a product of zero 2-cycles,
so it is automatically even. (If you don’t like this argument, we can also write
ι = (1 2)(1 2), so it is even.) Also, the product of two even permutations is clearly
even: if σ, τ ∈ An are written as

σ = σ1σ2⋯σk, τ = τ1τ2⋯τm,

where σi, τj are all transpositions and k,m are even, then

στ = σ1⋯σkτ1⋯τm

is a product of k+m transpositions. Since k and m are even, so is k+m, so στ ∈ An,
and An is closed. Finally, if σ ∈ An has the form

σ = (i1 j1)(i2 j2)⋯(ik jk)

with k even, then
σ−1 = (ik jk)⋯(i1 j1),

so σ−1 is even as well. Therefore, An ≤ Sn.

We’ll do a little more with An in the future, since it is a very important subgroup
of Sn. Right now, we’ll make one small observation: what is the order of An? To
answer this, it helps to look at cosets. Let σ ∈ Sn be a permutation that is not in
An; then σ must be odd. The coset

Anσ = {τσ ∶ τ ∈ An}

must consist entirely of odd permutations. This is because the product of an even
permutation with an odd permutation is odd: if

σ = σ1σ2⋯σk

and
τ = τ1τ2⋯τm,
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where σi and τj are all transpositions, k is odd, and m is even, then

τσ = τ1⋯τmσ1⋯σk

is a product of k +m transpositions, so τσ is odd. In fact, Anσ contains all the
odd permutations: if τ ∈ Sn is odd, then τσ−1 ∈ An, so τσ−1σ ∈ Anσ.18 Thus Anσ
consists of precisely the odd permutations in Sn. Since every permutation is either
even or odd, these are the only two right cosets of An in Sn. Therefore,

∣An∣ =
∣Sn∣

2
=
n!

2
.

This shows that exactly half of the permutations in Sn are even, and half are odd.

2.9 Kernels of Homomorphisms

If we had done things in a slightly different order, we could have found a much
slicker way to see that An is a subgroup of Sn. (Actually, we could have established
even more than that, but we’ll get there shortly.) Despite this, the associated ideas
will still allow us to transition nicely into the next topic.

First, we claim that there is a homomorphism defined on Sn which is intimately
connected with An. To construct it, we first have to note that the set {−1,1}
(viewed as integers, or real numbers, or whatever you like) forms a group under
multiplication. With this in hand, we define a function sgn ∶ Sn → {−1,1} by

sgn(σ) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if σ is even

−1 if σ is odd.

We claim that sgn is a homomorphism (called the sign of a permutation). Let
σ, τ ∈ Sn. If σ, τ are both even, then στ is even as well, so

sgn(στ) = 1 = 1 ⋅ 1 = sgn(σ)sgn(τ).

Similarly, if both are odd, then στ is even, so

sgn(στ) = −1 ⋅ −1 = sgn(σ)sgn(τ).

Finally, if one is even and one is odd (suppose without loss of generality that σ is
odd), then στ is odd, so

sgn(στ) = −1 ⋅ 1 = sgn(σ)sgn(τ).

18Just as with the other two cases, it is easy to check that the product of two odd permutations
is even.
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Thus sgn is a homomorphism. That’s all well and good, but what role does An play
here? Everything in An is mapped to 1, which is the identity in the group {−1,1}:

An = {σ ∈ Sn ∶ sgn(σ) = 1}.

In general, the set of all elements that map to the identity under a homomorphism
has special significance, as we will see shortly.

Aside 2.9.1. The sign homomorphism might seem a bit contrived—all it really
does is tell us whether a permutation is even or odd, which we know how to do
anyway. However, it does have uses. We are about to see that homomorphisms
and subgroups are tied together very closely, and the sign homomorphism gives us
a glimpse of this phenomenon with regard to the alternating group. More gener-
ally, the sign of a permutation comes up often in computations in certain branches
of mathematics. For example, it is used in combinatorics, where people study in-
versions in permutations. Combinatorialists write their permutations in one-line
notation: given the permutation

σ = (
1 2 3 4 5 6
3 1 5 2 4 6

) ∈ S6,

they would simply strip off the second line and write

σ = 315246.

They think of permutations as sequences of numbers from the set {1,2, . . . , n} in
which each number appears exactly once. An inversion appears when two numbers
occur out of their natural order. For example, 3 appears before 1, so this counts
as an inversion. Similarly, 3 comes before 2, and 5 comes before both 2 and 4, so
there are four inversions in all. On the other hand, if we write σ as a product of
transpositions, we have

σ = (1 2)(1 4)(1 5)(1 8).

There are four transpositions, which is conveniently the number N(σ) of inversions
in σ. Since the decomposition into transpositions is far from unique, this need not
hold in general.19 However, we do have

sgn(σ) = (−1)N(σ),

so the number of inversions is tied to the parity of σ.
The sign of a permutation also appears in the definition of the determinant. In

all likelihood you learned to compute the determinant of an n×n matrix via cofactor

19It is not merely a coincidence, though. There is always a way to write a permutation σ as a
product of a minimal number of simple transpositions, which are transpositions of the form (i i+1).
This number is equal to N(σ).
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expansions. This definition is very practical for hand calculations, but there is an
alternative formulation that can be useful in theoretical computations: if A = (aij)
is an n × n matrix, then

det(A) = ∑
σ∈Sn

sgn(σ)aσ(1)1aσ(2)2⋯aσ(n)n.

This definition is quite messy, but it can be handy in proofs. (It really says that the
determinant is something called an n-multilinear alternating form.)

There is a structure related to any group homomorphism which allows us to
gather information about the homomorphism. In particular, it will give us an easy
way of checking if a homomorphism is one-to-one. This structure is called the kernel
of the homomorphism.

Definition 2.9.2. Let ϕ ∶ G1 → G2 be a group homomorphism. The kernel of
ϕ is defined to be

kerϕ = {x ∈ G1 ∶ ϕ(x) = e2} .

Example 2.9.3. You’ve already seen several examples of kernels, albeit in disguise.

1. Let sgn ∶ Sn → {±1} denote the sign homomorphism from above. Then
ker(sgn) = An.

2. Recall that if T ∶ Rn → Rm is a linear transformation, then T is a group
homomorphism. Its kernel is

kerT = {x ∈ Rn ∶ T (v) = 0} ,

which you know better as the null space of T .

3. Let det ∶ GLn(R)→ R× denote the determinant map. Then

ker(det) = {A ∈ GLn(R) ∶ det(A) = 1},

which we know as the special linear group SLn(R).

4. Let ϕ ∶ Z → Zn denote the homomorphism given by reduction mod n. What
is the kernel of ϕ? Well,

kerϕ = {a ∈ Z ∶ ϕ(a) = 0} ,

and ϕ(a) = 0 exactly when a ≡ 0 mod n. That is, ϕ(a) = 0 if and only if n ∣ a,
so

kerϕ = nZ.
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5. Let G1 and G2 be groups, and let ϕ ∶ G1 → G2 be the trivial homomorphism,
so ϕ(a) = e for all a ∈ G1. Then

kerϕ = G1,

or the whole group G1.

6. Let G1 and G2 be groups, and suppose that ϕ ∶ G1 → G2 is a one-to-one
homomorphism. Then

kerϕ = {e1},

since ϕ(x) = e2 implies that x = e1 by the injectivity of ϕ.

What do you notice about the kernel in all of these examples? These kernels are
all subgroups, and it is not too far-fetched to think that this might hold in general.
It’s also not too hard to prove.

Proposition 2.9.4. Let ϕ ∶ G1 → G2 be a homomorphism. Then

kerϕ ≤ G1.

Proof. Certainly e1 ∈ kerϕ, since ϕ(e1) = e2, and if a ∈ kerϕ, then

ϕ(a−1) = ϕ(a)−1 = e−1
2 = e2,

so a−1 ∈ kerϕ. Now suppose that a, b ∈ kerϕ. Then

ϕ(ab) = ϕ(a)ϕ(b) = e2e2 = e2,

so ab ∈ kerϕ. Thus kerϕ is a subgroup of G1.

We mentioned that the kernel encodes information about whether a homomor-
phism is one-to-one or not. In fact, it gives us a measure of how badly ϕ fails to be
one-to-one, in a certain sense. To be more precise, suppose that a ∈ G1 and x ∈ kerϕ.
Then

ϕ(xa) = ϕ(x)ϕ(a) = eϕ(a) = ϕ(a),

so a and xa have the same image under ϕ. That is, ϕ is constant on the right coset
(kerϕ)a. On the other hand, suppose that a, b ∈ G1 with ϕ(a) = ϕ(b). Then

e = ϕ(a)ϕ(b)−1 = ϕ(a)ϕ(b−1) = ϕ(ab−1),

so ab−1 ∈ kerϕ. This means that (kerϕ)a = (kerϕ)b, so ϕ(a) = ϕ(b) if and only if a
and b belong to the same coset of kerϕ. This tells us that if ϕ fails to be one-to-
one, it does so in a very uniform way, in the sense that the preimage of any point
y ∈ ϕ(G1) consists of an entire coset of kerϕ. In other words, ϕ crushes each coset
down to a single point: if H = kerϕ, then
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H Ha1 Ha2 Ha3 Ha4

e ϕ(a1) ϕ(a2) ϕ(a3) ϕ(a4)

This phenomenon also makes it fairly easy to see a nice criterion for checking the
injectivity of a homomorphism.

Theorem 2.9.5. A homomorphism ϕ ∶ G1 → G2 is one-to-one if and only if
kerϕ = {e1}.

Proof. If ϕ is one-to-one, then certainly kerϕ = {e1}. On the other hand, suppose
that kerϕ = {e1} and a, b ∈ G1 with ϕ(a) = ϕ(b). Then we have just seen that
ab−1 ∈ kerϕ, so ab−1 = e1. But then a = b, so ϕ is one-to-one.

2.10 Quotient Groups and Normal Subgroups

The next natural thing to study after kernels is the notion of a normal subgroup,
of which any kernel is an example. Unfortunately, this idea seems somewhat un-
motivated, so we will introduce it alongside the concept of a quotient group (or
factor group). These groups will make it clear why normal subgroups are nec-
essary. Quotient groups are kind of strange—they don’t make a lot of sense when
you first see them, they’re not so bad once you’ve become accustomed to them.
Therefore, we’ll have to tread lightly and be very careful in digesting these ideas.
As usual, we’ll try to motivate the conversation with an example that we already
know very well.

2.10.1 The Integers mod n

We’ve mentioned in the past that the way in which we defined Zn was somewhat
awkward, and that there was a more proper way of doing things. We’re now ready
to discuss this more precise description of Zn.

Recall that since nZ ≤ Z, we have an equivalence relation on Z given by a ∼ b if
and only if a − b ∈ nZ. This amounts to saying that

a ∼ b ⇐⇒ a ≡ b mod n.

The equivalence classes are the (right) cosets:

nZ + a = {b ∈ Z ∶ b ≡ a mod n} ,
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which are sometimes called congruence classes. There are n of these classes,
namely

nZ + 0, nZ + 1, . . . , nZ + (n − 1).

Now we claim that we can actually define an binary operation on the set of right
cosets—that is, we will combine two cosets together to produce a new coset. We do
this by addition:

(nZ + a) + (nZ + b) = nZ + (a + b).

We simply add two cosets by adding their representatives and then taking the coset
that corresponds to the result. What is the potential caveat here? We need to
know that this operation is well-defined : if we take two different representatives
for the cosets, do we get the same answer? If a′ ≡ a mod n and b′ ≡ b mod n, then
a′ + b′ ≡ a + b mod n, so

(nZ + a′) + (nZ + b′) = nZ + (a′ + b′) = nZ + (a + b).

Thus addition is well-defined on cosets. We now claim further that this turns the
set of left cosets into a group. What is the identity? Why, it’s nZ + 0, since

(nZ + 0) + (nZ + a) = nZ + (0 + a) = nZ + a

for all a ∈ Z. How about inverses? If a ∈ Z, then

(nZ + a) + (nZ + (−a)) = nZ + (a − a) = nZ + 0,

so the inverse of nZ + a is nZ + (−a). If we call the set of (right) cosets

Z/nZ (Read: “Z mod nZ”),

then we have shown that Z/nZ is a group under addition. We will see that this
group simply gives another way of viewing Zn. It also not hard to see that the two
“versions” of Zn that we have produced are isomorphic, but we will wait to prove
it until we have introduced a tool known as the First Homomorphism Theorem.

Note that there is nothing really different here from what we have done in the
past. The “add and reduce” rule was essentially addition in Z/nZ, but with the
added step of reducing the result to the smallest positive coset representative.

2.10.2 General Quotient Groups

Now we could ask a more general question: if G is a group and H ≤ G, and we let
G/H denote the set of (right) cosets of H in G, can we turn G/H into a group (in
the same way as we did with Z/nZ)? You may be wondering why we would even
want to do so in the first place. It sort of made sense for Z/nZ, since it just gave
us a better way of viewing modular arithmetic. But why should it be useful in the
general setting? Well, sometimes we don’t care what happens “up to” the subgroup
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H, meaning that we won’t bother distinguishing elements of G which differ by an
element of H. This is particularly true when H is the kernel of some homomorphism.

Suppose that we are trying to classify groups via isomorphism, and we have a
group G that we would like to realize in a more recognizable way. We may not be
lucky enough to be able to define an isomorphism with a more familiar group, but
we may be able to define a homomorphism ϕ from some group G′ onto G. If we
can identify the kernel of ϕ, then we will be able to say

G ≅ G′/kerϕ.

In forming the quotient, we’ve basically eliminated the one-to-one defect of ϕ. Of
course we will have to prove that this actually happens, which we will do when we
prove the First Isomorphism Theorem.

Now that we’ve talked about the “why,” let’s talk about how we would define a
general quotient group. Say we have a group G and a subgroup H ≤ G. Let’s define
an operation on G/H in the same way that we did for Z/nZ: given two cosets Ha
and Hb, define

(Ha)(Hb) =H(ab).

We saw that in the example, we needed to know that the operation was well-defined.
Is the same true here? If we pick different representatives, say ha ∈Ha and gb ∈Hb,
then we have

(Hha)(Hgb) =H(hagb),

and we need this to equal H(ab). For these two cosets to coincide, we would need

hagb(ab)−1 ∈H.

But
hagb(ab)−1 = hagbb−1a−1 = haga−1,

and h ∈H, so it would be enough to have aga−1 ∈H. In other words, we have shown
that:

The operation on G/H is well-defined if and only if aga−1 ∈ H for all
g ∈H and a ∈ G, or aHa−1 ⊆H for all a ∈ G.

Therefore, to make this operation well-defined, we will simply require that our
subgroup H be a special kind of subgroup, one for which the above condition holds.

Definition 2.10.1. A subgroup N ≤ G is normal if aNa−1 ⊆ N for all a ∈ G.
We write

N ⊴G

to denote that N is a normal subgroup of G.
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Now that we’ve defined normal subgroups, we can see that we’ve been working
toward the following result.

Theorem 2.10.2. If G is a group and N ⊴G, then G/N is a group with respect
to the operation

(Na)(Nb) = N(ab).

Proof. We already saw that the normality of N is exactly what is needed to en-
sure that the operation is well-defined. Also, the operation is associative since the
operation on G is. What is the identity? It’s Ne, since

(Na)(Ne) = N(ae) = Na = N(ea) = (Ne)(Na).

The inverse is also exactly what you would expect:

(Na)(Na−1) = Ne = (Na−1)(Na)

for all a ∈ G.

Here’s another question regarding quotient groups. If G is a finite group and
N ⊴G, what is the order of G/N? We know that the number of left cosets of N in
G is the index of N in G, which is

[G ∶ N] =
∣G∣

∣N ∣

by Lagrange’s theorem. Therefore,

∣G/N ∣ =
∣G∣

∣N ∣
.

Now would be the natural place to talk about some examples of quotient groups.
However, this would be hard to do without having examples of normal subgroups.
Therefore, we’ll take a brief foray into normal subgroups first, and then produce
some specific quotient groups.

2.10.3 Normal Subgroups

Now that we’ve talked about why normal subgroups are important, let’s investigate
some of their properties. We’ll start with some examples.

Example 2.10.3. 1. Let G be any group. The trivial subgroups {e} and G are
normal.
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2. Let G be an abelian group. Are there more normal subgroups than just the
trivial ones? Yes—any subgroup of G is normal. If H ≤ G, then for any h ∈H,
we have

aha−1 = aa−1h = h

for all a ∈ G, so aHa−1 ⊆ H. (In fact, it is easy to see that the two sets are
equal in this case.)

There is a whole plethora of subgroups that are normal—kernels of homomor-
phisms are always normal subgroups.

Proposition 2.10.4. Let ϕ ∶ G1 → G2 be a homomorphism. Then for any a ∈ G1,
we have a(kerϕ)a−1 ⊆ kerϕ.

Proof. Let x ∈ kerϕ. We simply need to verify that axa−1 ∈ kerϕ. Well,

ϕ(axa−1) = ϕ(a)ϕ(x)ϕ(a−1) = ϕ(a)e2ϕ(a
−1) = ϕ(a)ϕ(a)−1 = e2,

so axa−1 ∈ kerϕ. Thus a(kerϕ)a−1 ⊂ kerϕ.

Example 2.10.5. 1. We can deduce that SLn(R) ⊴ GLn(R), since SLn(R) =

ker(det). After we develop some more tools, we’ll be able to identify the
quotient group GLn(R)/SLn(R) in a more recognizable form.

2. The alternating group An is a normal subgroup of Sn, since An is the kernel of
the sign homomorphism. In this case, we can actually compute the quotient
group explicitly. Note that Sn/An has exactly two elements, and we have seen
that any group of order 2 must be isomorphic to Z2. Alternatively, we defined
the sign homomorphism sgn ∶ Sn → {1,−1}, where the latter group is endowed
with multiplication. (Since it has two elements, it is isomorphic to Z2 as well.)
We will see soon that there is a very natural way to show that Sn/An ≅ {1,−1}
as well.

Now let’s prove some things about normal subgroups. The following result tells
us that there are multiple ways in which we can describe normal subgroups.

Proposition 2.10.6. Let G be a group and N ≤ G. The following statements
are equivalent:

(a) N ⊴G.

(b) For all a ∈ G, aNa−1 = N .

(c) Every left coset of N is also a right coset, in the sense that Na = aN for
all g ∈ G.
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Proof. We’ll start by showing that (a) implies (b). Let a ∈ G; since N ⊴G, aNa−1 ⊆

N . On the other hand, if g ∈ N , then

g = a(a−1ga)a−1 ∈ aNa−1,

since a−1Na ⊆ N . Therefore, N ⊆ aNa−1, and (b) is proven.
To see that (b) implies (c), let a ∈ G. Then

Na = {ga ∶ g ∈ N} = {aha−1a ∶ h ∈ N} = {ah ∶ h ∈ N} = aN.

Thus the left and right cosets of N coincide.
The proof that (c) implies (a) is similar. If a ∈ G, then aN = Na, so for any

g ∈ G, aga−1 = haa−1 = h for some h ∈ N . Thus N ⊴G.

Condition (c) in the theorem above will give us a new way of seeing that certain
subgroups are normal. It will also allow us to talk about a nonexample of a normal
subgroup.

Example 2.10.7. Consider K = {i,m1} as a subset of D3. Then K ≤ D3, but is it
normal? The left cosets are

K = {i,m1}, r1K = {r1,m3}, r2K = {r2,m2},

while the right cosets are

K = {i,m1}, Kr1 = {r1,m2}, Kr2 = {r2,m3}.

These do not coincide, so K is not normal in D3.
Consider D3, with H = {i, r1, r2}. Then we claim that H ⊴D3: the only right

cosets are
H = {i, r1, r2}, Hm1 = {m1,m3,m2},

while the left cosets are

H = {i, r1, r2}, m1H = {m1,m2,m3}.

The left and right cosets are the same, so H is normal in D3. Since it’s normal,
we can form the quotient group D3/H. There are only two cosets, so the quotient
group is automatically isomorphic to Z2.

Example 2.10.8. We’ll soon learn of a very easy way of computing quotient groups,
but let’s try to do another one explicitly first. Let G = Z15, and let H = ⟨5⟩ =

{0,5,10}. Then H ⊴G (since G is abelian), and there are five cosets:

H + 0 = {0,5,10}

H + 1 = {1,6,11}
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H + 2 = {2,7,12}

H + 3 = {3,8,13}

H + 4 = {4,9,14}.

Normally we would need to figure out exactly how the operation works on G/H,
but things are easy here. We know that ∣G/H ∣ = 5, so there is only one possibility:
G/H ≅ Z5. (Of course we could also compute explicitly with the elements of the
quotient group, and we would see that the group behaves exactly as Z5 should.)

2.10.4 The First Isomorphism Theorem

Now we’ll state and prove a result that has been alluded to already, the First Iso-
morphism Theorem. (It’s also called the Fundamental Homomorphism Theorem by
some authors, including Saracino.) This theorem is one of the most important in
algebra, and it ties together the concepts of homomorphism, kernel, and quotient
group. It basically says that an onto homomorphism gives an isomorphism by fac-
toring out the kernel. Indeed, we’ve already seen the core idea of the proof, albeit
in picture form, and we’ve also established certain elements of the proof.

kerϕ

(kerϕ)a1

(kerϕ)a2

(kerϕ)a3

(kerϕ)a4

ϕ(e)

ϕ(a1)

ϕ(a2)

ϕ(a3)

ϕ(a4)

This picture illustrates the key idea that a homomorphism ϕ is constant on each
right coset of its kernel. Therefore, we can build a well-defined map ϕ̃ on the quotient
group G/kerϕ, which turns out to be a homomorphism.

Theorem 2.10.9 (First Isomorphism Theorem). Let G and G′ be groups, and
let ϕ ∶ G → G′ be a homomorphism. Suppose that ϕ is onto and let N = kerϕ.
Then

G/N ≅ G′,

and the isomorphism is given by ϕ̃ ∶ G/N → G′, where

ϕ̃(Na) = ϕ(a).
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Proof. We first have to check that ϕ̃ is even well-defined. But we saw this already:
ϕ is constant on each coset, so if Na = Nb, then ϕ(a) = ϕ(b) and ϕ̃ is well-defined.
When we did this, we also saw that ϕ̃ was one-to-one: if ϕ̃(Na) = ϕ̃(Nb), then
ϕ(a) = ϕ(b), which means that ϕ(ab−1) = e. Thus ab−1 ∈ kerϕ = N , so Na = Nb.
Also, ϕ̃ is onto because ϕ is: if x ∈ G′, then x = ϕ(a) for some a ∈ G, and

ϕ̃(Na) = ϕ(a) = x.

(This is really the content of the figure above—since ϕ is onto and it is constant on
each coset, it sets up a bijection between the quotient G/kerϕ and G′.) Therefore,
we really only need to check that ϕ is a homomorphism. If Na,Nb ∈ G/N , then we
have

ϕ̃((Na)(Nb)) = ϕ̃(Nab) = ϕ(ab),

while
ϕ̃(Na)ϕ̃(Nb) = ϕ(a)ϕ(b) = ϕ(ab).

Since these are the same, we see that ϕ̃ is a homomorphism. It now follows that
G/N ≅ G′.

Now let’s put this theorem to use in identifying some quotient groups with more
familiar ones.

Example 2.10.10. 1. Let ϕ ∶ Z → Zn be given by reduction mod n. We al-
ready proved that this was a homomorphism, and it is onto: if a ∈ Zn =

{0,1, . . . , n − 1}, then ϕ(a) = a. Also, we saw that kerϕ = nZ, so the Funda-
mental Homomorphism Theorem tells us that

Z/nZ = Z/kerϕ ≅ Zn.

We already observed this fact, but now it becomes even easier when we hit it
with the hammer that is gifted to us by the First Isomorphism Theorem.

2. We mentioned earlier that if sgn ∶ Sn → {1,−1} denotes the sign homomor-
phism, then An = ker(sgn). Furthermore, sgn is onto, so the First Isomorphism
Theorem tells us that

Sn/An ≅ {1,−1}.

3. We previously verified that det ∶ GLn(R) → R× is a homomorphism, and its
kernel is SLn(R). In fact, it is an epimorphism: if α ∈ R is any real number,
then

det

⎛
⎜
⎜
⎜
⎝

α 0 ⋯ 0
0 1 ⋮

⋮ ⋱ 0
0 ⋯ 0 1

⎞
⎟
⎟
⎟
⎠

= α.

Thus the First Isomorphism Theorem applies, and it tells us that

GLn(R)/SLn(R) ≅ R×.
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4. Let’s do one more example from linear algebra. Suppose that n > m, and
define a linear transformation T ∶ Rn → Rn−m by

T (x1, . . . , xn−m, xn−m+1, . . . , xn) = (x1, . . . , xn−m).

Then we know that T is a group homomorphism, and its kernel is

kerT = {x ∈ Rn ∶ x1 = x2 = ⋯ = xn−m = 0} ,

which is an m-dimensional subspace of Rn. We could identify this subspace
with Rm, and the First Isomorphism Theorem tells us that

Rn/Rm = Rn/kerT ≅ Rn−m.

5. Define ϕ ∶ Z15 → Z5 by ϕ(a) = a mod 5. What is the kernel of ϕ? If ϕ(a) = 0,
then a ≡ 0 mod 5, so 5 ∣ a. Thus

kerϕ = {0,5,10},

and since this is a group of order 3, it is isomorphic to Z3. In other words,
we can think of Z3 as a subgroup of Z15. What is the quotient group Z15/Z3?
Well, the First Isomorphism Theorem says that

(Z15)/(Z3) ≅ Z5.

It’s not too hard to generalize this: if d ∣ n, then Zd ≤ Zn, and

Zn/Zd ≅ Zn/d.

Remark 2.10.11. The astute reader is probably wondering why this theorem was
called the First Isomorphism Theorem, and you’re probably guessing if there are
others. There are indeed two more theorems, conveniently called the Second and
Third Isomorphism Theorems. They are less commonly used than the First Iso-
morphism Theorem, so we won’t really discuss them. In fact, they are both proven
using the first theorem.

There is another theorem that is related to the three homomorphism theorems,
and it is often discussed in tandem with them. It is usually called the Correspon-
dence Theorem (or sometimes the Fourth Isomorphism Theorem) and it says that
the subgroups of a quotient group are related to the subgroups of the original group
in a very rigid way. If G is a group and N ⊴G, there is a one-to-one correspondence
between the subgroups of G/N and subgroups of G containing N . Let ψ ∶ G→ G/N
denote the projection onto the quotient group. If H ≤ G and N ⊆H, then we obtain
a subgroup H ′ of G/N from H by

H ′ = ψ(H) = {y ∈ G/N ∶ y = ψ(x) for some x ∈H}.
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In other words, we just take the image of H in G/N . To go the other way, suppose
that K ≤ G/N . Define the inverse image of K to be

K ′ = ψ−1(K) = {x ∈ G ∶ ψ(x) ∈K}.

Then K ′ is a subgroup of G which contains N . This sets up a bijection between
the subgroups of G/N and the subgroups of G containing N . Additionally, this
correspondence preserves normality: if H ⊴G, then π(H) ⊴G/N , and if K ⊴G/N ,
then ψ−1(K) ⊴G.

2.10.5 Aside: Applications of Quotient Groups

We’ve now talked about quotient groups, namely how to build them and to identify
them via the Fundamental Homomorphism Theorem. This will really be what we
will need them for, but it would be good to know that there is a less abstract
application of quotient groups. We’ll talk about a couple of these applications, but
with the First Isomorphism Theorem still looming large in the background.

The core idea of the First Isomorphism Theorem is the following: we took a
homomorphism that was not necessarily one-to-one, and we made it one-to-one
by “identifying” the elements that had a common image. This is another way of
thinking about quotient groups: when forming a quotient group, one identifies all
the elements belonging to a particular coset. That is, we don’t care to distinguish the
individual elements of the coset. This can be a helpful way of thinking about quotient
groups, and it is often how quotient groups arise when working less abstractly than
we have been here.

Example 2.10.12. Sometimes groups arise naturally in other branches of math
as a means of distinguishing objects. For example, topologists often try to classify
surfaces by associating groups20 to them. The classification problem is then reduced
to a question about classification of groups, which is much easier to answer in general.
Sometimes the group that arises is nonabelian, which can make it hard to work with.
However, it is possible to “approximate” the group with an abelian one. This abelian
group is called the abelianization of the original group, and it arises as a quotient
group.

Let G be a group. What do we need in order to be able to say that G is abelian?
We would need that for all a, b ∈ G,

ab = ba.

If we multiply on the right by a−1, then b−1, we see that this is equivalent to saying
that

aba−1b−1 = e.

20If you’re curious, the constructions that algebraic topologists usually consider are the funda-
mental group, the homology groups, and the cohomology groups.
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Thus in order to make G abelian, we need to identify elements of the form aba−1b−1

with e; that is, we need to form the quotient by a subgroup that contains all the
aba−1b−1. We don’t want to lose too much, so we’d like to take the smallest possible
subgroup. Therefore, we’ll take

[G,G] = ⟨aba−1b−1 ∣ a, b ∈ G⟩.

The elements of the form aba−1b−1 are called commutators, and the set [G,G]

is the smallest subgroup containing all the commutators, called the commutator
subgroup. One should keep in mind that [G,G] does not consist only of commu-
tators; its elements are products of commutators. It can be checked that [G,G] is
a normal subgroup, and that the quotient

Gab = G/[G,G]

is an abelian group. It is the “best possible” abelian group associated to G, in some
sense, and it is called the abelianization of G.

Example 2.10.13. This example is one that is near and dear to my heart, but it
is a little less pertinent than the first one. (Therefore, you may feel free to stop
reading now if you want to stick to algebra.) One of the branches of math that I
study is a field called harmonic analysis. This area basically deals with trying to
do calculus on groups. (This isn’t a great explanation, but it’s reasonably correct.)
If you’ve taken a course on differential equations, you may have already seen some
of the ideas that we’ll discuss here. People often try to solve differential equations
using objects called Fourier series, which give a new way of representing periodic
functions. A function f ∶ R → R is called periodic if there is a real number p such
that

f(x) = f(x + p)

for all x ∈ R. It’s called periodic because the function repeats after every interval
of length p. For an example, we could see that sine and cosine are both periodic
functions, with period 2π. Let’s suppose, for simplicity, that we’re dealing with a
function of period 1; that is, it repeats after every interval of length one. Then

f(x) = f(x + n)

for all x ∈ R and n ∈ Z. In other words, if two real numbers differ by an integer, then
the function takes the same value at those two points. It would thus make sense to
identify two real numbers when they differ by an integer, or when they belong to
the same coset of Z in R. This would lead us to look at the quotient group R/Z,
and to instead consider functions on this new group.

This big question that we are left with now is how to identify R/Z in a more
recognizable way. Trying to look at cosets would be quite unwieldy, since there are
uncountably many of them. Indeed, there is one for every x ∈ [0,1], and in fact 0
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and 1 are identified as well. How could we view R/Z, at least in a geometric sense?
If we identify the endpoints of an interval, we get something that looks like a circle.
In fact, R/Z is isomorphic to something called the circle group. Define

T = {z ∈ C ∶ ∣z∣ = 1} ,

which is the unit circle in the complex plane. It turns out that T is actually a group
under the usual multiplication of complex numbers. If a, b ∈ T, then

∣ab∣ = ∣a∣∣b∣ = 1 ⋅ 1 = 1,

so T is closed. Also, if a ∈ T, then a−1 = 1/a is also in T, and 1 ∈ T, so T is a
group. We want to use the First Isomorphism Theorem, so we need to define a
homomorphism from R onto T. We can do this by

ϕ(x) = e2πix = cos(2πx) + i sin(2πx).

For those who are familiar with complex numbers, it is not hard to check that this
maps into T and that it is a homomorphism: if x, y ∈ R, then

ϕ(x + y) = e2πi(x+y) = e2πixe2πiy = ϕ(x)ϕ(y).

It’s easier to see that ϕ is onto by writing a complex number in polar form as

z = cos(2πx) + i sin(2πx),

and observing that ϕ(x) = z. Thus ϕ ∶ R→ T is onto. What is its kernel? Well,

kerϕ = {x ∈ R ∶ ϕ(x) = 1} = {x ∈ R ∶ e2πix = 1} ,

and the only x ∈ R for which this holds are the integers. That is, kerϕ = Z, and the
First Isomorphism Theorem tells us that

R/Z = T.

Therefore, the study of periodic functions on R can be reduced to the study of
functions on the circle T.

2.11 Direct Products of Groups

Now that we’ve finished with quotient groups, we’ll talk about one last construction
that we can make with groups, called the direct product. Along with all the other
things we’ve talked about (subgroups, normal subgroups, homomorphisms, quotient
groups), direct products are crucial to discussing the structure of finite groups in
general. In particular, we will use direct products in the next section to classify all
finite abelian groups up to isomorphism.
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The direct product gives us a way of sticking two groups together to obtain a
new group. Suppose we have two groups G1 and G2. We can turn the cartesian
product G1 × G2 into a group by defining a binary operation as follows: given
(a1, a2), (b1, b2) ∈ G1 ×G2, put

(a1, a2)(b1, b2) = (a1b1, a2b2).

That is, we simply multiply elements of G1 ×G2 componentwise. The claim is that
this operation turns G1 ×G2 into a group. Let’s check this.

• Closure: G1 ×G2 is closed under this operation, simply because G1 and G2

are closed under their respective operations.

• Associativity: Yes, the operation is easily seen to be associative since G1

and G2 have associative operations.

• Identity: If e1 and e2 denote the identity elements of G1 and G2, respectively,
then it is easy to check that (e1, e2) is the identity in G1 ×G2.

• Inverses: If (a1, a2) ∈ G1 ×G2, then the inverse of this element is given by

(a1, a2)
−1 = (a−1

1 , a−1
2 ).

Therefore, G1 ×G2 is a group.

Definition 2.11.1. If G1 and G2 are groups, the group G1 × G2 is called the
direct product of G1 and G2.

Let’s do a couple of short examples, which will indicate why direct products are
useful in analyzing certain groups in terms of other, more well-understood groups.

Example 2.11.2. Let G1 = G2 = R. Then G1 ×G2 = R ×R, under the operation

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2).

Thus the direct product is simply R2, viewed as an abelian group. Thus elements
of direct products behave like vectors, in some sense.

Example 2.11.3. This example is meant to emphasize the fact that the operation
in each component depends on the operation in that group. Let G1 = Z3, and let
G2 = S3. Then G1 ×G2 has order 3 ⋅ 6 = 18, and multiplication in this group looks
as follows:

(1, (1 2))(1, (1 2 3)) = (1 +3 1, (1 2)(1 2 3)) = (2, (2 3)),

for example. On the other hand,

(1, (1 2 3))(1, (1 2)) = (2, (1 3)),

which shows that G1 ×G2 is not abelian (since S3 is not abelian).
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Example 2.11.4. Let G1 = G2 = Z2. Then the direct product Z2 × Z2 has four
elements:

Z2 ×Z2 = {(0,0), (0,1), (1,0), (1,1)}.

We also claim that it is an abelian group. (This is not too hard to see, and you’ll
prove it in one of the exercises.) Clearly (0,0) serves as the identity, while

(0,1) + (0,1) = (0,0) (0,1) + (1,0)= (1,1)

(1,0) + (1,0) = (0,0) (1,0) + (1,1)= (0,1)

(1,1) + (1,1) = (0,0) (1,1) + (0,1)= (1,0)

If we label the elements as follows:

e←→ (0,0)

a←→ (1,0)

b←→ (0,1)

c←→ (1,1).

we see that Z2 × Z2 ≅ V4. Thus this direct product is simply another avatar of the
Klein 4-group.

The following are some fundamental facts about direct products. Their proofs
are left as exercises.

Proposition 2.11.5. Let G1 and G2 be groups.

(a) G1 ×G2 ≅ G2 ×G1.

(b) If G1 and G2 are abelian, then so is G1 ×G2.

(c) ∣G1 ×G2∣ = ∣G1∣∣G2∣.

(d) If (a1, a2) ∈ G1 ×G2, then o(a1, a2) = lcm(o(a1), o(a2)).

(e) If G1 and G2 are cyclic, and ∣G1∣ and ∣G2∣ are relatively prime, then G1×G2

is cyclic.

It is worth noting that everything we have said so far regarding direct products
works for more than just two groups. In other words, we can take a direct product
of any (finite) number of groups by simply extending our previous definition in the
natural way.
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Definition 2.11.6. Let G1,G2, . . . ,Gn be groups. The direct product of this
family is the set G1 ×G2 ×⋯ ×Gn endowed with the binary operation

(a1, a2, . . . , an)(b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

If e1, e2, . . . , en denote the identities of G1,G1, . . . ,Gn, then

(e1, e2, . . . , en)

is the identity element of G1 ×G2 ×⋯×Gn. Finally, if (a1, a2, . . . , an) ∈ G1 ×G2 ×

⋯ ×Gn, then
(a1, a2, . . . , an)

−1 = (a−1
1 , a−1

2 , . . . , a−1
n ).

Remark 2.11.7. Let G1,G2, . . . ,Gn be groups, and define Gi ⊆ G1 ×G2 × ⋯ ×Gn
by

Gi = {(e1, e2, . . . , ei−1, ai, ei+1, . . . , en) ∶ ai ∈ Gi}.

Then it is straightforward to check that Gi is a subgroup of G1 ×G2 ×⋯ ×Gn, and
in fact it is a normal subgroup. Also, Gi is easily seen to be isomorphic to Gi in a
natural way. Therefore, each “factor” of a direct product can be viewed as a normal
subgroup of the direct product in a canonical way.

2.11.1 Internal Direct Products

At the beginning of this section, we expressed a desire to analyze the structure
of finite groups by using direct products. Therefore, we’d really like to go in the
direction opposite to what we’ve been doing so far—rather than build the direct
product of two (or more) finite groups, we need to decompose a given group G and
write it as a direct product of some of its subgroups. This task is actually quite
difficult (or even impossible in many cases), so we will focus on a much simpler
question.

Let G be a group, and suppose H and K are subgroups of G. We’d like to know
whether it is possible to write G ≅H ×K or not. Looking back at the properties of
the direct product, what would we need to know at the very least? Well, we showed
that the factors of a direct product are always normal subgroups that intersect
trivially, so we would need to require H,K ⊴G and H ∩K = {e}. We also need H
and K to “fill up” all of G, in the sense that every element of G can be obtained by
combining elements of H and K. More precisely, if we define

HK = {hk ∶ h ∈H,k ∈K},

then we will require G = HK. Thus every element of G can be expressed in terms
of elements of H and K, and the fact that H ∩K = {e} will force this representation
to be unique. What we are really getting at is the following theorem.
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Theorem 2.11.8. Let G be a group, and let H,K ⊴G. Suppose that

1. HK = G, and

2. H ∩K = {e}.

Then G ≅H ×K.

The idea of the proof is as follows: there is an obvious map ϕ ∶H ×K → G given
by

ϕ(h, k) = hk.

Our claim is that ϕ is an isomorphism. To see this, we first need to check that ϕ is
a homomorphism. If (h1, k1), (h2, k2) ∈H ×K, then

ϕ((h1, k1)(h2, k2)) = ϕ(h1h2, k1k2) = h1h2k1k2,

while

ϕ(h1, k1)ϕ(h2, k2) = (h1k1)(h2k2) = h1h1k1k2.

In order for ϕ to be a homomorphism, we’ll need to know that elements of H and
K commute with each other.

Lemma 2.11.9. If H,K ⊴G and H ∩K = {e}, then hk = kh for all h ∈ H and
k ∈K.

Proof. Let h ∈H and k ∈K. To show that hk = kh, it would suffice to show that

hkh−1k−1 = e.

Let’s look at this commutator. If we group things one way, we have

(hkh−1)k−1 ∈K,

since hkh−1 ∈K (as K is normal) and k−1 ∈K. On the other hand,

h(kh−1k−1) ∈H,

again since H is normal. Thus hkh−1k−1 ∈H ∩K = {e}, so hkh−1k−1 = e. Therefore,
hk = kh.

Now we can prove the theorem.
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Proof of Theorem 2.11.8. Let ϕ be as above. Then the lemma shows that ϕ is a
homomorphism, by our previous calculations. It is easy to see that ϕ is onto, since
G =HK. In particular, if g ∈ G, then g = hk for some h ∈H, k ∈K, and

ϕ(h, k) = hk = g.

To see that ϕ is one-to-one, observe that

kerϕ = {(h, k) ∈H ×K ∶ hk = e}.

Thus if (h, k) ∈ kerϕ, then h = k−1. But then h, k ∈ H ∩K = {e}, so h = k = e.
Therefore, kerϕ = {e}, so ϕ is one- to-one. It follows that ϕ is an isomorphism, and
G ≅H ×K.

The proof of Theorem 2.11.8 not only tells us that G is isomorphic to H×K, but
it shows us that the isomorphism only relies upon multiplication inside G. Therefore,
we call G the internal direct product of H and K in this case.

Let’s apply Theorem 2.11.8 to an example, which will foreshadow the upcoming
results on finite abelian groups.

Example 2.11.10. A long time ago, we defined the Klein 4-group V4. It was the
group consisting of 4 elements e, a, b, and c, with the condition that

a2 = b2 = c2 = e,

and
ab = c, ac = b, bc = a.

Since V4 is abelian, any subgroup is normal. Take H = {e, a} and K = {e, b}. Then
HK = V4 (since ab = c) and H ∩K = {e}, so

V4 =H ×K

by the theorem. But ∣H ∣ = ∣K ∣ = 2, so H,K ≅ Z2. Thus

V4 ≅ Z2 ×Z2.

It’s not hard to see this explicitly either, via the correspondence

e←→ (0,0)

a←→ (1,0)

b←→ (0,1)

c←→ (1,1).

We should mention finally that the theorem we have proven also holds if we
have any finite number of normal subgroups. The proof is essentially the same, but
slightly more involved, and we won’t reproduce it here.
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Theorem 2.11.11. Let G be a group, and let N1,N2, . . . ,Nm be normal subgroups
of G. Suppose that

1. N1N2⋯Nm = G, and

2. N1 ∩N2 ∩⋯ ∩Nm = {e}.

Then G ≅ N1 ×N2 ×⋯ ×Nm.

2.12 The Classification of Finite Abelian Groups

As we discussed at the end of the last section, we would like to use direct products to
obtain classification results for finite groups. Shorly, we will obtain a fairly satisfying
answer to some of the questions we’ve been asking, at least in the case of abelian
groups. Without further ado, we’ll state the theorem and discuss it.

Theorem 2.12.1 (Fundamental Theorem of Finite Abelian Groups). Let G be
a finite abelian group. Then

G ≅ Zpr11 ×Zpr22 ×⋯ ×Zprk
k
,

where p1, p2, . . . , pk are (not necessarily distinct) primes. That is, G is isomorphic
to a direct product of cyclic groups, where the order of each factor is a power of
a prime.

This theorem looks sort of daunting, and it’s still not really clear how to use
it. It’s even less clear how to prove it. We won’t go through the proof, since it’s
extremely long and technical. However, we will talk about the theorem and how to
apply it to specific examples. First of all, where do the primes in the theorem come
from? We begin by factoring ∣G∣ into primes:

∣G∣ = pm1
1 pm2

2 ⋯p
mj
j .

Then G breaks down as a direct product of groups of order pmii , which are not
necessarily cyclic. But each one decomposes as a direct product of cyclic groups.
(This is really the content of the proof.) In short, we have the following procedure
for determining all the abelian groups of a given order.

1. Factor n = ∣G∣ into primes: n = pm1
1 pm2

2 ⋯pmkk .

2. Determine all possible groups of the form

Zpr1i ×Zpr2i ×⋯ ×Z
p
rj
i

, r1 + r2 +⋯ + rj =mi
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for 1 ≤ i ≤ k. (This amounts to finding all partitions of mi.)

3. Determine all the possible ways of combining these groups together (via direct
products) to get a group of order n.

Example 2.12.2. Determine all abelian groups of order 360, up to isomorphism.

Solution. First factor 360 into primes: 360 = 23 ⋅ 32 ⋅ 5. Then determine all possible
groups for each prime power:

• Order 23: Z2 ×Z2 ×Z2, Z2 ×Z4, Z8.

• Order 32: Z3 ×Z3, Z9.

• Order 5: Z5.

Therefore, the possible groups are:

Z2 ×Z2 ×Z2 ×Z3 ×Z3 ×Z5

Z2 ×Z2 ×Z2 ×Z9 ×Z5

Z2 ×Z4 ×Z3 ×Z3 ×Z5

Z2 ×Z4 ×Z9 ×Z5

Z8 ×Z3 ×Z3 ×Z5

Z8 ×Z9 ×Z5

Some readers might notice something odd here—there’s one obvious abelian
group of order 360 that doesn’t appear to be on this list, namely Z360. It is here,
but it’s in disguise. You’ll prove the following result in the exercises:

Proposition 2.12.3. If gcd(m,n) = 1, then Zm ×Zn ≅ Zmn.

Since 5, 8, and 9 are pairwise relatively prime, the last group on our list is really
Z360 in disguise. We could even apply this result to the other groups to write them
in a more compact way, but it isn’t necessary to do so.

Example 2.12.4. Suppose we want to determine all abelian groups of order 63. We
first write 63 = 32 ⋅ 7. We see that there are only two abelian groups of this order:

Z3 ×Z3 ×Z7 ≅ Z3 ×Z21

and

Z9 ×Z7 ≅ Z63.
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Nonabelian Groups

Things are quite a bit harder when one tries to classify nonabelian groups. We’ll
stick to finite groups here, since there’s really not much hope in general for infinite
nonabelian groups.

In the nonabelian case, it is still possible sometimes to write a group G as a
direct product of two of its subgroups, say

G ≅H ×K.

However, recall that we need H and K to both be normal. In the abelian case,
there is no problem since every subgroup is normal. However, it is entirely possible
that a nonabelian group G might not possess enough normal subgroups to be able
to carry out this construction. The next best thing would be to find two subgroups
H and K, where one of them is normal, such that G =HK and H ∩K = {e}. Then
we can express G as the semidirect product of H and K, written

G ≅H ⋊K.

We won’t go into how the semidirect product is constructed, though the idea is that
it is like the direct product, but with a “twisted” binary operation. Thus it is still
possible to break down a nonabelian group into a combination of two smaller groups,
provided that we can find subgroups H and K as described above. Sometimes,
however, even this isn’t enough. There are cases where we can’t even write a group
as a semidirect product—the best we can do is find a normal subgroup N of G such
that N and G/N are easy to understand. Then we say that G is an extension
of N by G/N . Thus the classification of finite nonabelian groups depends on the
understanding of all possible extensions of finite groups.

Once we have ways of breaking finite groups down into smaller pieces, it is
feasible that we could reach a point where there are no smaller pieces. That is, we
come to a stage where there are no longer any normal subgroups to consider; in
other words, we arrive at a simple group. In short, we are saying that every finite
group is built out of finite simple groups via direct products, semidirect products,
and group extensions. Therefore, if we can understand all possible finite simple
groups, then we will understand all finite groups. This is an ambitious goal for us,
but not for mathematicians as a whole. In the 1970s, group theorists collectively
managed to classify all finite simple groups. It took them about 10,000 pages of
incredibly hard mathematics, but they did indeed accomplish it. They found that
there are three families of finite simple groups:

• Finite cyclic groups of prime order, i.e., Zp.

• Alternating groups An for n ≥ 5.

• Simple groups of Lie type. (Whatever those are. . . )
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There are also 26 groups which do not fit into these categories, called the sporadic
groups. The largest of the sporadic groups is called the Monster group, which is
downright huge, with

808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000,

or approximately 8 × 1053 elements. Its discoverers, Fischer and Griess, wanted to
call it the “friendly giant,” which would conveniently have the abbreviation FG.

Additional Exercises for Chapter 2

2.8. In each case, determine whether ∗ defines a
binary operation on the given set. If not, give
reason(s) why ∗ fails to be a binary operation.

(a) ∗ defined on Z+ by a ∗ b = a − b.
(b) ∗ defined on Z+ by a ∗ b = ab.
(c) ∗ defined on Z by a ∗ b = a/b.
(d) ∗ defined on R by a ∗ b = c, where c is at

least 5 more than a + b.

2.9. Determine whether the binary operation ∗
is associative, and state whether it is commuta-
tive or not.

(a) ∗ defined on Z by a ∗ b = a − b.
(b) ∗ defined on Q by a ∗ b = ab + 1.

(c) ∗ defined on Z+ by a ∗ b = ab.

2.10. Let S = {a, b, c, d} and define a binary op-
eration ∗ on S via the following Cayley table:

∗ a b c d

a a c b d

b c a d b

c b d a c

d d b c a

Is this binary operation commutative? Is it as-
sociative?

2.11. Compute the Cayley table for ⟨Z6,+6⟩.

2.12. Suppose that ∗ is an associative and com-
mutative binary operation on a set S. Show that
the subset

H = {a ∈ S ∶ a ∗ a = a}

of S is closed under ∗. (The elements of H are
called idempotents for ∗.)

2.13. Which of the following are groups? Why?
(That is, either verify that the axioms hold, or
explain why one of them fails.)

(a) R+ under addition. (Here R+ denotes the
set of all positive real numbers.)

(b) The set 3Z of integers that are multiples
of 3, under addition.

(c) R−{1} under the operation a∗b = a+b−ab.
(d) Z under the operation a ∗ b = a + b − 1.

(e) The set of all rational numbers with de-
nominator divisible by 5 (when written in
lowest terms) under the operation a ∗ b =
a + b.

(f) Any set containing more than one element
under the operation a ∗ b = a.

2.14. The following table defines a binary oper-
ation on the set S = {a, b, c}.

∗ a b c

a a b c

b b b c

c c c c

Is ⟨S,∗⟩ a group?

2.15. Let G be the set of all real-valued func-
tions f on the real line which have the property
that f(x) ≠ 0 for all x ∈ R. In other words,

G = {f ∶ R→ R ∶ f(x) ≠ 0 for all x ∈ R}.

Define the product f ×g of two functions f, g ∈ G
by

(f × g)(x) = f(x)g(x) for all x ∈ R.

With this operation, does G form a group?
Prove or disprove.



118 Group Theory

2.16. Let G be a group in which a ∗ a = e for all
a ∈ G, show that G is abelian.

2.17. We saw earlier that any group of order 1,
2, or 3 is abelian. Show that any group of order
4 must be abelian. (Hint: Try to write down
all the possible group tables in this case. Up to
reordering the elements of the group, there will
only be two possibilities.)

2.18.* Try to extend the previous problem by
showing that any group of order 5 must also be
abelian.

2.19. Let D4 be the 4th dihedral group, which
consists of symmetries of the square. Let r ∈D4

denote counterclockwise rotation by 90○, and let
m denote reflection across the vertical axis.

1 2

34

4 1

23

r

1 2

34

2 1

43

m

Check that
rm =mr−1,

and conclude that D4 is a nonabelian group of
order 8.

2.20. We mentioned earlier that elements of Dn
can be thought of as permutations of the vertices
of the regular n-gon. For example, the rotation r
of the square mentioned in the last problem can
be identified with the permutation

ρ = ( 1 2 3 4
2 3 4 1

) .

Write the reflection m as a permutation µ ∈ S4,
and compute the product ρµ in S4. Then com-
pute rm ∈ D4, and write it as a permutation
σ. Check that σ = ρµ. (In other words, this
identification of symmetries of the square with
permutations respects the group operations.)

2.21. Recall that if ∗ is a binary operation on
a set S, an element x of S is an idempotent if
x ∗ x = x. Prove that a group has exactly one
idempotent element.

2.22. Consider the group ⟨Z30,+30⟩ under addi-
tion.

(a) Find the orders of the elements 3, 4, 6, 7,
and 18 in Z30.

(b) Find all the generators of ⟨Z30,+30⟩.

2.23. Determine whether each of the following
subsets is a subgroup of the given group. If not,
state which of the subgroup axioms fails.

(a) The set of real numbers R, viewed as a
subset of the complex numbers C (under
addition).

(b) The set πQ of rational multiples of π, as
a subset of R.

(c) The set of n×n matrices with determinant
2, as a subset of GLn(R).

(d) The set {i,m1,m2,m3} ⊆D3 of reflections
of the equilateral triangle, along with the
identity transformation.

2.24. Show that if G is a finite group and ∣G∣ is
even, then there is an element a ∈ G such that
a ≠ e and a2 = e.

2.25. Let a and b be elements of a group G.
Show that if ab has finite order n, then ba also
has order n.

2.26. Let G be a group and let a ∈ G. An ele-
ment b ∈ G is called a conjugate of a if there ex-
ists an element x ∈ G such that b = xax−1. Show
that any conjugate of a has the same order as a.

2.27. Let G be a group. If H and K are sub-
groups of G, show that H ∩K is also a subgroup
of G.

2.28. Let r and s be positive integers, and define

H = {nr +ms ∶ n,m ∈ Z} .

(a) Show that H is a subgroup of Z.

(b) We saw earlier that every subgroup of Z is
cyclic. Therefore, H = ⟨d⟩ for some d ∈ Z.
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What is this integer d? Prove that the d
you’ve found is in fact a generator for H.

2.29. We proved earlier that every subgroup of
a cyclic group is cyclic. The following statement
is almost the converse of this:

“Let G be a group. If every proper subgroup of
G is cyclic, then G is cyclic.”

Find a counterexample to the above statement.

2.30. Prove that any subgroup of an abelian
group is abelian.

2.31. Let X be a set, and recall that SX is the
group consisting of the bijections from S to itself,
with the binary operation given by composition
of functions. (If X is finite, then SX is just the
symmetric group on n letters, where X has n
elements.) Given x1 ∈X, define

H = {f ∈ SX ∶ f(x1) = x1} .
Show that H ≤ SX .

2.32. Let G be a group. Define

Z(G) = {a ∈ G ∶ ax = xa for all x ∈ G} .
In other words, the elements of Z(G) are ex-
actly those that commute with every element of
G. Prove that Z(G) is a subgroup of G, called
the center of G.

2.33. Show that if H and K are subgroups of an
abelian group G, then

{hk ∶ h ∈H and k ∈K}
is a subgroup of G.

2.34. We know that if p is a prime number, then
the cyclic group Zp has no proper subgroups as a
consequence of Lagrange’s theorem. This prob-
lem will have you investigate a “converse” to this
result.

(a) If G is a finite group which has no proper
subgroups (other than {e}), prove that G
must be cyclic.

(b) Extend the result of (a) by showing that
if G has no proper subgroups, then G is
not only cyclic, but

∣G∣ = p

for some prime number p.

2.35.* Let G be a group, and let H be a sub-
group of G.

(a) Let a be some fixed element of G, and
define

aHa−1 = {aha−1 ∶ h ∈H}.

This set is called the conjugate of H by
a. Prove that aHa−1 is a subgroup of G.

(b) Define the normalizer of H in G to be

N(H) = {a ∈ G ∶ aHa−1 =H}.

Prove that N(H) is a subgroup of G.

2.36. Determine if each mapping is a homomor-
phism. State why or why not. If it is a homomor-
phism, find its kernel, and determine whether it
is one-to-one and/or onto.

(a) Define ϕ ∶ Z → R by ϕ(n) = n. (Both are
groups under addition here.)

(b) Let G be a group, and define ϕ ∶ G → G
by ϕ(a) = a−1 for all a ∈ G.

(c) Let G be an abelian group, and define
ϕ ∶ G→ G by ϕ(a) = a−1 for all a ∈ G.

(d) Let G be a group, and define ϕ ∶ G → G
by ϕ(a) = a2 for all a ∈ G.

2.37. Consider the subgroup H = {i,m1} of the
dihedral group D3. Find all the left cosets of
H, and then find all of the right cosets of H.
Observe that the left and right cosets do not co-
incide.

2.38. Find the cycle decomposition and order of
each of the following permutations.

(a) ( 1 2 3 4 5 6 7 8 9
3 1 4 2 7 6 9 8 5

)

(b) ( 1 2 3 4 5 6 7
7 6 5 4 3 2 1

)

2.39. Determine whether each permutation is
even or odd.

(a) ( 1 2 3 4 5 6 7 8 9
2 4 5 1 3 7 8 9 6

)

(b) (1 2 3 4 5 6)(7 8 9)
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(c) (1 2 3 4 5 6)(1 2 3 4 5 7)

(d) (1 2)(1 2 3)(4 5)(5 6 8)(1 7 9)

2.40. Let G and G′ be groups, and suppose that
∣G∣ = p for some prime number p. Show that any
group homomorphism ϕ ∶ G→ G′ must either be
the trivial homomorphism or a one-to-one homo-
morphism.

2.41. Let ϕ ∶ G→ G′ be a group homomorphism.
If G is abelian and ϕ is onto, prove that G′ is
abelian.

2.42. Let G be an abelian group, n a positive
integer, and define ϕ ∶ G→ G by ϕ(x) = xn.

(a) Show that ϕ is a homomorphism.

(b) Suppose that G is a finite group and that
n is relatively prime to ∣G∣. Show that ϕ
is an automorphism of G.

2.43. Let V4 = {e, a, b, c} denote the Klein 4-
group. Since ∣V4∣ = 4, Cayley’s theorem tells
us that V4 is isomorphic to a subgroup of S4.
In this problem you will apply techniques from
the proof of the theorem to this specific example
in order to determine which subgroup of S4 is
matched up to V4.

Suppose we label the elements of the Klein
4-group using the numbers 1 through 4, in the
following manner:

e a b c

1 2 3 4

Now multiply every element by a in order, i.e.,

e a b c

1 2 3 4

a e c b

2 1 4 3

Then multiplication by a determines a permu-
tation of V4 (by the proof of Cayley’s theorem).
This corresponds to an element of S4 via the la-
bels that we have given the elements of V4. Do
this for every element x of V4. That is, write
down the permutation in S4 (in cycle notation)
that is obtained by multiplying every element of
V4 by x.

2.44.* Let G be a group, and let Aut(G) denote
the set of all automorphisms of G. We can define
a binary operation on Aut(G) by:

θψ = θ ○ ψ

for θ,ψ ∈ Aut(G).
(a) Prove that if θ,ψ ∈ Aut(G), then θψ ∈

Aut(G). (That is, show that we have in-
deed defined a binary operation by check-
ing that Aut(G) is closed.

(b) If θ ∈ Aut(G), then θ is in particular a
bijection, so it has an inverse θ−1. Prove
that θ−1 is a homomorphism, so that θ−1 ∈
Aut(G) for all θ ∈ Aut(G).

(c) Use parts (a) and (b) to show that
Aut(G) is itself a group under composi-
tion.

2.45.* Let G be a group with identity element
e, and let X be a set. A (left) action of G on
X is a function G ×X →X, usually denoted by

(g, x)↦ g ⋅ x

for g ∈ G and x ∈X, satisfying:

1. g1 ⋅(g2 ⋅x) = (g1g2) ⋅x for all g1, g2 ∈ G and
all x ∈X.

2. e ⋅ x = x for all x ∈X.

Intuitively, a group action assigns a permutation
of X to each group element. (You will explore
this idea in part (d) below.)

Finally, there are two important objects that
are affiliated to any group action. For any x ∈X,
the orbit of x under G is the subset

orb(x) = {g ⋅ x ∶ g ∈ G}

of X, and the stabilizer of x is the subset

Gx = {g ∈ G ∶ g ⋅ x = x}

of G.

(a) (Warm up.) We have already seen that
it is possible to view the elements of the
dihedral group D3 as permutations of the
vertices of a triangle, labeled as below:

1 2

3
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Thus D3 acts on the set X = {1,2,3} of
vertices by permuting them. Determine
the orbit and stabilizer of each vertex un-
der this action.

(b) (Another example.) Let G be a group, let
X = G, and define a map G ×X → G by

(g, x)↦ g ⋅ x = gx

for all g ∈ G and x ∈ X, i.e., the product
of g and x as elements of G. Verify that
this defines a group action of G on itself.
(This action is called left translation.)
Given x ∈ X = G, what are orb(x) and
Gx?

(c) Given an action of a group G on a set X,
define a relation ∼ on X by x ∼ y if and
only if there exists g ∈ G such that y = g ⋅x.
Prove that ∼ is an equivalence relation on
X. What are the equivalence classes?

(d) Prove that for every x ∈ X, the stabilizer
Gx is a subgroup of G.

(e) Given a fixed g ∈ G, define a function
σg ∶X →X by

σg(x) = g ⋅ x.

Show that σg is bijective, so σg defines a
permutation of X. (Compare this to the
proof of Cayley’s theorem.)

(f) Recall that SX denotes the group of per-
mutations of X under composition. De-
fine a function ϕ ∶ G→ SX by

ϕ(g) = σg

for all g ∈ G. Prove that ϕ is a homomor-
phism. (Note: The proof of Cayley’s the-
orem is a special case of this phenomenon,
withG acting on itself by left translation.)

Parts (d) and (e) above show that a group ac-
tion gives an alternative way of viewing a group
as a collection of symmetries (or permutations)
of some object. Cayley’s theorem provides a spe-
cific example, where a group is viewed as a col-
lection of permutations of itself. Group actions
provide one of the most interesting ways in which
groups are used in practice.

2.46. We proved that the kernel of any homo-
morphism is a normal subgroup. Conversely, you

will show that any normal subgroup is the ker-
nel of some homomorphism. That is, let G be
a group with N a normal subgroup of G, and
define a function π ∶ G→ G/N by

π(g) = Ng
for all g ∈ G. Prove that π is a homomorphism,
and that kerπ = N .

2.47. Recall that R× denotes the group of
nonzero real numbers (under multiplication),
and let N = {−1,1}. Show that N is a normal
subgroup of R×, and that R×/N is isomorphic to
the group of positive real numbers under mul-
tiplication. (Hint: Use the First Isomorphism
Theorem.)

2.48. Let ϕ ∶ Z8 → Z4 be given by

ϕ(x) = [x]4,
i.e., the remainder of x mod 4. Find kerϕ. To
which familiar group is Z8/kerϕ isomorphic?

2.49. If G is a group and M ⊴G, N ⊴G, prove
that M ∩N ⊴G. (You proved in an earlier exer-
cise that M ∩N is a subgroup of G, so you only
need to prove that it is normal.)

2.50. Let G be a group. Recall from an earlier
exercise that the center of G is the set Z(G)
defined by

Z(G) = {x ∈ G ∶ xa = ax for all a ∈ G} .
You proved that Z(G) is a subgroup of G.

(a) Prove that Z(G) ⊴G.

(b) If G/Z(G) is cyclic, prove that G is
abelian.

2.51. Let G be a group and H ≤ G. If [G ∶H] =
2, prove that H is normal in G.

2.52.* Let G be a group, and recall that Aut(G)
is the set of all automorphisms of G. You proved
on the last homework that Aut(G) forms a group
under composition.

(a) Given g ∈ G, define a function θg ∶ G → G
by

θg(a) = gag−1

for all a ∈ G. Show that θg ∈ Aut(G).
(Such an automorphism is called an in-
ner automorphism.)



122 Group Theory

(b) Let Inn(G) denote the set of all inner
automorphisms of G. Then Inn(G) ⊂
Aut(G) by part (a). Show that Inn(G)
is actually a subgroup of Aut(G).

(c) Prove that Inn(G) is a normal subgroup.

2.53. Classify all abelian groups of order 600 up
to isomorphism.

2.54. Let G be a group, and let H ≤ G.

(a) If G is abelian, prove that G/H is abelian.
(Hint: You may want to use a result from
an earlier exercise.)

(b) Prove that if G is cyclic, then G/H is also
cyclic.

2.55. Prove that if G1 and G2 are abelian
groups, then G1 ×G2 is abelian.

2.56. If G1 and G2 are groups, prove that G1 ×
G2 ≅ G2 ×G1.

2.57. Let G = Z4×Z6, and let H = ⟨(1,0)⟩. Find
all the right cosets of H in G, and compute the
quotient group G/H. (That is, identify it with a
more familiar group.)

2.58.* Let Dn denote the dihedral group of or-
der 2n, let r ∈ Dn denote the counterclockwise
rotation by 2π/n radians, and let m denote any
reflection of the regular n-gon. Recall that the

rotation subgroup

H = {e, r, r2, . . . , rn−1}

is a normal subgroup of Dn. Let K = {e,m}; we
saw in class that K is a subgroup, but it is not
normal. You will need two facts regarding Dn
(which you do not need to prove):

1. Every element of Dn can be written as
rimj , with 0 ≤ i ≤ n − 1 and j = 0 or 1.
Thus Dn =HK.

2. You proved earlier (in a special case) that
mr = r−1m.

Define a group G as follows: the elements of G
are pairs (ri,mj) (so that G = H ×K as sets),
but the binary operation on G is “twisted” in
some sense. More specifically, we define

(ri, e)(rj , e) = (ri+j , e)
(ri,m)(rj , e) = (ri−j ,m)
(ri, e)(rj ,m) = (ri+j ,m)
(ri,m)(rj ,m) = (ri−j , e)

for all i, j between 1 and n − 1. Now define
ϕ ∶ G→Dn by

ϕ(ri,mj) = rimj .

Prove that ϕ is an isomorphism of G onto Dn.
(This shows that Dn is not quite a direct prod-
uct of the subgroups H and K, since K isn’t
normal. However, things can be made to work if
we modify the multiplication on H ×K slightly.)



Chapter 3

Ring Theory

We’re now done with our study of groups (at least for the sake of groups). The plan
now is to move on to more complicated algebraic structures, namely objects called
rings.

3.1 Rings

You’ll probably agree that groups were kind of strange at first. We had a set with
a single binary operation that satisfied certain nice properties, and we were able to
come up with many examples of such things. Some of these examples were ones we
already knew, such as Z, R, and Q under addition. However, these examples all re-
ally come equipped with two binary operations, namely addition and multiplication.

Example 3.1.1. We already know that Z forms an abelian group under addition.
What nice properties are satisfied by multiplication on Z?

• associativity

• commutativity

• identity

• distributivity (if a, b ∈ Z and n ∈ Z, then n(a + b) = na + nb)

These four properties really tell us that Z is a model example of a ring.

Definition 3.1.2. A ring is a set R equipped with two binary operations, de-
noted by + and ⋅, satisfying the following conditions.

1. ⟨R,+⟩ is an abelian group, meaning that

(a) + is associative and commutative;

123
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(b) there is an additive identity 0 ∈ R such that 0+ a = a for all a ∈ R; and

(c) for each a ∈ R, there is an additive inverse −a ∈ R so that a+ (−a) = 0.

2. The multiplication operation ⋅ is associative.

3. (Distributive law) For all a, b, r ∈ R, we have

r ⋅ (a + b) = r ⋅ a + r ⋅ b

and
(a + b) ⋅ r = a ⋅ r + b ⋅ r.

You’ll probably notice that we left two things off this list. We did not require
that multiplication be commutative, or that there is even a multiplicative identity.
Rings that have these properties are special, and thus have special names.

Definition 3.1.3. A commutative ring is a ring R for which

a ⋅ b = b ⋅ a

for all a, b ∈ R.

Definition 3.1.4. A ring with identity1 (also called a ring with unity or a
unital ring) is a ring R which contains an element 1 ∈ R (with 1 ≠ 0) satisfying

1 ⋅ a = a ⋅ 1 = a

for all a ∈ R.

Before we proceed, let’s look at some familiar (and less familiar) examples of rings.

Example 3.1.5. 1. We already saw that Z is a ring, and actually a commutative
ring with identity.

2. Similarly, Q, R, and C are all commutative rings with identity with respect to
their usual operations.

3. For any n, Zn is a commutative ring with identity with respect to modular
addition and multiplication.

4. Let’s try a noncommutative example. Recall that Mn(R) is the set of all n×n
matrices with real coefficients. Then Mn(R) is a ring with respect to matrix
addition and multiplication. It is noncommutative, but it has an identity,
namely the identity matrix I.
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5. Let 2Z be the set of all even integers. Then 2Z is a commutative ring with
respect to the usual arithmetic. It does not have an identity, however, since
1 /∈ 2Z.

6. Let C([0,1],R) = {f ∶ [0,1]→ R ∶ f is continuous}. Then C([0,1],R) is a ring
with respect to pointwise addition and multiplication:

f + g(x) = f(x) + g(x)

and

fg(x) = f(x)g(x).

It is also commutative, and its multiplicative identity is the function that is
identically 1.

7. This will be one of the main examples that we’ll study. Let Q[x] be the set
of all polynomials with rational coefficients. Then Q[x] forms a ring: we add
two polynomials by adding their coefficients, say

[2x2 + 3x +
1

2
] + [5x3 +

7

2
x + 2] = 5x3 + 2x2 +

13

2
x +

3

2
.

We multiply them by “foiling”:

(x3 + 1)(3x2 + 4x + 2) = 3x5 + 4x4 + 2x3 + 3x2 + 4x + 2.

This turns Q[x] into a commutative ring with identity. (We could also do this
with any commutative ring in place of Q.)

3.2 Basic Facts and Properties of Rings

We’ll soon start investigating particular types of rings. Before we can do this,
we should prove some relatively simple facts about rings which will be needed in
computations.

Proposition 3.2.1. Let R be a ring. Then for all a, b ∈ R, we have:

(a) 0 ⋅ a = a ⋅ 0 = 0;

(b) (−a)b = a(−b) = −(ab);

(c) (−a)(−b) = ab; and

(d) if 1 ∈ R, then (−1)a = a(−1) = −a.
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Proof. (a) If a ∈ R, then we have

0 ⋅ a = (0 + 0) ⋅ a = 0 ⋅ a + 0 ⋅ a

by the right distributive law. But this means that 0 ⋅ a is an additive idempotent
in the abelian group ⟨R,+⟩. There is only one such element, so 0 ⋅ a = 0. A similar
argument works to show that a ⋅ 0 = 0.

(b) Let a, b ∈ R. Then by distributivity,

ab + (−a)b = (a + (−a))b = 0 ⋅ b = 0,

so (−a)b = −(ab). The same sort of argument works to show that a(−b) = −(ab).
(c) If we apply part (b), we have

(−a)(−b) = −((−a)b) = −(−(ab)) = ab.

(d) Again by part (b), (−1)a = −(1 ⋅ a) = −a, and a(−1) = −(a ⋅ 1) = −a.

As opposed to groups, there are many different types of rings that one can
consider depending on how the multiplication behaves. In particular, some strange
things can happen regarding the multiplication in a ring.

Example 3.2.2. Let R =M2(R), and let A = (
1 0
0 0

) and B = (
0 0
0 1

). Then

AB = (
1 0
0 0

)(
0 0
0 1

) = (
0 0
0 0

) ,

but neither A nor B is the zero matrix. In other words, it is possible to multiply
two nonzero elements of a ring and obtain 0. Such anomalies have a special name
in ring theory.

Definition 3.2.3. An element a ≠ 0 of a (commutative) ring R is called a zero
divisor if there exists b ∈ R such that ab = 0.

Many of the results that we will obtain will involve commutative rings which are
free of zero divisors.

Definition 3.2.4. A commutative ring R is called an integral domain if R
contains no zero divisors. Equivalently, if a, b ∈ R with ab = 0, then either a = 0
or b = 0.

Example 3.2.5. 1. The rings Z, Q, R, and C are all integral domains.
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2. When n is composite, Zn is not an integral domain. For example, in Z6,

2 ⋅ 3 = 0.

3. The function ring C([0,1],R) is not an integral domain. Let

f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 x < 1/2

x − 1/2 x ≥ 1/2

and

g(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x − 1/2 x < 1/2

0 x ≥ 1/2.

Then f(x)g(x) = 0 for all x ∈ R, but neither function is identically zero.

Another thing you may have noticed is that elements of rings (with identity)
do not necessarily possess multiplicative inverses. The ones that do have a special
name.

Definition 3.2.6. Let R be a ring with identity. An element a ∈ R is called a
unit if there is a b ∈ R such that

ab = ba = 1.

(We usually write b = a−1.) The set of all units is denoted by R×, called the unit
group2 of R.

Example 3.2.7. Let’s compute the unit groups in some rings.

1. What are the units in Z? The only integers that have multiplicative inverses
are 1 and −1, so

Z× = {1,−1}.

2. What is the unit group in Q? Every nonzero rational number has a multi-
plicative inverse, so

Q× = Q − {0}.

Conveniently enough, this is the notation that we have already used for the
group of nonzero rational numbers under multiplication. Similarly, we have
R× = R − {0} and C× = C − {0}.

3. Let’s consider the ring Zn for n ∈ Z. We proved a long time ago that the
elements of Zn that have multiplicative inverses are precisely those which are
relatively prime to n. Therefore,

Z×n = {a ∈ Zn ∶ gcd(a,n) = 1}.

Note that if p is prime, then Z×p = {1,2, . . . , p − 1} = Zp − {0}.
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Of course 0 never has a multiplicative inverse, but we’ve seen that it’s possible
that all other elements do. Such rings are special.

Definition 3.2.8. A ring R with identity is called a division ring if every
nonzero a ∈ R is a unit. Equivalently, R× = R − {0}.

Definition 3.2.9. A commutative division ring is called a field.

Example 3.2.10. 1. The integral domains Q, R, and C are all fields.

2. Since only 1 and −1 are units, Z is not a field.

3. If p is prime, Zp is a field. It is an example of a finite field.

Exercise 3.1. Let R be a commutative ring with identity. Show that if u ∈ R is
a unit, then u cannot be a zero divisor. As a consequence, any field is an integral
domain.

3.2.1 The Quaternions

You may have noticed that we produced several examples of fields (and hence of
division rings), but no division rings that weren’t fields. There is an example of such
a thing, and it’s an interesting one to both mathematicians and physicists.

Example 3.2.11. The quaternions were invented by the Irish mathematician and
physicist William Rowan Hamilton in the middle of the 19th century. Motivated
by the complex numbers and their geometric interpretations, he had tried to define
multiplication on triples of real numbers. (That is, he tried to turn R3 into a ring.)
This didn’t quite work (and, in fact, is impossible), but he had a breakthrough one
day while walking around campus. It was so exciting to him that he actually carved
his initial identity into a stone bridge.

Hamilton’s idea was to consider three elements i, j, and k, each of which behave
like the imaginary unit in C:

i2 = j2 = k2 = ijk = −1.

From this single identity, it is possible to deduce that

ij = k, jk = i, ki = j,

and that these elements anticommute:

ij = −ji, kj = −kj, ik = −ki.
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The quaternions are then defined to be the set

H = {a1 + a2i + a3j + a4k ∶ a1, a2, a3, a4 ∈ R} .

In other words, one can think of H as a four-dimensional real vector space with
basis {1, i, j, k}. The addition operation works just like addition of vectors in R4:
for example,

(1 + 4i + 7j + 2k) + (−2 + 6i − 9j − 4k) = −1 + 10i − 2j − 2k.

In general, we would have

(a1+a2i+a3j+a4k)+(b1+b2i+b3j+b4k) = (a1+b1)+(a2+b2)i+(a3+b3)j+(a4+b4)k.

Multiplication works like multiplication of complex numbers, but more complicated.
We simply multiply everything out, and then use the quaternion identities listed
above to simplify the result: for example,

(3 − 5k)(1 + 4i − 5j) = 3 + 12i − 15j − 5k − 20ki + 25kj

= 3 + 12i − 15j − 5k + 20j − 25i

= 3 − 13i + 5j − 5k

There is a general formula for the coefficients of the product of two quaternions, but
it’s usually easier to simply multiply on a case-by-case basis:

(a1 + a2i + a3j + a4k)(b1 + b2i + b3j + b4k) = c1 + c2i + c3j + c4k,

where

c1 = a1b1 − a2b2 − a3b3 − a4b4

c2 = a1b2 + a2b1 + a3b4 − a4b3

c3 = a1b3 − a2b4 + a3b1 + a4b2

c4 = a1b4 + a2b3 − a3b2 + a4b1.

It’s possible to check that multiplication is associative and distributive, though we
won’t do here. Also, note that for example we have

(1 + 3i − 4j − 10k)(1 − 3i + 4j + 10k) = 1 − 3i + 4j + 10k + 3i − 9i2 + 12ij + 30ik

− 4j + 12ji − 16j2 − 40jk − 10k + 30ki − 40kj − 100k2

= 1 + 9 + 12k − 30j − 12k + 16 − 40i + 30j + 40i + 100

= 1 + 9 + 16 + 100

= 126.
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In general, one can verify that

(a1 + a2i + a3j + a4k)(a1 − a2i − a3j − a4k) = a
2
1 + a

2
2 + a

2
3 + a

2
4.

This fact allows us to define the inverse of any nonzero quaternion: if a1+a2i+a3j+
a4k ≠ 0, then the quantity

α = a2
1 + a

2
2 + a

2
3 + a

2
4

is nonzero, and it can be checked that

(a1 + a2i + a3j + a4k) (
a1

α
−
a2

α
i −

a3

α
j −

a4

α
k) = 1.

Thus H× = H−{0}, and H is a division ring. It is not a field, however, since we have
ij ≠ ji, for example.

Remark 3.2.12. Hamilton’s quaternions may seem somewhat contrived, but they
are more than just a method for multiplying vectors in R4 together. They are
actually important in physics, since they can be used to model rotations in R3.

3.3 Ring Homomorphisms and Ideals

Since rings can be thought of as abelian groups with an additional binary operation,
it might be expected that there are analogues to various facts and results from group
theory. In particular, one might guess that the ideas of subgroup, homomorphism,
normal subgroup, and quotient group can be ported over to rings. Of course they
can, and many results will come simply because we have already done much of the
work in our study of abelian groups.

The first object to mention is the analogue of a subgroup, which is quite naturally
called a subring.

Definition 3.3.1. Let R be a ring. A subring of R is a subset S ⊆ R that is a
ring with respect to the operations inherited from R.

Subrings will not be tremendously important, and we’ll be more interested in
their “normal” brethren. However, we’ll still give a couple of examples of impor-
tance.

Example 3.3.2. 1. We saw earlier that Z and 2Z are both rings, and since
2Z ⊆ Z, 2Z is a subring of Z.

2. Similarly, Z is a subring of Q.

3. Any ring R automatically contains two subrings, namely {0} and R itself.
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The next idea that we want to generalize is that of a homomorphism. We know
that a group homomorphism is a function between groups that preserves the binary
operation. What should we then expect a ring homomorphism to satisfy?

Definition 3.3.3. Let R and R′ be rings. A homomorphism is a function
ϕ ∶ R → R′ with the property that

ϕ(a + b) = ϕ(a) + ϕ(b)

and
ϕ(ab) = ϕ(a)ϕ(b)

for all a, b ∈ R.

Example 3.3.4. 1. Let ϕ ∶ Z→ Zn be given by reduction mod n:

ϕ(a) = [a]n = a mod .

We have already seen that this is a homomorphism of abelian groups, but
it is also not hard to see that it preserves multiplication, and is thus a ring
homomorphism.

2. Define ev0 ∶ Q[x] → Q by ev0(f) = f(0). This map evaluates a polynomial at
0, and is thus called an evaluation homomorphism. It is a ring homomor-
phism, since

ev0(f + g) = (f + g)(0) = f(0) + g(0) = ev0(f) + ev0(g)

and
ev0(fg) = (fg)(0) = f(0)g(0) = ev0(f)ev0(g).

Note that a ring homomorphism is also a group homomorphism with respect to
the underlying abelian groups ⟨R,+⟩ and ⟨R′,+⟩. Then we should of course be able
to say a few things about ring homomorphisms using our knowledge of groups. First,
recall that the image of any group homomorphism is a subgroup of the codomain.
What more can we say if we are dealing with rings?

Proposition 3.3.5. If ϕ ∶ R → R′ is a ring homomorphism, then ϕ(R) is a
subring of R′.

Also, we can still talk about the kernel of a homomorphism in the ring case, and
things work much the same way as they do with groups.



132 Ring Theory

Definition 3.3.6. Let ϕ ∶ R → R′ be a ring homomorphism. The kernel of ϕ is
the set

kerϕ = {x ∈ R ∶ ϕ(x) = 0}.

Here we have defined the kernel in terms of the additive identity because we want
to extend the idea of the kernel from group theory. That is, we want to consider
ϕ first as a homomorphism of abelian groups, and then show that we can say more
about the kernel by viewing ϕ as a ring homomorphism. With this in mind, we
know that R forms an abelian group under addition, so of course the kernel is an
additive subgroup of R. Can we say more? If a, b ∈ kerϕ, then

ϕ(ab) = ϕ(a)ϕ(b) = 0 ⋅ 0 = 0,

so kerϕ is a subring of R. In fact, it’s even stronger than this: if a ∈ kerϕ and r ∈ R,
then

ϕ(ra) = ϕ(r)ϕ(a) = ϕ(r) ⋅ 0 = 0

and
ϕ(ar) = ϕ(a)ϕ(r) = 0 ⋅ ϕ(r) = 0,

so ra, ar ∈ kerϕ. This says that kerϕ “absorbs” elements of R under multiplication.
Therefore, it is actually much more than a subring.

Definition 3.3.7. Let R be a ring. An ideal of R is a subring I ⊆ R with the
property that ra, ar ∈ I for all a ∈ I and r ∈ R. We write I ⊴R to denote that I
is an ideal of R.

Of course we have already verified the following fact in the discussion above.

Theorem 3.3.8. Let ϕ ∶ R → R′ be a ring homomorphism. Then kerϕ is an
ideal of R.

Below are some specific examples of ideals.

Example 3.3.9. 1. Every ring R always contains two trivial ideals: {0} and R
itself.

2. For any n ∈ Z, nZ is an ideal of Z. We already know that nZ is a subgroup of
the additive group Z, and if r ∈ Z and na ∈ nZ, then

r(na) = n(ra) ∈ nZ,

so nZ is an ideal. We should also note that nZ is the kernel of the homomor-
phism given by reduction mod n.
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3. We saw that Z is a subring of Q, but it is not an ideal.

4. We saw that ev0 ∶ Q[x]→ Q is a homomorphism. What is its kernel? In order
to have

ev0(f) = f(0) = 0,

we must have that f has no constant term, i.e., that f(x) = x ⋅ g(x) for some
other polynomial g ∈ Q[x]. Therefore,

ker ev0 = {x ⋅ g ∶ g ∈ Q[x]}.

5. Let C([0,1],R) be the ring of real-valued continuous functions on [0,1], and
define

I = {f ∈ C([0,1],R) ∶ f(0) = 0}.

Then I ⊴ C([0,1],R): it is clearly closed under addition, and if f ∈ I and
g ∈ C(R), then

(gf)(0) = g(0)f(0) = g(0) ⋅ 0 = 0,

so gf = I. Again, we could have also appealed to the fact that I = ker ev0, the
homomorphism given by evaluation at 0.

6. If F is a field, we claim that F has no nontrivial ideals. Suppose that I ⊴ F
and I ≠ {0}. Then there is a nonzero element a ∈ I, and a must be a unit.
Since I is an ideal, 1 = a−1a ∈ I. But if 1 ∈ I, then r = r ⋅ 1 ∈ I for any r ∈ R.
Therefore, I = F .

7. Just as any element of a group generates a cyclic subgroup, any element of a
ring generates an ideal. That is, given a ring R and a ∈ R, we define

(a) = {r1as1 + r2as2 +⋯ + rnasn ∶ ri, si ∈ R}.

Then (a) ⊴ R. If we assume that R is commutative (which is the case we’ll
usually be looking at), then this ideal is pretty easy to describe:

(a) = {ra ∶ r ∈ R}.

These ideals are usually given a special name.

Definition 3.3.10. An ideal of the form (a) for a ∈ R is called the principal
ideal generated by a.
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3.4 Quotient Rings

So far we’ve talked about some constructs for rings that mimic those of groups. We
have one left—we need to generalize the idea of a quotient group to rings. Just as
we needed to consider normal subgroups when we built quotient groups, we need to
consider ideals here. We will see why we need to do this along the way.

Let R be a ring and I ⊴R. Then I is an additive subgroup of the abelian group R
(hence normal), and we can form the quotient group R/I. Recall that the elements
of R/I are the cosets of I in R, which all have the form

I + a = {x + a ∶ x ∈ I} .

The group operation on I + a is the addition that is inherited naturally from R:

(I + a) + (I + b) = I + (a + b).

The obvious question to ask in this context is: can we turn R/I into a ring? The
natural thing to do would be to define the product of two cosets to be

(I + a)(I + b) = I + ab.

However, is this operation well-defined? We saw that things were not all well with
groups, and we needed to assume that the subgroup was normal to make the group
operation well-defined. In this context, it will be the fact that I is an ideal that
saves us. Suppose that I +a′ = I +a and I + b′ = I + b. Then we need I +a′b′ = I +ab,
or a′b′ − ab ∈ I. Well, a′ − a ∈ I and b′ − b ∈ I, so a′ = x + a and b′ = y + b for some
x, y ∈ I. Then

(I + a′)(I + b′) = (I + (a + x))(I + (b + y))

= I + (a + x)(b + y)

= I + (ab + ay + xb + xy).

Since I is an ideal, ay, xb, xy ∈ I, so this coset is simply I+ab. Therefore, the desired
definition of multiplication on R/I is well-defined, so we can make R/I into a ring.
Of course one would need to check that all of the necessary properties carry over
from R, but this is fairly routine.

Definition 3.4.1. The ring R/I is called the quotient ring of R by I.

There are two facts regarding quotient groups that should also hold for rings.
The first is that every ideal is the kernel of some homomorphism.
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Theorem 3.4.2. Let R be a ring and I an ideal of R. There is a homomorphism
ψ ∶ R → R/I given by

ψ(a) = a + I

such that kerψ = I.

The second is of course the ubiquitous First Isomorphism Theorem.

Theorem 3.4.3 (First Isomorphism Theorem). Let ϕ ∶ R → R′ be a surjective
ring homomorphism. Then there is an isomorphism ϕ̃ ∶ R/kerϕ→ R′ given by

ϕ̃(a + kerϕ) = ϕ(a).

Most of the work for both of these proofs has already been done in the context
of groups. In particular, we have already verified that these two maps are well-
defined homomorphisms of abelian groups, so we simply need to see that they respect
multiplication. This is not hard to do; for example, to prove the First Isomorphism
Theorem, we just need to see that

ϕ̃((a + kerϕ)(b + kerϕ)) = ϕ̃(ab + kerϕ)

= ϕ(ab)

= ϕ(a)ϕ(b)

= ϕ̃(a + kerϕ)ϕ̃(b + kerϕ).

Example 3.4.4. Let ev0 ∶ Q[x]→ Q be given by evaluation at 0. This is a surjective
homomorphism, since if a ∈ Q, the constant polynomial f ≡ a evaluates to a at 0.
We have already seen that the kernel is given by I = {x ⋅ g ∶ g ∈ Q[x]}. Therefore,

Q[x]/ker ev0 ≅ Q,

the field of rational numbers.

There is one more fact regarding quotient rings which carries over from group
theory. We saw that there was a correspondence theorem, which gave us a bijection
between subgroups of a quotient group G/N and subgroups of G containing N .
There is a similar result for quotient rings, albeit with ideals playing the role of
normal subgroups.

Theorem 3.4.5 (Correspondence Theorem). Let R be a ring and I an ideal in
R. There is a one-to-one correspondence between the ideals of R/I and the ideals
of R that contain I.
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We’re going to use this theorem in a few moments to prove some interesting
results about quotient rings. To do this, we should really parse what the theorem
says. If J is an ideal of R/I, then there is a unique ideal J ′ of R with I ⊆ J ′ ⊆ R. In
fact, this ideal is precisely

ψ−1(J) = {r ∈ R ∶ r + I ∈ J} .

Likewise, if K is an ideal of R that contains I, so I ⊂K ⊂ R, then there is a unique
corresponding ideal K ′ of R/I. This ideal is actually given by

ψ(K) = {a + I ∶ a ∈K} =K/I.

3.4.1 Maximal Ideals

To complete our discussion of ideals, we will now introduce a special kind of ideal
known as a maximal ideal. Our motivation is the following question: given a ring
R and an ideal I, when is the quotient ring R/I a field? This question might
seem strange at this point, but it will become important in our upcoming study of
polynomial rings.

We saw previously that if F is a field, then the only ideals of F are {0} and F
itself. We’ll start by proving the converse of this statement.

Theorem 3.4.6. Let R be a commutative ring with identity, and suppose that
the only ideals of R are {0} and R. Then R is a field.

Proof. We need to show that if a ∈ R and a ≠ 0, then a is a unit. Let I = (a). Since
a ≠ 0, I ≠ {0}, so we must have I = R. In particular, 1 ∈ I. But then 1 = ra for some
r ∈ R, so a is a unit with r = a−1. Therefore, R is a field.

We’ll now use this fact to define maximal ideals. Our goal here is two-fold: we
want to gain some tools that will be useful in our study of polynomials, but we also
want to capture some of the nice properties of the integers in more general rings.

We’ll start with the first goal. In studying polynomials, we’ll sometimes want to
form a quotient ring in order to obtain a field. That is, given a commutative ring R
with identity, we want to find an ideal I of R such that R/I is a field. (We’ll see why
we want this sort of thing soon enough.) What would we need to know about I in
order for this to work? Well, in light of the Correspondence Theorem and Theorem
3.4.6, it makes sense that I must satisfy the following definition.

Definition 3.4.7. Let R be a commutative ring with identity. An an ideal M of
R is said to be maximal if the only ideals of R containing M are R and M .
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With this definition in hand, we can strengthen Theorem 3.4.6 and completely
characterize when R/I is a field.

Theorem 3.4.8. Let R be a commutative ring with identity, and let M be an
ideal of R. Then R/M is a field if and only if M is maximal.

Proof. Suppose first that R/M is a field, but let’s assume that there is an ideal I of
R that contains M . By the Correspondence Theorem, the set

J = {a +M ∈ R/M ∶ a ∈ I}

is an ideal in R/M . But R/M is a field, so J must be either {0+M} or the whole ring
R/M . In the first case, we must have I = M , and in the second I = R. Therefore,
M is maximal.

On the other hand, suppose that M is maximal. Then the only ideals of R which
contain M are M and R. As in the last case, I claim that the only possible ideals
of R/M are of the form J as above, so the only ideals of R/M are the trivial ones.
Thus R/M has no nontrivial ideals, so it is a field by Theorem 3.4.6.

Example 3.4.9. 1. What are the maximal ideals in Z? The ideals of Z are all
of the form nZ for n ∈ Z, and what would it mean for nZ to be maximal? If
nZ ⊆mZ, this means that n ∈mZ, so m ∣ n. For nZ to be maximal, n cannot
have any proper divisors, so it must be prime. Thus the maximal ideals of Z
are exactly those of the form pZ, where p is prime. Of course we have already
seen that Zp = Z/pZ is a finite field.

2. Recall that I = ker ev0 = (x) is an ideal in Q[x], and that Q[x]/I ≅ Q is a field.
Therefore, I = (x) is a maximal ideal in Q[x].

3.5 Polynomial Rings

Now that we have laid the foundations of basic ring theory, we will turn our at-
tention to a specific class of rings—those whose elements are polynomials. In the
process, we will finally be able to tie everything that we’ve learned together with the
discussion that we had at the beginning of this class. We discussed the history of ab-
stract algebra, and we mentioned that many algebraic techniques and constructions
originally grew out of questions about polynomials and their roots. These algebraic
ideas have taken on a life of their own since, but this is where their origins lie.

Classically, people studied polynomials with rational coefficients, and we will
eventually focus on this case. However, we will begin by exploring polynomials whose
coefficients come from an arbitrary commutative ring. Let’s start by talking about
what a polynomial is in a formal sense. Let R be a commutative ring with identity,
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and let x be an indeterminate. That is, x is a sort of placeholder (or variable)
which can be formally multiplied by itself and by ring elements. A polynomial
over R is a formal expression of the type

p(x) = anx
n + an−1x

n−1 +⋯ + a1x + a0,

where ai ∈ R for all i. The ai are called the coefficients of the polynomial. We
denote the set of all polynomials with coefficients in R by R[x]. One can add and
multiply elements of R[x] in the obvious ways, and it is straightforward to check
the following:

Theorem 3.5.1. R[x] is a commutative ring with identity.

It is also fairly easy to see that R can be viewed as a subset of R[x], simply by
identifying an element a ∈ R with the constant polynomial p(x) = a. Thus R is a
subring of R[x], and the identity of R[x] is the identity 1 ∈ R.

Polynomial rings of course make sense for commutative rings with identity (and
even for noncommutative rings), but most of the time we will be concerned with
polynomials over a field. Therefore, we will fix a field F and consider the polynomial
ring F [x]. This ring has particularly nice properties, and we will spend most of our
time trying to gather all of them.

Polynomials vary wildly, and it can be hard to analyze them in general. However,
there is one thing that we can always talk about, and it will give us a lot of control
over polynomials.

Definition 3.5.2. Let p(x) = anx
n +⋯ + a1x + a0 be a polynomial in F [x] with

an ≠ 0. The integer n is called the degree of p, denoted by deg(p(x)). We define
the degree of the zero polynomial to be deg(0) = −∞.

An easy but useful fact is that the degree of a product of two polynomials is
directly related to the degrees of the factors.

Proposition 3.5.3. If p(x), q(x) ∈ F [x], then

deg(p(x)q(x)) = deg(p(x)) + deg(q(x)).

Proof. Let n = deg(p(x)) and m = deg(q(x)), so the leading terms of p and q are
anx

n and bmx
m, respectively. Then the leading term of pq is

(anx
n)(bmx

m) = anbmx
n+m,

so deg pq = n +m = deg(p) + deg(q).
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This gives us another important fact, which is that F [x] is always an integral
domain. (More generally, R[x] is an integral domain whenever R is.)

Theorem 3.5.4. If F is a field, then F [x] is an integral domain.

Proof. Let p, q ∈ F [x] with p ≠ 0 and q ≠ 0. Then deg(p),deg(q) ≥ 0, so by the
previous proposition, deg(pq) ≥ 0 as well. But this means that pq ≠ 0, so F [x] has
no zero divisors.

It is certainly nice that F [x] is an integral domain, though it is not altogether
unexpected. In reality, F [x] is much more than that, and its properties will tell us
much about polynomials in general. These properties will largely stem from the fact
that F [x] has its own version of the division algorithm—one can always divide one
polynomial into another to obtain a quotient and remainder. This is done via the
familiar method of polynomial long division.

Example 3.5.5. Consider the polynomials p(x) = 2x2 + 1, q(x) = x4 − 7x+ 1 ∈ Q[x].
We can divide p into q, and write

x4 − 7x + 1 = (2x2 + 1) (
1

2
x2 −

1

4
) + (−7x +

5

4
) .

Note that the degree of the remainder, −7x + 5/4, is less than that of p. This is a
model for the division algorithm, and we appeal to examples like this in lieu of a
formal proof to convince ourselves that it works.

Theorem 3.5.6 (Division Algorithm). Given two polynomials f(x), g(x) ∈ F [x],
there exist q, r ∈ F [x] such that

f(x) = q(x)g(x) + r(x),

with either deg(r(x)) < deg(g(x)), or r(x) = 0.

Using the Division Algorithm, we can prove that F [x] is a particular type of
integral domain, called a principal ideal domain.

Definition 3.5.7. An integral domain R is called a principal ideal domain
(abbreviated PID) if every ideal in R is principal.

You have already seen one example of a PID, which is the prototype. Recall
that every ideal in Z has the form nZ for some n ∈ Z, hence it is principal. More
generally, polynomial rings over fields are always PIDs.
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Theorem 3.5.8. If F is a field, then F [x] is a PID. That is, if I is an ideal in
F [x], then there exists h(x) ∈ F [x] such that

I = (h(x)) = {f(x)h(x) ∶ f(x) ∈ F [x]} .

Proof. Choose a polynomial h(x) ∈ I with minimal degree; that is, deg(h(x)) ≤

deg(t(x)) for all t ∈ I. Given t ∈ I, the division algorithm implies that there exist
q, r ∈ F [x] such that

t(x) = q(x)h(x) + r(x),

with either r(x) = 0 or deg(r(x)) < deg(h(x)). If we rewrite this, we have

r(x) = t(x) − q(x)h(x),

and since h ∈ I and I is an ideal, q(x)h(x) ∈ I. But t ∈ I as well, so r ∈ I. Since
h has minimal degree in I, we must have r = 0. Therefore, t(x) = q(x)h(x), and
t ∈ (h(x)). Clearly (h(x)) ⊆ I, so it follows that I = (h(x)) and F [x] is a PID.

The fact that F [x] is a PID is nice, but it’s hard to see how it immediately
relates to properties of polynomials. Though we won’t prove it, this gives us infor-
mation regarding the factorization of polynomials. Specifically, it tells us that any
polynomial with coefficients in a field factors uniquely into a product of irreducible
polynomials.

Definition 3.5.9. A polynomial f ∈ F [x] is said to be irreducible if whenever

f(x) = g(x)h(x)

for g, h ∈ F [x], then either deg(g) = 0 or deg(h) = 0.

An alternative way of saying that a polynomial is irreducible is that it cannot
be written as a product of two polynomials of smaller degree.

Example 3.5.10. The polynomial x2 + 1 is irreducible over Q, since it cannot
be factored into linear polynomials. It is reducible over C, however, since x2 + 1 =

(x+i)(x−i). On the other hand, x2−1 is reducible over Q, since x2−1 = (x+1)(x−1).

Theorem 3.5.11. Let F be a field. Every polynomial f ∈ F [x] can be written
as a product of irreducible polynomials. That is, there are irreducible polynomials
p1, . . . , pn ∈ F [x] and positive integers m1, . . . ,mn such that

f(x) = p1(x)
m1p2(x)

m2⋯pn(x)
mn .
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Furthermore, the factorization is unique: if f(x) = q1(x)
k1q2(x)

k2⋯qn(x)
kj is

another factorization into irreducibles, then n = j and there is a reordering of the
factors such that pi(x) = aiqi(x) for some ai ∈ F , and mi = ki for all i.

This theorem can be proven directly, but it is quite tedious. It can also be
proven by observing that this theorem is simply a statement of the fact that F [x]
is a special kind of ring known as a unique factorization domain, or UFD. It
can then be proven that any PID is also a UFD. This proof requires a bit of extra
technology, and we will not go into it here. We will simply accept the fact that
polynomials factor uniquely into irreducibles.

Since irreducibility is obviously an important concept, we should develop some
tools to help recognize it. We’ll specialize to the case of polynomials with rational
coefficients, and produce two results for checking whether a polynomial in Q[x]
irreducible. The first provides an answer to a question that seems fairly innocuous,
but has a surprisingly difficult resolution. Given a polynomial f ∈ Z[x] that is
irreducible over Z, does it remain irreducible over Q? In other words, is it possible
for a polynomial with integer coefficients to factor in Q[x], but not in Z[x]? The
answer is of course no, but the proof requires work. Because of this, we won’t write
it down.

Theorem 3.5.12 (Gauss’s lemma). Let f(x) ∈ Z[x], and suppose that f(x) =

g(x)h(x) for some g, h ∈ Q[x]. Then there exists u ∈ Q such that f(x) =

g1(x)h1(x), with g1(x) = ug(x) and h1(x) = u
−1h(x).

A consequence of Gauss’s lemma is a tool called Eisenstein’s criterion. It allows
us to check whether a polynomial with integer coefficients is irreducible over Q. It
looks like a strange criterion, but the proof should give some indication as to why
it works.

Theorem 3.5.13 (Eisenstein’s Criterion). Let f(x) = anx
n + ⋯ + a1x + a0 be a

polynomial in Z[x], and suppose that p ∈ Z is a prime number such that:

1. p ∣ ai for 0 ≤ i ≤ n − 1;

2. p ∤ an; and

3. p2 ∤ a0.

Then f is irreducible over Q.

Proof. Suppose to the contrary that f is not irreducible over Q; that is, there are
polynomials g, h ∈ Q[x] with deg(g),deg(h) ≥ 1 and f(x) = g(x)h(x). Then by
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Gauss’s lemma there are polynomials g1, h1 ∈ Z[x] such that f(x) = g1(x)h1(x) and
deg(g1) = deg(g), deg(h1) = deg(h). Write

g1(x) = brx
r +⋯ + b1x + b0

and

h1(x) = csx
s +⋯ + c1x + c0

with 1 ≤ r, s < n and br, cs ≠ 0. Note that a0 = b0c0, and since p ∣ a0 but p2 ∤ a0,
p must divide either b0 or c0 (but not both). Assume, without loss of generality,
that p ∣ c0. Now observe that an = brcs, and since p ∤ an, p cannot divide cs.
Therefore, there is some smallest index l, with 0 < l ≤ s, for which p ∤ cl. Consider
the coefficient al of f :

al = b0cl + b1cl−1 +⋯ + bl−1c1 + blc0.

We know that p divides al (since l < n) and that p divides the coefficients c0, c1, . . . , cl−1

of h1. Therefore, we must have p ∣ b0cl. But we know that p divides neither b0 nor
cl, so we have a contradiction. It follows that f must be irreducible over Q.

3.6 Roots of Polynomials

Most of our work regarding polynomials has been done with a specific goal in mind.
We’d like to study roots of polynomials, especially polynomials over Q. First, given
a polynomial f ∈ Q[x], what does it mean for α ∈ Q to be a root of f? It means
that if we evaluate f at α, we get 0:

f(α) = anα
n +⋯ + a1α + a0 = 0.

Here’s the big question: given a polynomial f ∈ Q[x], does f necessarily have a root
in Q? The answer is certainly no—for example, the quadratic polynomial x2 −2 has
no roots in Q.

Our primary goal moving forward will therefore be the following. Given a poly-
nomial f ∈ Q[x] that does not have a root in Q, can we find a field K containing
Q such that f has a root in K? Also, can we find the smallest such field? To go
one step further, can we find the smallest field containing Q which also contains all
the roots of f? These are the main questions that we intend to address in the next
couple of sections, and then we’ll give a brief overview of the branch of algebra that
comes from these ideas, called Galois theory.

Let’s try to push our previous example a bit further in order to motivate the
ensuing discussion.

Example 3.6.1. Consider the polynomial f(x) = x2 − 2 in Q[x]. We already
mentioned that f does not have a root in Q. What is the smallest field that contains
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a root of f? Certainly R contains a root, but this is a massive field compared to Q.
Perhaps there is a smaller field which also contains a root. We could look at, say,

Q(
√

2) = {a + b
√

2 ∶ a, b ∈ Q} .

It’s not hard to check that this set forms a field, and that Q ⊆ Q(
√

2). Furthermore,
it contains a root of f , namely

√
2.

Based on this example, the recipe is easy enough: we just take a root of the
polynomial and “adjoin” it to Q. It sounds easy enough, right? Not so much.
There are some bigger philosophical questions lurking in the shadows here. First,
what is

√
2, really? It is a real number with the property that it squares to 2. That

is, it is defined to be a root of x2 − 2. Before we can go tacking it on to Q, we need
to know that it even exists. That is, we need to prove that if f ∈ Q[x], there exists
some field K with Q ⊆ K containing a root of f . If you know some real analysis,
then you know that such a real number exists. However, this is not a course on
analysis, and we will try to construct

√
2 algebraically.

Let’s try to be more formal now. We’ll introduce some terminology that will
phrase our questions in a more mathematically precise manner.

Definition 3.6.2. Let K and F be fields with F a subfield of K. Then we say
that K is a field extension of F .

Then the two basic goals that we have in mind can be rephrased in the following
way.

1. Given a polynomial f ∈ Q[x], can we find the smallest extension K of Q that
contains a root of f?

2. Can we find the smallest extension L of Q in which f splits? (That is, all the
roots of f are contained in L.)

We’ll start by addressing the first question. The first step is to obtain a field
that contains a root of f , and then to determine a way of measuring how “small” it
is relative to Q.

Let F be a field and f(x) ∈ F [x]. Then we seek a field extension K of F such
that f has a root in K. That is, since F ⊆ K, we can view f as a polynomial
in K[x], and we want to find an element α ∈ K such that f(α) = 0. Let’s try to
simplify things first. Recall that since F is a field, every polynomial in F [x] factors
uniquely into a product of irreducible polynomials. In particular,

f(x) = p1(x)
m1p2(x)

m2⋯pn(x)
mn ,
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where the pi are irreducible in F [x]. If we view f ∈ K[x] and α ∈ K is a root of f ,
then we have

f(α) = p1(α)
m1⋯pn(α)

mn = 0

in K. Since K is an integral domain, we must have pi(α) = 0 for some i. That is,
to produce a root of f , we simply need to construct a root of one of its irreducible
factors.

The punchline of the above discussion is that we can restrict ourselves to irre-
ducible polynomials over F . That is, we simply need to show that if p ∈ F [x] is
irreducible, then there is an extension K of F in which p has a root. How should
we produce this extension? We want to somehow obtain a field from F [x]. The
way to do this is to form a quotient by a maximal ideal. That is, if we can find a
maximal ideal M that is somehow related to p(x), then the quotient F [x]/M would
be a field that might be a candidate for K. It turns out that the appropriate choice
for M is actually the principal ideal generated by p(x).

Theorem 3.6.3. Let F be a field. If p(x) is an irreducible polynomial in F [x],
then the ideal (p(x)) is maximal in F [x].

Proof. Suppose that I is an ideal of F [x] with (p(x)) ⊆ I. Since F [x] is a PID, I is
principal, so I = (g(x)) for some g ∈ F [x]. Since p(x) ∈ (g(x)), we have

p(x) = t(x)g(x)

for some t ∈ F [x]. But p is irreducible, so either deg(t(x)) = 0 or deg(g(x)) = 0.
If deg(g(x)) = 0, then g is constant, i.e. a unit in F [x], and (g(x)) = F [x]. On
the other hand, if deg(t(x)) = 0, then t is constant, and g and p generate the same
ideal. That is, (g(x)) = (p(x)). Therefore, either I = (p(x)) or I = F [x], so (p(x))
is maximal.

We are now ready to obtain an answer to our first question. If p ∈ F [x] is
irreducible, then there is an extension field of F , namely F [x]/(p(x)), in which p
has a root.

Theorem 3.6.4. If p(x) ∈ F [x] is irreducible, then there is an extension K of
F and an α ∈K such that p(α) = 0.

Proof. We have already said that our candidate for K is F [x]/(p(x)), and we know
that this is a field since (p(x)) is maximal. We just need to check that it contains
an isomorphic copy of F and a root of p.
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Define ϕ ∶ F → K by ϕ(a) = a + (p(x)). To make things easier, we’ll write
a = a + (p(x)) to denote the coset containing a in the quotient ring F [x]/(p(x)). It
is easy to see that kerϕ = {0}, since

ϕ(a) = a = 0

implies that p(x) divides a, which is impossible. Thus ϕ is one-to-one, and F is
isomorphic to a subfield of K.

Now we need to produce a root of p, and this is where things get a little weird. We
first need to view p as a polynomial with coefficients in F [x]/(p(x)), or it wouldn’t
even make sense for p to have a root in K. If p(x) = anx

n + ⋯ + a1x + a0, then we
can use the injection of F into K to view p as an element of K[y]: we simply apply
ϕ to each coefficient, and we obtain a polynomial

p(y) = any
n + an−1y

n−1 +⋯ + a1y + a0 ∈K[y].

Now that we’ve done some bookkeeping, we can get on with constructing the root.
Strangely enough, the root is actually going to be α = x + (p(x)) = x. Let’s try to
see why. Viewing p ∈K[y], we have

p(α) = p(x)

= an(x)
n +⋯ + a1(x) + a0

= p(x)

= p(x) + (p(x))

= 0.

Therefore, α is indeed a root of p.

This proof is a little strange. It at least allows us to show that there is a field
containing a root of p, but it’s a very odd field to work with. Let’s try to rephrase
things in a slightly better way. Suppose that E is an extension of F containing a
root α of p—we know now that at least one of these exists. Let F (α) be the subfield
of E generated by α (i.e., the smallest field containing α). Then we have a map
ψ ∶ F [x]→ F (α) given by

ψ(f(x)) = f(α),

i.e.,

ψ(bmx
m +⋯ + b1x + b0) = bmα

m +⋯ + b1α + b0.

This is a ring homomorphism from F onto F (α). What is its kernel? It’s actually
equal to (p(x)), so the First Isomorphism Theorem gives an induced isomorphism
ψ̃ ∶ F [x]/(p(x)) → F (α). Thus the field we constructed in the theorem is really
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nothing more than just F with α “adjoined” to it. We can even draw a diagram
that illustrates this relationship.

x //

��

α

F [x]
ψ //

π

��

F (α)

F [x]/(p(x))
ψ̃

88qqqqqqqqqq

x + (p(x))

II

In the argument above, we asserted that the kernel of “evaluation at α” was the
ideal (p(x)). In order to actually know this, we need a couple of facts. First, we’ll
introduce some terminology.

Definition 3.6.5. Let K be an extension of F . An element α ∈ K is said to be
algebraic over F if α is a root of some polynomial f ∈ F [x].

In particular, the α that we constructed above is algebraic over F . The next fact
tells us that any algebraic element always has a particular irreducible polynomial
for which it is a root.

Theorem 3.6.6. Suppose that α is algebraic over F . Then there is a unique
monic irreducible polynomial mα,F ∈ F [x] which has α as a root, called the min-
imal polynomial of α over F . If a polynomial f ∈ F [x] has α as a root, then
mα,F divides f .

In particular, if α is a root of an irreducible polynomial p ∈ F [x] with leading
coefficient an, then mα,F = 1

an
p. Thus mα,F and p generate the same ideal in F [x],

and
F (α) ≅ F [x]/(mα,F (x)).

Note also that the minimal polynomial depends on the field that one is working
over.

Example 3.6.7. Let’s consider the polynomial p(x) = x2 − 2 ∈ Q[x] again. This
polynomial is irreducible as a result of Eisenstein’s criterion, and it is monic, so it
is the minimal polynomial of

√
2 over Q. That is, m√

2,Q(x) = x
2 − 2. Since Q(

√
2)

is the smallest field containing
√

2, we have

Q[x]/(x2 − 2) ≅ Q(
√

2).
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However, what is the minimal polynomial of
√

2 over Q(
√

2)? Since
√

2 ∈ Q(
√

2),
we actually have

m√

2,Q(

√

2)(x) = x −
√

2.

3.7 Field Extensions

Before we go further with our study of polynomials, we need to introduce some
basic properties of field extensions. The main concept is that of the degree of a
field extension, which will give us a great deal of information in computations. To
motivate the idea, let’s think about field extensions in general. Suppose that K is
an extension of a field F . Then K is a field in particular, but we could strip it down
and just observe that there are two things we can do in K. We can add elements of
K: if a, b ∈K, then

a + b ∈K.

We can also multiply by elements of F : if x ∈ F and a ∈K, then

xa ∈K.

Furthermore, this scalar multiplication by elements of F distributes over addition.
What are we really saying that K is in this case? These two operations mean that
we can view K as a vector space over F . Of course a vector space over a field comes
with a number associated to it, namely the dimension of the vector space.

Definition 3.7.1. Let K be an extension of a field F . The degree of K over F
is defined to be the dimension of K as a vector space over F :

[K ∶ F ] = dimF (K).

This notation should look familiar, since we used the same sort of symbols to
denote the index of a subgroup. We’ll see later that this comparison is indeed
warranted.

Definition 3.7.2. An extension K of F is said to be finite if [K ∶ F ] is finite.

We’ll mostly be interested in finite extensions, since we’ll be able to associate an
actual number to the extension to gauge how “large” it is in relation to Q. Before we
do some examples, let’s state one useful fact about degrees of extensions. Though we
won’t prove it, it is reasonably intuitive. If we have an “extension of an extension,”
i.e. fields F ⊆ K ⊆ L, how should the degree of L over F relate to the degrees of L
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over K and K over F? More specifically, if we have a tower of fields

L

m

mnK

n

F

then we would expect the degrees to multiply.

Theorem 3.7.3. Let K be a finite extension of F , and let L be a finite extension
of K (so F ⊆K ⊆ L). Then

[L ∶ F ] = [L ∶K][K ∶ F ].

In particular, the degree of the subfield K over F divides the degree of L.

This should again evoke a result from group theory—it looks similar to Lagrange’s
theorem.

Example 3.7.4. Let’s compute the degrees of some field extensions.

1. We’ll start with a sort of easy one. What is [C ∶ R]? Since C can be viewed
as a two-dimensional vector space over R, the degree is 2.

2. What is [R ∶ Q]? Trick question—this is not a finite extension. As a rational
vector space, R is infinite-dimensional, so [R ∶ Q] =∞.

3. Let K = Q(
√

2). We defined

Q(
√

2) = {a + b
√

2 ∶ a, b ∈ Q} ,

so a basis for K over Q is {1,
√

2}. Therefore,

[Q(
√

2) ∶ Q] = 2.

4. Here’s another example with polynomials. Consider the polynomial f(x) =

x3 − 2 in Q[x]. A root of f is α = 3
√

2, so the smallest field containing a root
of f is Q( 3

√
2). Let’s try to find a basis for this field over Q. Certainly Q( 3

√
2)

will need to contain the elements

1,
3
√

2, (
3
√

2)2, (
3
√

2)3,⋯
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and any rational linear combinations of these. But note that ( 3
√

2)3 = 2 ∈ F ,
so we gain nothing new by including this element. That is, the elements

1,
3
√

2, (
3
√

2)2, (
3
√

2)3

are linearly dependent over Q. However, we claim that {1, 3
√

2, ( 3
√

2)2} is

linearly independent, and thus forms a basis for Q( 3
√

2). To see this, suppose
that these elements are linearly dependent, so there are a, b, c ∈ Q such that

a + b
3
√

2 + c(
3
√

2)2 = 0.

Then 3
√

2 is a root of the polynomial

g(x) = cx2 + bx + c.

Then the minimal polynomial of 3
√

2 must divide g(x). But the minimal
polynomial is x3 − 2, which has degree 3, so the only way it can divide g is if
g = 0. That is, a = b = c = 0, and the given elements are linearly independent.
Thus we have shown that

[Q(
3
√

2) ∶ Q] = 3.

What do you notice about the degree of the field extension in each of the last
two examples? The degree equals the degree of the minimal polynomial of the given
algebraic element. The argument that we gave in the last example can be generalized
to obtain a proof of the following theorem.

Theorem 3.7.5. Let F be a field, and suppose that α is algebraic over F . Then
F (α) is a finite extension of F and

[F (α) ∶ F ] = deg(mα,F ),

the degree of the minimal polynomial of α over F .

As we mentioned, the last example above gives us the idea of the proof, so we
won’t write down the proof here. However, we should observe that it also tells us
how to find a nice basis for F (α) over F : if n = deg(mα,F ), then the set

{1, α,α2,⋯, αn−1}

is linearly independent and spans F (α). Therefore, we have the following corollary.

Corollary 3.7.6. Let F be a field with α algebraic over F . Then

F (α) = {a0 + a1α + a2α
2 +⋯ + an−1α

n−1 ∶ ai ∈ F} .
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3.8 The Splitting Field of a Polynomial

In the previous sections we introduced a few problems related to polynomials with
coefficients in a field F . The first was that if p ∈ F [x] is an irreducible polynomial,
is there a field extension K of F which contains a root of p? We answered this with
a resounding yes, and in fact the smallest field is F (α), the field generated by F
and α. Moreover, we actually quantified the “size” of F (α) compared to F : we saw
last time that

[F (α) ∶ F ] = degmα,F ,

the degree of the minimal polynomial of α over F .

The second question that we posed involved finding all the roots of a polynomial
f ∈ F [x]. That is, can we find the smallest field extension of F containing all the
roots of f? Equivalently, we’re looking for the smallest field over which f splits,
i.e., f factors completely into linear factors:

f(x) = (x − α1)
m1(x − α2)

m2⋯(x − αk)
mk .

This field is, conveniently enough, called the splitting field of f . What would we
need to do to show that it exists? Well, we know that there is an extension F (α)
containing a root α of f , and we can write

f(x) = (x − α)mg(x)

for some g ∈ F (α)[x]. If g doesn’t have any roots in F (α), we can extend further
to obtain a root β of g, so

f(x) = (x − α)m(x − β)kh(x)

for some h ∈ F (α,β)[x]. Thus we obtain a tower of fields

F (α,β)

F (α)

F

If h doesn’t have a root in F (α,β), we could extend further to obtain a root of h.
This process needs to terminate eventually, since we would inevitably run up against
the degree of f . Therefore, we have an idea as to why the splitting field exists, but
we need to prove it formally. The proper way to do it is with a proof by induction.
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Theorem 3.8.1. Let F be a field and let f ∈ F [x]. Then there is an extension
L of F over which f splits. Equivalently, L contains all the roots of f .

Proof. We proceed by induction on the degree of f . If deg(f) = 1, then f has
only one root, which lies in F , so f splits over the field F . Suppose then that any
polynomial of degree less than n has a splitting field, and suppose that deg(f) = n.
Then there is an extension K of F which contains a root α of f . That is,

f(x) = (x − α)mg(x)

for some g ∈ K[x]. If g also splits over K, then we are done. If not, then since
deg(g) = n − 1, there is an extension L of K over which g splits. But then α ∈ L, so
f splits over L as well.

Once we know that there is a field over which f splits, we can talk about the
smallest such field.

Definition 3.8.2. The smallest field containing all the roots of f is called the
splitting field of f .

Example 3.8.3. Let’s try to compute some examples of splitting fields.

1. Last time we constructed the field Q(
√

2) to obtain a root of p(x) = x2 − 2. It
turns out that this is actually the splitting field of p, since

x2 − 2 = (x −
√

2)(x +
√

2)

over Q(
√

2).

2. The other example that we had was Q( 3
√

2), which gave a root of x3 − 2.
This is not a splitting field, since the other roots of x3 − 2 (which are ac-

tually 3
√

2 (−1
2 + i

√

3
2 ) and 3

√
2 (−1

2 − i
√

3
2 )) do not lie in Q( 3

√
2). If we let

ω = 3
√

2 (−1
2 + i

√

3
2 ), then the splitting field of x3 − 2 is Q( 3

√
2, ω). What is its

degree? Let’s draw a picture first:

Q( 3
√

2, ω)

sss
sss

sss
s

JJJ
JJJ

JJJ
J

Q( 3
√

2)

LLL
LLL

LLL
LL

Q(ω)

sss
sss

sss
ss

Q
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The degree [Q( 3
√

2 ∶ Q] is 3, while [Q( 3
√

2, ω) ∶ Q( 3
√

2)] = 2, so the degree of
the splitting field over Q is 6.

In light of these examples, what is the worst possible case for the degree of the
splitting field of a polynomial over F? That is, if f ∈ F [x] and L is its splitting
field, what is the largest possible degree of L over F? The worst thing that could
happen is that when we attach one root, we are left with

f(x) = (x − α)g(x)

with deg(g) = n−1. Then when we attach a root of g, we are left with an irreducible
polynomial of degree n−2. Continuing in this fashion, we see that in the worst case,

[L ∶ F ] = n(n − 1)(n − 2)⋯2 ⋅ 1 = n!.

In general, we must have [L ∶ F ] ≤ n!, but the “generic” polynomial will have a
splitting field of degree n!. We’ll see in the next section (in a very brief sense) that
this has major consequences for the solvability of the quintic equation in terms of
radicals.

3.9 A Preview of Galois Theory

We began this course with a short lecture on the history behind abstract algebra.
Most of that discussion went into the study of polynomials, and how renaissance
mathematicians had tried to find formulas for the roots of polynomials. They suc-
ceeded in finding solutions for quadratic, cubic, and quartic polynomials, but the
case of quintic (and higher degree) polynomials went unsolved for a couple of cen-
turies.

As we mentioned in that initial lecture, it was shown in the 1820s that no formula
exists for the roots of a general quintic polynomial in terms of the usual arithmetic
operations and radicals. This was proven independently by Évariste Galois and
Niels Henrik Abel. Both men developed what is now known as a group in order
to analyze polynomials and gain information about their roots. Their work has
developed over the last two centuries into a well-studied branch of algebra which
bears Galois’ name: it is known as Galois theory.

Now we’re going to talk about the ideas that Galois used and take a small glimpse
into Galois theory. In the process we’ll see that algebra is really much more than
just a collection of facts about groups, rings, and fields—things really fit together
quite nicely, and algebra is actually a very beautiful subject. We won’t use the same
language and notation that Galois used; algebra has come a long way since his days,
and we’ll phrase things in more modern terms. We also won’t be very rigorous—
Galois theory is generally a whole course to itself, so we won’t prove anything. The
interested reader can just sit back and enjoy the ideas without being saddled with
the details.
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3.9.1 The Idea of Galois

In order to discuss Galois’ ideas, we’ll start by looking at an example involving a
particular polynomial over the rationals.

Example 3.9.1. Let f(x) = x4−5x2+6 ∈ Q[x]. What are the roots of f? Well, this
polynomial factors as f(x) = (x2 − 2)(x2 − 3), so the roots are ±

√
2 and ±

√
3. Now

we’ll introduce Galois’ key idea: he decided to permute the roots of a polynomial
and to see what happened. This might seem like a strange thing to do, and it
is a testament to Galois’ genius that he actually thought of this. He didn’t allow
just any old permutation of the roots, however. There was one rule: a root of
f could only be sent to another root of the same irreducible factor of f . This
requirement basically ensures that the permutations respect certain symmetries of
the polynomial in question. Therefore, what are the valid permutations of the roots
of (x2 − 2)(x2 − 3)? There are four in all:

ι =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

√
2 ↦

√
2

−
√

2 ↦ −
√

2√
3 ↦

√
3

−
√

3 ↦ −
√

3

σ1 =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

√
2 ↦ −

√
2

−
√

2 ↦
√

2√
3 ↦

√
3

−
√

3 ↦ −
√

3

σ2 =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

√
2 ↦

√
2

−
√

2 ↦ −
√

2√
3 ↦ −

√
3

−
√

3 ↦
√

3

σ3 =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

√
2 ↦ −

√
2

−
√

2 ↦
√

2√
3 ↦ −

√
3

−
√

3 ↦
√

3

Suppose we labeled the roots as r1 =
√

2, r2 = −
√

2, r3 =
√

3, and r4 = −
√

3. Then
we can express these permutations in cycle notation as

ι = (1)(2)(3)(4)

σ1 = (1 2)(3)(4) = (1 2)

σ2 = (1)(2)(3 4) = (3 4)

σ3 = (1 2)(3 4).

What do you notice about the set {ι, σ1, σ2, σ3}? It forms a subgroup of S4 (which
is actually isomorphic to the Klein 4-group Z2×Z2). Thus we’ve taken a polynomial
f and associated a group to it, which we’ll call the Galois group of f , denoted by
Gal(f).

So we have a group associated to a polynomial—what’s the big deal? How
does the group tell us anything about the polynomial? To answer this, we need
to translate everything into the language of field extensions, which is the modern
approach to Galois theory.
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3.9.2 Modern Galois Theory

Before we can talk about fields, we need an actual field to work with. The natural
option is the splitting field of the polynomial.

Example 3.9.2. What is the splitting field of f(x) = (x2 − 2)(x2 − 3)? It’s the
smallest extension of Q containing

√
2 and

√
3, which is K = Q(

√
2,

√
3). The

“standard basis” for K as a vector space over Q is

{1,
√

2,
√

3,
√

2
√

3 =
√

6} .

The permutations of the roots that we worked out earlier can be thought of as a
“change of basis” for K. For example, the permutation σ3 takes this basis to

{1,−
√

2,−
√

3,
√

6} .

In other words, each element of Gal(f) gives us a map from K back to itself which
is actually a ring homomorphism. In fact, it is even more than that—it is an
automorphism of K which fixes the subfield Q. The set of all such automorphisms
is denoted by

Gal(K/Q) = {σ ∈ Aut(K) ∶ σ(a) = a for all a ∈ Q} ,

and called the Galois group of K over Q.3 It turns out that these automorphisms
correspond exactly to Galois’ permutations of the roots of f . That is,

Gal(K/Q) = Gal(f).

Here’s a natural question to consider: what is the degree of K over Q? We saw
already that a basis for K over Q is {1,

√
2,

√
3,

√
6}, so [K ∶ Q] = 4. Note that

∣Gal(K/Q)∣ = 4, so we have

∣Gal(K/Q)∣ = [K ∶ Q].

It turns out that this is always the case when K is the splitting field of a polynomial.
Now we’re getting somewhere—we have a tight relationship between the splitting
field of f and the Galois group. We can actually push this relationship even further,
and see that it is even more intimate than it appears at first glance.

The point of assigning a group to a polynomial or a field is that the structure
of the group tells us about the structure of the polynomial or field. We spent quite
a bit of time studying the structure of groups, and analyzing their subgroups in

3Actually, any automorphism ofK must fix Q, so the Galois group is really the full automorphism
group of K.
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particular. In our example, what are the subgroups of Gal(K/Q)? The subgroup
lattice looks like:

{ι, (1 2), (3 4), (1 2)(3 4)}

jjjj
jjjj

jjjj
jjj

TTTT
TTTT

TTTT
TTT

{ι, (1 2)}

TTTT
TTTT

TTTT
TTTT

TT
{ι, (1 2)(3 4)} {ι, (3 4)}

jjjj
jjjj

jjjj
jjjj

jj

{ι}

Let’s look at the subgroup H1 = {ι, (3 4)}. What happens if we apply either of these
permutations to an element of K? In either case,

√
2 and −

√
2 are fixed, so for any

element of the form a + b
√

2, we have

σ(a + b
√

2) = a + b
√

2

for all σ ∈H1. That is, H1 fixes all elements of the form a + b
√

2. Equivalently, H1

fixes the subfield Q(
√

2) of K. If we define

Gal(K/Q(
√

2)) = {σ ∈ Gal(K/Q) ∶ σ(α) = α for all α ∈ Q(
√

2)}

then H1 = Gal(K/Q(
√

2)). Similarly, H2 = {ι, (1 2)} fixes the subfield Q(
√

3) and
H3 = {ι, (1 2)(3 4)} fixes Q(

√
6). These are actually all the subfields of K, so

we have a one-to-one correspondence between subfields of K and subgroups of the
Galois group Gal(K/Q):

K

tt
tt
tt
tt
tt

JJ
JJ

JJ
JJ

JJ
Gal(K/Q)

uu
uu
uu
uu
uu

II
II

II
II

II

Q(
√

2) Q(
√

3) Q(
√

6) H1 H2 H3

Q

JJJJJJJJJJ

tttttttttt
{ι}

IIIIIIIIIII

uuuuuuuuuuu

Now we’re beginning to see how the structure of a Galois group might shed some
light on a polynomial and its splitting field.

We can actually do even better than we have done so far. Let’s redraw the above
diagram, but with the subgroup lattice inverted, and write in the degrees of all the
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extensions and the indices of all the subgroups:

K

2

tt
tt
tt
tt
tt

2
2

JJ
JJ

JJ
JJ

JJ
{ι}

2

uuu
uuu

uuu
uu

2
2

III
III

III
II

Q(
√

2) Q(
√

3) Q(
√

6) H1 H2 H3

Q
2

JJJJJJJJJJ
2

2

tttttttttt
Gal(K/Q)

2

IIIIIIIIII
2

2

uuuuuuuuuu

Do you notice anything special? It’s not so enlightening here, since all the degrees
and indices are just 2. However, in general we have that if F is a subfield of K, then

[F ∶ Q] = [Gal(K/Q) ∶ Gal(K/F )].

The main facts to take away from this discussion are the following: if K is the
splitting field of a separable polynomial over Q (also called a Galois extension),
there is a group G = Gal(K/Q) such that:

1. ∣Gal(K/Q)∣ = [K ∶ Q]

2. There is a one-to-one correspondence between subgroups of Gal(K/Q) and
subfields of K.

3. If F is a subfield of K, then

[F ∶ Q] = [Gal(K/Q) ∶ Gal(K/F )].

These three statements actually form a major chunk of an important theorem, called
the Fundamental Theorem of Galois Theory. The theorem actually says even more,
but one needs to be looking at a nonabelian Galois group before such things can
appear. The fact to which we are alluding is the following: if K is a Galois extension
of Q and F is a subfield of K, then F is itself a Galois extension if and only if the
subgroup Gal(K/F ) is normal in Gal(K/Q).

Hopefully this discussion has shown you that there is a very strong relationship
between groups and fields. The structure of the splitting field of a polynomial is
perfectly reflected in the structure of the associated Galois group, and one can
therefore cull information about the polynomial from the group. This gives one
indication as to why it is important to understand the structure of groups well.
As a specific example, the proof of the insolvability of the quintic equation comes
from studying the structure of the Galois group. It turns out that a polynomial
is solvable in terms of radicals if and only if its Galois group is what is called a
solvable group. One can then easily come up with fifth degree polynomials which
have S5 as their Galois groups, and S5 is easily proven to be a nonsolvable group.
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We don’t have the tools to write down a full proof here, but this gives an indication
of the true power of Galois theory.

Additional Exercises for Chapter 2

3.2. Let R be an integral domain. If a, b, c ∈ R
with a ≠ 0 and ab = ac, show that b = c.

3.3. Find the following products of quaternions.

(a) (i + j)(i − j).
(b) (1 − i + 2j − 2k)(1 + 2i − 4j + 6k).
(c) (2i − 3j + 4k)2.

(d) i(α0 +α1i+α2j +α3k)− (α0 +α1i+α2j +
α3k)i.

3.4. Recall that if a ∈ Q, we can always write a in
lowest terms (or reduced form) as a = m/n,
where gcd(m,n) = 1. Define

R = {m
n

∈ Q ∶ gcd(m,n) = 1 and n is odd} .

That is, R is the set of all rationals which, when
written in lowest terms, have an odd denomi-
nator. Show that R is a ring under the usual
addition and multiplication of rational numbers.
Determine which elements of R are units. (This
ring R is actually quite important in higher al-
gebra. It is usually denoted by Z(2), and called
the localization of Z at 2.)

3.5. Show that any field is an integral domain.

3.6. Let R be a finite integral domain with iden-
tity 1 ∈ R. Show that R is actually a field.

3.7. Let R be a ring, and suppose that I and J
are ideals in R. Prove that I ∩J is an ideal in R.

3.8. Let R be a commutative ring, and fix a ∈ R.
Define the annihilator of a to be the set

Ann(a) = {x ∈ R ∶ xa = 0} .

Prove that Ann(a) is an ideal of R.

3.9. Let R be a commutative ring. An element
a ∈ R is said to be nilpotent if there is a positive
integer n such that an = 0. The set

Nil(R) = {a ∈ R ∶ a is nilpotent}

is called the nilradical of R. Prove that the nil-
radical is an ideal of R. [Hint: You may need
to use the fact that the usual binomial theorem
holds in a commutative ring. That is, if a, b ∈ R
and n ∈ Z+, then

(a + b)n =
n

∑
k=0

an−kbk.

This should help with checking that Nil(R) is
closed under addition.]

3.10. Let R and S be two rings with identity,
and let 1R and 1S denote the multiplicative iden-
tities of R and S, respectively. Let ϕ ∶ R → S be
a nonzero ring homomorphism. (That is, ϕ does
not map every element of R to 0.)

(a) Show that if ϕ(1R) ≠ 1S , then ϕ(1R) must
be a zero divisor in S. Conclude that if S
is an integral domain, then ϕ(1R) = 1S .

(b) Prove that if ϕ(1R) = 1S and u ∈ R is a
unit, then ϕ(u) is a unit in S and

ϕ(u−1) = ϕ(u)−1.

3.11. Let R be a commutative ring with identity.

(a) Fix α ∈ R. Define the evaluation ho-
momorphism at α to be the map evα ∶
R[x] → R given by: if p(x) = anxn + ⋯ +
a1x + a0 is in R[x], then

evα(p) = anαn +⋯ + a1α + a0.

Show that evα is indeed a ring homomor-
phism.

(b) Determine the kernel of evα.

(c) Suppose now that R[x] is a PID. Show
that the kernel of evα is a maximal ideal,
and conclude that R must be a field in
this case.

3.12. Determine whether each of the following
polynomials is irreducible over the given field.

(a) 3x4 + 5x3 + 50x + 15 over Q.

(b) x2 + 7 over Q.

(c) x2 + 7 over C.
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Appendix A

Set Theory

This appendix is intended to expose you to some of the terminology and symbols
that we will use throughout this course. Much of this information corresponds to
the contents of Section 0 in Saracino’s Abstract Algebra: A First Course.

A.1 Sets

Informally, a set is just a collection of objects. These could be numbers, people,
physical objects, or pretty much anything else. For example, we could talk about

“the set of all Presidents of the United States”

or
“the set of all even integers.”

There is actually a precise definition of a set, but we’re not going to worry about
it. (In general, problems can arise if one is not careful. If you’re curious about this,
look up Russell’s Paradox.)

The objects that make up a set are called its elements. If we have a set S and
a is an element of S, we write

a ∈ S .

If a is not an element of S, we instead write

a /∈ S .

We can often define a set by simply listing all of its elements. When doing this, we
usually enclose the list in braces: {⋅}.

Example A.1.1. Define
S = {1,3,5,7,18}.

Then S is a set, and 3 ∈ S. The number 15 /∈ S, since it is not on the list that we
used to define S.
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Example A.1.2. There is a special set ∅, called the empty set, which is defined
to be the set which contains no elements.

Quite often it is infeasible to simply list all the elements of a set. For example,
it would be impossible to list all of the even integers. In situations like this, we can
describe a set by specifying that its elements should satisfy some defining property.
We write

S = {n ∶ n is an even integer} ,

read “the set of all n such that n is an even integer.” This sort of notation is called
set-builder notation. (Note: Some authors use a vertical line ∣ in place of the
colon, but the meaning is the same.)

Example A.1.3. In linear algebra you learned about the span of a set of vectors
v1, v2, v3 in Rn. In set-builder notation, one can write

span(v1, v2, v3) = {a1v1 + a2v2 + a3v3 ∶ a1, a2, a3 are real numbers } .

A.2 Constructions on Sets

There are a few operations on sets which will be important to know. The first will
be the notion of a subset, and the others will allow us to build new sets out of old
ones.

Definition A.2.1. Let A and B be sets. We say that B is a subset of A if every
element of B is also an element of A. We write

B ⊆ A .

It is entirely possible a subset B of A could actually be all of A, i.e. B = A. If
we want to emphasize that this is not the case, we will write

B ⊊ A

and say that B is a proper subset of A.

Example A.2.2. Let

A = {Presidents of the United States} ,

and let

B = {George Washington, Franklin Pierce, Barack Obama} .

Then B ⊆ A, and in fact B is a proper subset of A.



A.2 Constructions on Sets 161

Example A.2.3. Let
S = {1,3,5,7,18}.

Then the set T = {1,7} is a subset of S.

Example A.2.4. Let A be any set. Since the empty set ∅ contains no elements,
all of its elements are contained in A. (Some would say that a statement like this is
vacuously true.) Therefore, ∅ ⊆ A. In other words, the empty set is a subset of any
other set.

The next few constructions will allow us to construct new sets by combining
two other sets in some way. They are called the union, intersection, difference, and
Cartesian product.

Definition A.2.5. Let A and B be sets. The union of A and B, written

A ∪B ,

is the set whose elements consist of all the elements of A and all the elements of
B. That is,

A ∪B = {x ∶ x ∈ A or x ∈ B} .

Example A.2.6. Let A = {red,orange} and B = {tiger, lion, bear}. Then

A ∪B = {red, orange, tiger, lion, bear} .

Example A.2.7. Let A = {1,2,3} and B = {2,4,6}. Then

A ∪B = {1,2,3,4,6}.

Remark A.2.8. Note that A and B are always subsets of A ∪B. Also, if A is any
set, A ∪ ∅ = A.

Definition A.2.9. The intersection of two sets A and B, written

A ∩B ,

is the set whose elements are all the elements which lie in both A and B. That
is,

A ∩B = {x ∶ x ∈ A and x ∈ B} .

Example A.2.10. If A = {1,2,3} and B = {2,4,6}, then

A ∩B = {2}.
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Example A.2.11. Let A = {even integers} and B = {odd integers}. Then

A ∩B = {x ∶ x is both an even and an odd integer} = ∅,

since no integer is both even and odd.

Remark A.2.12. We always have A ∩B ⊂ A and A ∩B ⊂ B. Also, if A is any set,
A ∩ ∅ = ∅.

Definition A.2.13. The difference of A and B, written

A −B ,

consists of all of the elements of A which do not lie in B. That is,

A −B = {a ∈ A ∶ a /∈ B} .

Example A.2.14. Let A = {1,2,3,4} and B = {2}. Then

A −B = {1,3,4}.

Example A.2.15. Let A = {integers} and B = {even integers}. Then

A −B = {odd integers}.

Definition A.2.16. The Cartesian product of A and B is

A ×B = {(a, b) ∶ a ∈ A and b ∈ B} .

That is, A × B is the set of all ordered pairs where the first coordinate is an
element of A and the second is an element of B.

Example A.2.17. Let A = {1,2,3} and B = {3,4}. Then

A ×B = {(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)}

A.3 Set Functions

We’ll now give the definition of a function between sets. There are specific types of
functions that we will eventually need to understand, but we will talk about them
when the time comes.



A.4 Notation 163

Definition A.3.1. Let A and B be sets. A function (or mapping) f from A
to B, written

f ∶ A→ B ,

assigns to each element a ∈ A exactly one element f(a) ∈ B.

Example A.3.2. Let A = {real numbers} and B = {nonnegative real numbers},
and define f ∶ A→ B by

f(x) = ∣x∣.

Then f is a function from A to B.

A.4 Notation

In addition to the notation that we have already highlighted here, there are some
commonly used sets which have fairly standard symbols. We’ll list them here for
reference.

• N: the set of all natural numbers, i.e. the nonnegative integers.

• Z: the set of all integers.

• Q: the set of all rational numbers, i.e., numbers that can be expressed as a
ratio m/n, where m and n are integers.

• R: the set of all real numbers.

• C: the set of all complex numbers.

• Z+, Q+, R+: the set of all positive elements of Z, Q, and R, respectively.
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Appendix B

Techniques for Proof Writing

This guide includes some things that I like to keep in mind when I am writing
proofs. They will hopefully become second-nature after a while, but it helps to
actively think about them when one is first learning to write proofs.

B.1 Basic Proof Writing

There are some books out there that are designed to help you learn to read and write
proofs. (A commonly–used one is How to Read and Do Proofs by Daniel Solow. It
should be on reserve at Baker-Berry soon, and the library has two additional older
copies available.) However, they can be somewhat dry and slow in getting off the
ground. For me, the best way to learn to write proofs is to dive in and try to write
up proofs of some reasonably simple statements. With this in mind, there are two
fundamental aspects of proof writing that need to be mastered.

Logic: The first step to writing a proof, and probably the biggest hurdle for most
people, is determining the logical steps needed to verify the given statement. In
other words, this involves laying down an outline of the argument that you intend
to make. There are some things to keep in mind when trying to do this.

• What am I being asked to prove? Often this will require you to unravel
a definition or two to figure out what you’re really trying to prove.

• What are the hypotheses? You’re usually given some assumptions, and
then you are asked to deduce something from them. This would usually be
written in the form

“If . . . , then . . . ”

Again, look back at the definitions and decide what the hypotheses are really
saying.
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• What theorems might help? Try to think of definitions and theorems that
are related to the given statement. Determine which ones might help you get
from the hypotheses to the desired result.

• Put it all together. Try to piece together the theorems that you’ve found
in a logical way to deduce the result.

Example B.1.1. Let’s try to put these ideas into action.

Prove: If a and b are relatively prime and a ∣ bc, then a ∣ c.

Let’s think about what we need to do here.

• What are we being asked to prove? We want to show that a ∣ c, which means
that we need to show that there is an integer n such that c = na.

• What are the hypotheses? There are two: we are told that a and b are
relatively prime and that a ∣ bc. The first means that

gcd(a, b) = 1,

and the second tells us that there exists m ∈ Z such that

bc =ma.

• What theorems do we have at our disposal? One of the theorems we proved
regarding gcds was Bézout’s lemma (or the extended Euclidean algorithm),
which said that

gcd(a, b) = ax + by

for some x, y ∈ Z.

• Let’s put it together:

gcd(a, b) = 1 Ô⇒
Bézout

1 = ax + by Ô⇒
multiply by c

acx + bcy = c

Now use the other hypothesis:

a ∣ bc Ô⇒ bc =ma

Ô⇒ bcy =may

Ô⇒ acx + bcy = acx +may

Ô⇒ c = a(cx +my)

Ô⇒ a ∣ c

In this example we didn’t actually write a proof. We simply outlined the argu-
ment, which is the backbone of the proof. Now we need to turn it into something
readable. This brings us to the second major aspect of proof writing.



B.1 Basic Proof Writing 167

Style: Once you have your argument laid out, the next thing you need to do is to
write it up in a nice way. Here are some tips for doing this.

• Write in proper English. Use complete sentences, with proper grammar
and punctuation. The goal is to make it easy for the reader to understand. If
you are unsure of how a particular sentence looks, read it back to yourself and
think about how it would sound to the reader.

• Be clear and precise. Try to say what you mean in as simply as possible,
while still using proper mathematical language. Be careful how you say things,
and explain yourself at each step. If there is a step that you have to think
about, or that you think may give the reader pause, explain it.

• Don’t say too much (or too little). Again, explain yourself thoroughly, but
don’t overdo it. Get to the point, and avoid using overly ornate or mellifluous
language. At this stage in the game, it’s okay to err on the side of writing too
much, but try to not overdo it.

These are all things that will become much easier with practice. Also, reading
proofs in the book (or seeing them in class) will give you a better idea of how people
tend to talk when they are writing proofs.

Example B.1.2. Let’s write up a proper proof of the example.

Prove: If a and b are relatively prime and a ∣ bc, then a ∣ c.

Proof. Since a and b are relatively prime, gcd(a, b) = 1, and Bézout’s lemma lets us
write

ax + by = 1

for some x, y ∈ Z. If we multiply both sides by c, we get

acx + bcy = c.

We are assuming that a ∣ bc, so there is an m ∈ Z such that bc =ma. Then

bcy =may,

so
c = acx + bcy = acx +may.

Factoring out a, we get
c = a(cx +my).

But cx +my ∈ Z, and this is precisely what it means for a to divide c.

Here are two more examples of simple proof–writing exercises. We will approach
them in the same manner as the previous example.
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Example B.1.3. Prove: Let a, b ∈ Z, and let m > 0 be an integer. Then

gcd(ma,mb) =m ⋅ gcd(a, b).

Let’s outline our plan of attack.

• What are we trying to prove? We need to show that gcd(ma,mb) = m ⋅

gcd(a, b). Our plan will be to show that gcd(ma,mb) ≤m ⋅ gcd(a, b), and that
m ⋅ gcd(ma,mb) ≤ gcd(ma,mb).

• What are the hypotheses? We are simply given that a, b,m ∈ Z, and that
m > 0.

• What theorems or definitions might be useful? We know that d = gcd(a, b)
divides a and b, so md divides both ma and mb. Also, Bézout’s lemma says
that there are integers x and y satisfying

ax + by = d,

so
max +mby =md.

• Put it all together: md ∣ ma and md ∣ mb Ô⇒ md is a (positive) common
divisor of ma,mb Ô⇒ md ≤ gcd(ma,mb). Also,

max +mby =md Ô⇒ gcd(ma,mb) ∣md,

so gcd(ma,mb) ≤md. Thus gcd(ma,mb) =m ⋅ gcd(a, b).

Now we’ll write it up.

Proof. Let d = gcd(a, b). Since d divides both a and b, md divides both ma and mb.
Since m > 0, md is a positive common divisor of ma and mb, so it must be smaller
than the greatest common divisor. That is, md ≤ gcd(ma,mb). Also, Bézout’s
lemma implies that there are integers x and y satisfying

ax + by = d.

Multiplying both sides by m, we get

max +mby =md.

Since gcd(ma,mb) divides both ma and mb, it divides the left side of this equation.
Thus gcd(ma,mb) divides md, so we must have

gcd(ma,mb) ≤md.

Therefore, md = gcd(ma,mb), or m ⋅ gcd(a, b) = gcd(ma,mb).
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Example B.1.4. Prove: The equation

ax + by = c

has integer solutions x and y if and only if gcd(a, b) divides c.

There are two directions here, so we need to handle them one at a time.

• For the first direction, what are we being asked to prove? We need to show
that gcd(a, b) divides c.

• What are the hypotheses? We are given that there are integers x and y such
that ax + by = c.

• What theorems or definitions might be useful? We’ll use the definition of the
greatest common divisor, namely that it dives a and b. If we let d = gcd(a, b),
we can write

a = ed and b = fd

for some integers e and f .

• Now let’s put it together.

a = ed and b = fd Ô⇒ c = ax + by = edx + fdy

Ô⇒ c = d(ex + fy)

Ô⇒ d divides c

• What do we need to do for the other direction? We assume that gcd(a, b)
divides c, and we show that ax + by = c has integer solutions.

• What can we use? First, if d = gcd(a, b) divides c, we can write c = kd for
some k ∈ Z. Second, we have Bézout’s lemma: there exist x0, y0 ∈ Z such that

ax0 + by0 = d.

• Now put it together:

ax0 + by0 = d Ô⇒ kax0 + kby0 = kd = c

Ô⇒ a(kx0) + b(ky0) = c

so we can take x = kx0 and y = ky0.

Now we’ll try to write it up nicely.
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Proof. Suppose first that there are integers x, y ∈ Z such that ax + by = c. Let
d = gcd(a, b). Since d divides both a and b, there are integers e, f ∈ Z such that
a = ed and b = fd. Then

ax + by = edx + fdy = d(ex + fy).

But ax + by = c, so

c = d(ex + fy),

and d divides c.
Conversely, suppose that d divides c. Then there is an integer k satisfying c = kd.

By Bézout’s lemma, there exist x0, y0 ∈ Z such that

ax0 + by0 = d.

Thus

k(ax0 + by0) = kd,

or

a(kx0) + b(ky0) = c.

If we set x = kx0 and y = ky0, then ax + by = c, so we are done.

As a final note on style, people usually use a symbol to indicate the end of a
proof. The most common is a simple square, which can be open or filled: or
∎. (The default in LATEX is an open square.) Some people will also use an open or
closed diamond, or double or triple hatch marks (// or ///). Older proofs sometimes
end with q.e.d, which is an abbreviation of the Latin “quod erat demonstrandum,”
or “which was to be demonstrated.”

B.2 Proof by Contradiction

The proofs we’ve written so far are direct proofs: we started with the hypotheses
and we made a chain of logical deductions to eventually prove the given statement.
This is generally the most desirable way to prove something, but it may not always
work. Even if it does work, it may not be the best way. To this end, there is another
proof technique called proof by contradiction.

Proof by contradiction, or in Latin, reduction ad absurdum, is an alternative to
writing a direct proof. Instead of assuming the hypotheses and directly proving the
result, you assume the hypotheses and you assume that the result is not true. You
then try to make logical deductions until you arrive at a contradiction, which is a
sort of logical conundrum. This contradiction should then lead you to conclude that
there is a faulty assumption somewhere, and the only possibility is the assumption
that the result is false. In summary:
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Proof by Contradiction: Suppose that you are asked to prove a
statement of the form

“If A, then B.”

To prove this by contradiction:

1. Assume (A) and (not B).

2. Investigate the logical implications of these assumptions. (Use any
theorems, definitions, etc. that you know.)

3. Arrive at a contradiction.

4. Conclude that B must be true after all.

There is one thing that should be noted before we continue. A proof by con-
tradiction is not generally considered to be an aesthetically pleasing proof, and the
technique should always be used as a last resort. That is, you should always try first
to prove something directly, and then attempt a contradiction proof if a direct proof
is too difficult. However, contradiction is sometimes the only way, and sometimes it
may even give a nicer proof than those that can be obtained directly.

The following example is the oldest known proof by contradiction. There are
actually many other known proofs of this statement, but the contradiction proof is
still well–known due to its simplicity.

Example B.2.1. Prove that there are infinitely many prime numbers.

Proof. Suppose not—that is, let’s assume that there are only finitely many prime
numbers, say

p1, p2, . . . , pn.

Consider the integer

N = p1p2 . . . pn + 1.

Observe that none of the primes p1, . . . , pn divide N . Since we are assuming that
these are all the prime numbers, N has no prime divisors. But every integer can be
written as a product of primes, so we have arrived at a contradiction. Therefore,
our assumption that there are only finitely many primes must be faulty. We can
thus conclude that there must be infinitely many primes.

Here is another example. The details are a little more straightforward, and you
simply need to “follow your nose” after making the necessary assumptions.

Example B.2.2. Suppose that a ∈ Z. Prove that if a2 is even, then a is also even.
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Proof. Assume that a2 is even, but that a is odd. Then

a = 2n + 1

for some n ∈ Z. If we compute a2, we get

a2 = (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1,

which is odd. But we are assuming that a2 is even, so we have arrived at a con-
tradiction. Therefore, our assumption that a is odd must be invalid, and we can
conclude that a must be even.

Here’s one for you to try on your own if you want more practice. It is a commonly-
studied proof by contradiction, so you can probably find the proof written down in
any number of places.

Exercise B.1. Prove that
√

2 is an irrational number.

B.3 Mathematical Induction

There is another proof technique, called the Principle of Mathematical Induction,
which is used in special situations. One generally employs it to prove a statement
that depends on an integer n. For example, you might be asked to prove that some
formula, written in terms of n, holds for all n ∈ Z. If you are lucky, you might be
able to prove it directly. However, it’s possible to envision, at least in principle, a
systematic way of writing down such a proof. You could prove the result for n = 1,
and then use this fact to induce the result for n = 2. You could then prove it for
n = 3, then n = 4, and so on, proving each case by using the previous one. Obviously
we can’t actually write a proof this way—it would require a lot of work, and we’d
have to prove an infinite number of cases. Fortunately, mathematical induction gives
us the ability to do all of this in one fell swoop.

Principle of Mathematical Induction: Suppose that you are asked to
prove that a statement P (n), depending on n ∈ Z+, is true for all n. To
prove this via induction, there are two steps:

Base case: Prove that P (1) is true.

Inductive step: Assume that P (n−1) is true, and use this to prove that
P (n) is true.



B.3 Mathematical Induction 173

Example B.3.1. Prove that for all n ∈ Z+,

1 + 2 +⋯ + n =
1

2
n(n + 1).

Proof. We need to check first that the formula holds for n = 1. The left side is
simply 1, and the right side is

1

2
⋅ 1 ⋅ (1 + 1) =

1

2
⋅ 1 ⋅ 2 = 1,

so the formula holds for n = 1.

Now we need to handle the inductive step. Assume that the formula holds for
n − 1, i.e., that

1 + 2 +⋯ + (n − 1) =
1

2
(n − 1)(n).

Then

1 + 2 +⋯ + n = 1 + 2 +⋯ + (n − 1) + n

=
1

2
(n − 1)n + n

= (
1

2
(n − 1) + 1)n

= (
1

2
(n − 1 + 2))n

=
1

2
n(n + 1).

Now try the following example, which actually relates to abstract algebra.

Example B.3.2. If G is an abelian group and a, b ∈ G, prove that

(ab)n = anbn

for all n ∈ Z+.

Proof. For n = 1, we simply have

(ab)1 = ab = a1b1,
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so the base case holds. Now assume that (ab)n−1 = an−1bn−1. Then

(ab)n = (ab)n−1(ab) = an−1bn−1ab

by assumption. Since G is abelian,

an−1bn−1ab = an−1abn−1b = anbn.

Therefore, the result holds by induction.

If you want to read more about mathematical induction, or if you want to try
other problems, the latter half of Section 0 in Saracino is devoted to induction.
There are more examples, and there are several exercises that would allow you to
practice proofs by induction.

B.4 Proof by Contrapositive

So far we’ve practiced some different techniques for writing proofs. We started with
direct proofs, and then we moved on to proofs by contradiction and mathematical
induction. The method of contradiction is an example of an indirect proof : one
tries to skirt around the problem and find a clever argument that produces a logical
contradiction. This is not the only way to perform an indirect proof—there is
another technique called proof by contrapositive.

Suppose that we are asked to prove a conditional statement, or a statement
of the form

“If A, then B.”

We know that we can try to prove it directly, which is always the more enlightening
and preferred method. If a direct proof fails (or is too hard), we can try a contra-
diction proof, where we assume ¬B and A, and we arrive at some sort of fallacy.
It’s also possible to try a proof by contrapositive, which rests on the fact that a
statement of the form

“If A, then B.” (A Ô⇒ B)

is logically equivalent to

“If ¬B, then ¬A.” (¬B Ô⇒ ¬A)

The second statement is called the contrapositive of the first. Instead of proving
that A implies B, you prove directly that ¬B implies ¬A.

Proof by contrapositive: To prove a statement of the form
“If A, then B,” do the following:

1. Form the contrapositive. In particular, negate A and B.

2. Prove directly that ¬B implies ¬A.
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There is one small caveat here. Since proof by contrapositive involves negat-
ing certain logical statements, one has to be careful. If the statements are at all
complicated, negation can be quite delicate. However, sometimes the given proposi-
tion already contains certain negative statements, and contrapositive is the natural
choice.

Example B.4.1. Prove by contrapositive: Let a, b, n ∈ Z.If n ∤ ab, then n ∤ a and
n ∤ b.

Proof. We need to find the contrapositive of the given statement. First we need to
negate “n ∤ a and n ∤ b.” This is an example of a case where one has to be careful,
the negation is

“n ∣ a or n ∣ b.”

The “and” becomes an “or” because of DeMorgan’s law. The initial hypothesis is
easy to negate: n ∣ ab. Therefore, we are trying to prove

“If n ∣ a or n ∣ b, then n ∣ ab.”

Suppose that n divides a. Then a = nc for some c ∈ Z, and

ab = ncb = n(cb),

so n ∣ ab. Similarly, if n ∣ b, then b = nd for some d ∈ Z, and

ab = and = n(ad),

so n ∣ ab. Therefore, we have proven the result by contraposition.

Here’s another example. In this one, a direct proof would be awkward (and quite
difficult), so contrapositive is the way to go.

Example B.4.2. Prove by contrapositive: Let x ∈ Z. If x2 − 6x + 5 is even, then x
is odd.

Proof. Suppose that x is even. Then we want to show that x2 −6x+5 is odd. Write
x = 2a for some a ∈ Z, and plug in:

x2 − 6x + 5 = (2a)2 − 6(2a) + 5

= 4a2 − 12a + 5

= 2(2a2 − 6a + 2) + 1.

Thus x2 − 6x + 5 is odd.
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B.5 Tips and Tricks for Proofs

The four proof techniques that we’ve talked about are really the only ones that peo-
ple ever use. However, there are some general tips regarding the types of statements
that you may be asked to prove. You’ve probably seen many of these via example
in these notes, but we’ll list them here anyway.

If and only if: Sometimes you are asked to prove something of the form “A if
and only if B” or “A is equivalent to B.” The usual way to do this is to prove two
things: first, prove that “A implies B,” and then prove that “B implies A.” Use
any of the possible techniques to prove these two implications.

Uniqueness: You are often asked to prove that some object satisfying a given
property is unique. We’ve seen before that the standard trick is to assume that
there is another object satisfying the property, and then show that it actually equals
the original one.

Existence: This sort of proof often goes hand in hand with uniqueness. You are
given some specified property, and then asked to show that an object exists which has
that property. There are often two ways to do this. One can offer up a constructive
proof, in which the object is explicitly constructed. A nonconstructive proof is the
exact opposite—it shows that the object exists, but it gives no indication as to what
the object looks like.

Existence and Uniqueness: As stated before, existence and uniqueness go hand
in hand. Sometimes you will be asked to prove that an object satisfying some
property exists and is unique. This can be done in either order. Sometimes it is
easy to prove that the object exists, and then to show that it is unique. However,
the existence proof may seem daunting, and it is often helpful to prove uniqueness
first. The uniqueness proof may give some hints as to what the object must look
like.
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