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Groups

Let G be a group. We will generally assume two things:

G is equipped with a (Hausdorff) topology making
multiplication and inversion continuous.

This topology is locally compact.

We call such a G a locally compact topological group.

Example

Some examples:

R (or Rn) with the usual Euclidean topology.

Z with the discrete topology.

GLn(R) with the topology inherited from Rn2 .

Scott LaLonde Groupoids in Analysis



Transformation Groups

Recall that a group G acts on a set X if there is a map

G × X → X , (g , x) 7→ g · x

such that

1 e · x = x for all x ∈ X ,

2 g1 · (g2 · x) = (g1g2) · x .

Assume that X is a locally compact Hausdorff space. If the map
(g , x) 7→ g · x is continuous, then we say that the action of G on
X is continuous.

Definition

If G acts continuously on X , the pair (G ,X ) is called a
transformation group.
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Example: Irrational rotation

Let X = T be the unit circle in C.

Let θ ∈ [0, 1] be an irrational number.

For n ∈ Z and z ∈ T, define

n · z = e2πinθz .

This is a continuous action, so (Z,T) is a transformation
group.

What does the action actually look like?
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Example: Irrational rotation (continued)
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So...Where’s the Analysis?

Let’s assume that X is a compact Hausdorff space. People like me
are interested in

C (X ) = {f : X → C : f is continuous}.

What sort of object is this?

Vector space and ring =⇒ C-algebra.

Norm: for f ∈ C (X ),

‖f ‖∞ = sup
x∈X
|f (x)|

=⇒ (complete) metric space.

Scott LaLonde Groupoids in Analysis



So...Where’s the Analysis?

Now define f ∗ ∈ C (X ) by

f ∗(x) = f (x).

Then ∗ : C (X )→ C (X ) is an involution (i.e., (f ∗)∗ = f ).
Moreover:

‖f ∗f ‖∞ = sup
x∈X
|f ∗(x)f (x)| = sup

x∈X
|f (x)|2 = ‖f ‖2∞.

These properties together say that C (X ) is an example of a
(commutative) C ∗-algebra.
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C ∗-dynamical systems

Suppose that (G ,X ) is a transformation group with X compact.

Then G acts on C (X ) as well: for g ∈ G , define αg by

αg (f )(x) = f (g−1 · x)

for all f ∈ C (X ).

Then αg is an automorphism of C (X ).

The map α : G → Aut(C (X )) given by

g 7→ αg

is a continuous group homomorphism.

Definition

The triple (C (X ),G , α) is a C ∗-dynamical system.
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Crossed products

This is really a special case: if A is a C ∗-algebra, G is a LC
group, and α : G → Aut(A) is a continuous homomorphism,
then we call (A,G , α) a C ∗-dynamical system.

Given a C ∗-dynamical system, we can build a new C ∗-algebra

Aoα G ,

called the crossed product of A by G . We won’t discuss how.

But...what is it good for?

1 The crossed product encodes information about A, G , and the
dynamics.

2 It gives an interesting way of building new examples of
C ∗-algebras.
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Example: Irrational rotation algebras

Let (Z,T) be the transformation group associated to rotation by
2πθ, where θ is irrational.

We get an action τ of Z on C (T), and the crossed product

Aθ = C (T) oτ Z

is called an irrational rotation algebra.

These were very popular in the 1980’s, since they have some
interesting properties:

1 They are all simple (i.e., no nontrivial closed ideals).

2 If θ1, θ2 ∈ [0, 1/2], then Aθ1
∼= Aθ2 iff θ1 = θ2.
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Groupoids

A groupoid is essentially a group, but the multiplication is not
defined everywhere. It consists of:

A set G .

A set G (2) ⊂ G × G and a map G (2) → G (multiplication)
given by

(γ, η) 7→ γη.

Multiplication is associative whenever the products “make
sense.”

A map G → G given by γ 7→ γ−1 (inversion), where

γ−1(γη) = η and (γη)η−1 = γ

whenever (γ, η) ∈ G (2).

Topological groupoid: multiplication and inversion are
continuous.
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Groupoids (continued)

The role of the “identity” (or “unit”) is played by the unit space
of a groupoid:

G (0) =
{
u ∈ G : u = u−1 = u2

}
.

There are always two maps from G onto G (0), called the range
and source maps:

r(γ) = γγ−1 and s(γ) = γ−1γ

We can think of r(γ) and s(γ) as left and right “identities” for γ:

r(γ)γ = γ andγs(γ) = γ
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Groupoids (continued)

The range and source maps tell us when two groupoid elements
can be composed:

(γ, η) ∈ G (2) ⇐⇒ s(γ) = r(η)

We can even think of groupoid elements as “arrows” between units:

r(γ) s(γ) r(η) s(η)

γ η

r(γ)
s(γ) = r(η)

s(η)

γ η

γη
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Groupoid Examples

Groupoids generalize lots of structures with which you are familiar.

Groups! If G is a group, then

G (2) = G × G and G (0) = {e}.

Multiplication and inversion are the usual group operations.

Sets! If X is any set, then X × X is a groupoid:(
(x , y), (z ,w)

)
∈ (X × X )(2) ⇐⇒ y = z

(x , y)(y , z) = (x , z)

(x , y)−1 = (y , x)

X × X is called the pair groupoid of X .

Equivalence relations!
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Groupoid Examples

Groupoids

Group

actions

Group bundles

Groups

Equivalence

relations

Sets
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Groupoid actions

As with groups, groupoids can act on sets (or topological spaces).

The action is only “partially defined.”

Let X be a set with a surjective map p : X → G (0). Then
γ ∈ G can only act on x ∈ X if p(x) = s(γ).

p(x) = s(γ) p(γ · x) = r(γ)

x γ · x
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Groupoid crossed products

Groupoids can act on certain kinds of C ∗-algebras, called
C0(G (0))-algebras.

If a locally compact Hausdorff groupoid acts on a C ∗-algebra
A via some action α, we call the triple (A,G , α) a groupoid
dynamical system.

As with groups, we can form a new C ∗-algebra, called the
groupoid crossed product:

Aoα G .

I’m interested in the following type of question: if A and G
have “nice” properties, then does Ao G have similar “nice”
properties?
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Results

There are two properties that C ∗-algebras can have which are very
desirable: nuclearity and exactness. (Both are related to tensor
products of C ∗-algebras.)

Theorem (L., 2012)

If A is a nuclear C ∗-algebra and G is an amenable groupoid, then
Ao G is nuclear.

Theorem (L., 2013)

If A is an exact C ∗-algebra and G is an amenable groupoid, then
A× G is exact.

Both of these results generalize theorems for group crossed
products that have been known for some time.
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Thank you!

Questions?
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