## Groupoids in Analysis

### Scott M. LaLonde Advisor: Dana Williams

Dartmouth College Mathematics Open House

### April 5, 2013



### Groups

Let G be a group. We will generally assume two things:

- *G* is equipped with a (Hausdorff) topology making multiplication and inversion continuous.
- This topology is locally compact.

We call such a G a locally compact topological group.

#### Example

Some examples:

- $\mathbb{R}$  (or  $\mathbb{R}^n$ ) with the usual Euclidean topology.
- $\bullet~\mathbb{Z}$  with the discrete topology.
- $GL_n(\mathbb{R})$  with the topology inherited from  $\mathbb{R}^{n^2}$ .

Recall that a group G acts on a set X if there is a map

$$G \times X \to X$$
,  $(g, x) \mapsto g \cdot x$ 

such that

$$\bullet \cdot x = x \text{ for all } x \in X,$$

$$g_1 \cdot (g_2 \cdot x) = (g_1g_2) \cdot x.$$

Assume that X is a locally compact Hausdorff space. If the map  $(g, x) \mapsto g \cdot x$  is continuous, then we say that the action of G on X is continuous.

#### Definition

If G acts continuously on X, the pair (G, X) is called a transformation group.

### Example: Irrational rotation

- Let  $X = \mathbb{T}$  be the unit circle in  $\mathbb{C}$ .
- Let  $\theta \in [0,1]$  be an irrational number.
- For  $n \in \mathbb{Z}$  and  $z \in \mathbb{T}$ , define

$$n \cdot z = e^{2\pi i n \theta} z.$$

- $\bullet$  This is a continuous action, so  $(\mathbb{Z},\mathbb{T})$  is a transformation group.
- What does the action actually look like?

## Example: Irrational rotation (continued)

Let's assume that X is a compact Hausdorff space. People like me are interested in

$$C(X) = \{f : X \to \mathbb{C} : f \text{ is continuous}\}.$$

What sort of object is this?

- Vector space and ring  $\implies$   $\mathbb{C}$ -algebra.
- Norm: for  $f \in C(X)$ ,

$$\left\|f\right\|_{\infty} = \sup_{x \in X} \left|f(x)\right|$$

$$\implies$$
 (complete) metric space.

Now define  $f^* \in C(X)$  by

$$f^*(x)=\overline{f(x)}.$$

Then  $* : C(X) \to C(X)$  is an *involution* (i.e.,  $(f^*)^* = f$ ). Moreover:

$$\|f^*f\|_{\infty} = \sup_{x \in X} |f^*(x)f(x)| = \sup_{x \in X} |f(x)|^2 = \|f\|_{\infty}^2.$$

These properties together say that C(X) is an example of a (commutative)  $C^*$ -algebra.

## C\*-dynamical systems

Suppose that (G, X) is a transformation group with X compact.

• Then G acts on C(X) as well: for  $g \in G$ , define  $\alpha_g$  by

$$\alpha_g(f)(x) = f(g^{-1} \cdot x)$$

for all  $f \in C(X)$ .

- Then  $\alpha_g$  is an automorphism of C(X).
- The map  $\alpha: G \to \operatorname{Aut}(C(X))$  given by

$$\mathbf{g} \mapsto \alpha_{\mathbf{g}}$$

is a continuous group homomorphism.

#### Definition

The triple  $(C(X), G, \alpha)$  is a C\*-dynamical system.

## Crossed products

- This is really a special case: if A is a C\*-algebra, G is a LC group, and α : G → Aut(A) is a continuous homomorphism, then we call (A, G, α) a C\*-dynamical system.
- Given a  $C^*$ -dynamical system, we can build a new  $C^*$ -algebra

### $A \rtimes_{\alpha} G$ ,

called the **crossed product** of A by G. We won't discuss how.

But...what is it good for?

- The crossed product encodes information about A, G, and the dynamics.
- It gives an interesting way of building new examples of C\*-algebras.

Let  $(\mathbb{Z}, \mathbb{T})$  be the transformation group associated to rotation by  $2\pi\theta$ , where  $\theta$  is irrational.

• We get an action  $\tau$  of  $\mathbb{Z}$  on  $C(\mathbb{T})$ , and the crossed product

$$A_ heta = \mathcal{C}(\mathbb{T}) 
times_ au \mathbb{Z}$$

is called an irrational rotation algebra.

- These were very popular in the 1980's, since they have some interesting properties:
  - They are all **simple** (i.e., no nontrivial closed ideals).

2 If 
$$\theta_1, \theta_2 \in [0, 1/2]$$
, then  $A_{\theta_1} \cong A_{\theta_2}$  iff  $\theta_1 = \theta_2$ .

## Groupoids

A groupoid is essentially a group, but the multiplication is not defined everywhere. It consists of:

- A set G.
- A set  $G^{(2)} \subset G \times G$  and a map  $G^{(2)} \to G$  (multiplication) given by

$$(\gamma,\eta)\mapsto\gamma\eta.$$

- Multiplication is associative whenever the products "make sense."
- A map  $G \to G$  given by  $\gamma \mapsto \gamma^{-1}$  (inversion), where

$$\gamma^{-1}(\gamma\eta) = \eta$$
 and  $(\gamma\eta)\eta^{-1} = \gamma$ 

whenever  $(\gamma, \eta) \in G^{(2)}$ .

• **Topological groupoid:** multiplication and inversion are continuous.

The role of the "identity" (or "unit") is played by the **unit space** of a groupoid:

$$G^{(0)} = \left\{ u \in G : u = u^{-1} = u^2 \right\}.$$

There are always two maps from G onto  $G^{(0)}$ , called the **range** and **source maps**:

$$r(\gamma) = \gamma \gamma^{-1}$$
 and  $s(\gamma) = \gamma^{-1} \gamma$ 

We can think of  $r(\gamma)$  and  $s(\gamma)$  as left and right "identities" for  $\gamma$ :

$$r(\gamma)\gamma = \gamma \quad \text{and}\gamma s(\gamma) = \gamma$$

# Groupoids (continued)

The range and source maps tell us when two groupoid elements can be composed:

$$(\gamma,\eta)\in G^{(2)}\iff s(\gamma)=r(\eta)$$

We can even think of groupoid elements as "arrows" between units:



Groupoids generalize lots of structures with which you are familiar.

• Groups! If G is a group, then

$$G^{(2)} = G \times G$$
 and  $G^{(0)} = \{e\}.$ 

Multiplication and inversion are the usual group operations.

• **Sets!** If X is any set, then  $X \times X$  is a groupoid:

$$((x, y), (z, w)) \in (X \times X)^{(2)} \iff y = z$$
$$(x, y)(y, z) = (x, z)$$
$$(x, y)^{-1} = (y, x)$$

 $X \times X$  is called the **pair groupoid** of X.

• Equivalence relations!



## Groupoid actions

As with groups, groupoids can act on sets (or topological spaces).

- The action is only "partially defined."
- Let X be a set with a surjective map  $p: X \to G^{(0)}$ . Then  $\gamma \in G$  can only act on  $x \in X$  if  $p(x) = s(\gamma)$ .



Groupoids can act on certain kinds of  $C^*$ -algebras, called  $C_0(G^{(0)})$ -algebras.

- If a locally compact Hausdorff groupoid acts on a C\*-algebra A via some action α, we call the triple (A, G, α) a groupoid dynamical system.
- As with groups, we can form a new C\*-algebra, called the groupoid crossed product:

$$A \rtimes_{\alpha} G.$$

• I'm interested in the following type of question: if A and G have "nice" properties, then does  $A \rtimes G$  have similar "nice" properties?

There are two properties that  $C^*$ -algebras can have which are very desirable: **nuclearity** and **exactness**. (Both are related to tensor products of  $C^*$ -algebras.)

### Theorem (L., 2012)

If A is a nuclear C\*-algebra and G is an amenable groupoid, then  $A \rtimes G$  is nuclear.

### Theorem (L., 2013)

If A is an exact C\*-algebra and G is an amenable groupoid, then  $A \times G$  is exact.

Both of these results generalize theorems for *group* crossed products that have been known for some time.

### Questions?

