

Properties of Groupoid Dynamical Systems and their Crossed Products

Overview

Groupoids generalize many mathematical objects, with groups being the foremost example. Just as groups classify global symmetries of objects, groupoids can be used to characterize local symmetries. When a groupoid G acts on a C*-algebra A, one can construct a new C*-algebra $A \rtimes G$, called the groupoid crossed product. This directly generalizes the crossed product of a C^* -algebra by a group, and it is natural to ask whether certain results carry over from groups to groupoids. We will discuss two such results here.

Nuclearity and Exactness

Nuclear C*-algebras

Nuclearity is a very desirable property for a C^* -algebra to possess. Loosely speaking, it means that a C^* -algebra behaves well with respect to tensor products. If A and B are C^* -algebras, the *algebraic* tensor product

 $A \odot B$

may carry more than one C^* -norm. Therefore, there are generally multiple ways to complete it to obtain a tensor product C^* -algebra. Most people care about the two extremes:

 $A \otimes_{\max} B$ and $A \otimes_{\sigma} B$,

the maximal and minimal tensor products. If the various tensor products coincide, then the situation is very nice.

Definition A C^* -algebra A is called **nuclear** if

 $A \otimes_{\max} B = A \otimes_{\sigma} B$

for every C^* -algebra B.

Most reasonably nice C^* -algebras (such as commutative ones) are nuclear.

Exactness

A concept which is related to nuclearity is *exactness*. It also involves tensor products of C^* -algebras.

Definition A C^* -algebra A is **exact** if whenever

$$D \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow 0$$

is a short exact sequence of C^* -algebras, the sequence

$$0 {\rightarrow} B \otimes_{\sigma} A {\rightarrow} C \otimes_{\sigma} A {\rightarrow} D \otimes_{\sigma} A {\rightarrow} 0$$

is also exact.

Since the sequence

 $0 \longrightarrow B \otimes_{\max} A \longrightarrow C \otimes_{\max} A \longrightarrow D \otimes_{\max} A \longrightarrow 0$

is always exact, it follows that any nuclear C^* -algebra is automatically exact. However, there are exact C^* -algebras which are not nuclear.

Scott M. LaLonde Advisor: Dana Williams Department of Mathematics, Dartmouth College

Groupoids

Basics

Informally, a **groupoid** is a set G with a "partially defined" multiplication operation

$$(\gamma,\eta)\mapsto\gamma\eta$$

and an inversion map $G \to G$:

$$\gamma \mapsto \gamma^{-1}.$$

The **unit space** plays the role of the "identity":

$$G^{(0)} = \{ u \in G : u = u^{-1} = u^2 \}.$$

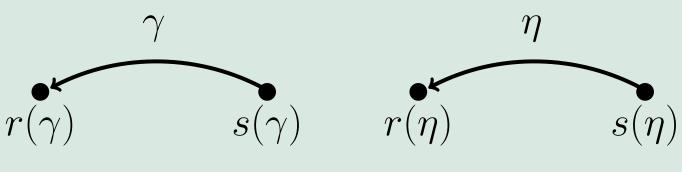
There are **range** and **source** maps $r, s : G \to G^{(0)}$:

$$r(\gamma) = \gamma \gamma^{-1}, \quad s(\gamma) = \gamma^{-1} \gamma,$$

and

$$r(\gamma)\gamma = \gamma$$
 and $\gamma s(\gamma) = \gamma$ $\forall \gamma \in G$.

One can think of a groupoid as a group in which the product is only partially defined. Another convenient interpretation of a groupoid is a collection of "arrows" between units:



Groupoid Dynamical Systems and Crossed Products

Groupoid Actions

A groupoid G can act on a set X, provided that there is a surjection $p: X \to G^{(0)}$. The action is much like a group action, except it is only partially defined: if $\gamma \in G$ and $x \in X$, then $\gamma \cdot x$ is defined exactly when $s(\gamma) = p(x)$.

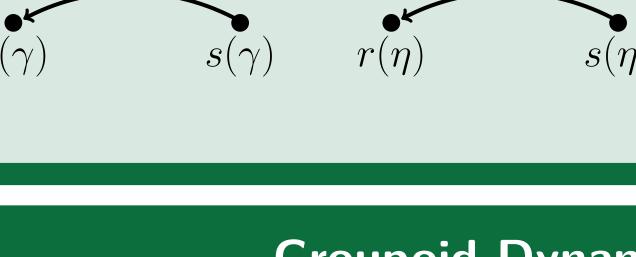
> $p(\gamma \cdot x) = r(\gamma)$ $p(x) = s(\gamma)$

Dynamical Systems

Let G be a locally compact Hausdorff groupoid. For G to act on a C^* -algebra A, we require that A be a $C_0(G^{(0)})$ -algebra. That is, there is a bundle \mathcal{A} of C^* -algebras over $G^{(0)}$, and A^* can be viewed as a section algebra of \mathcal{A} . An **action** of G on A is just a family of isomorphisms

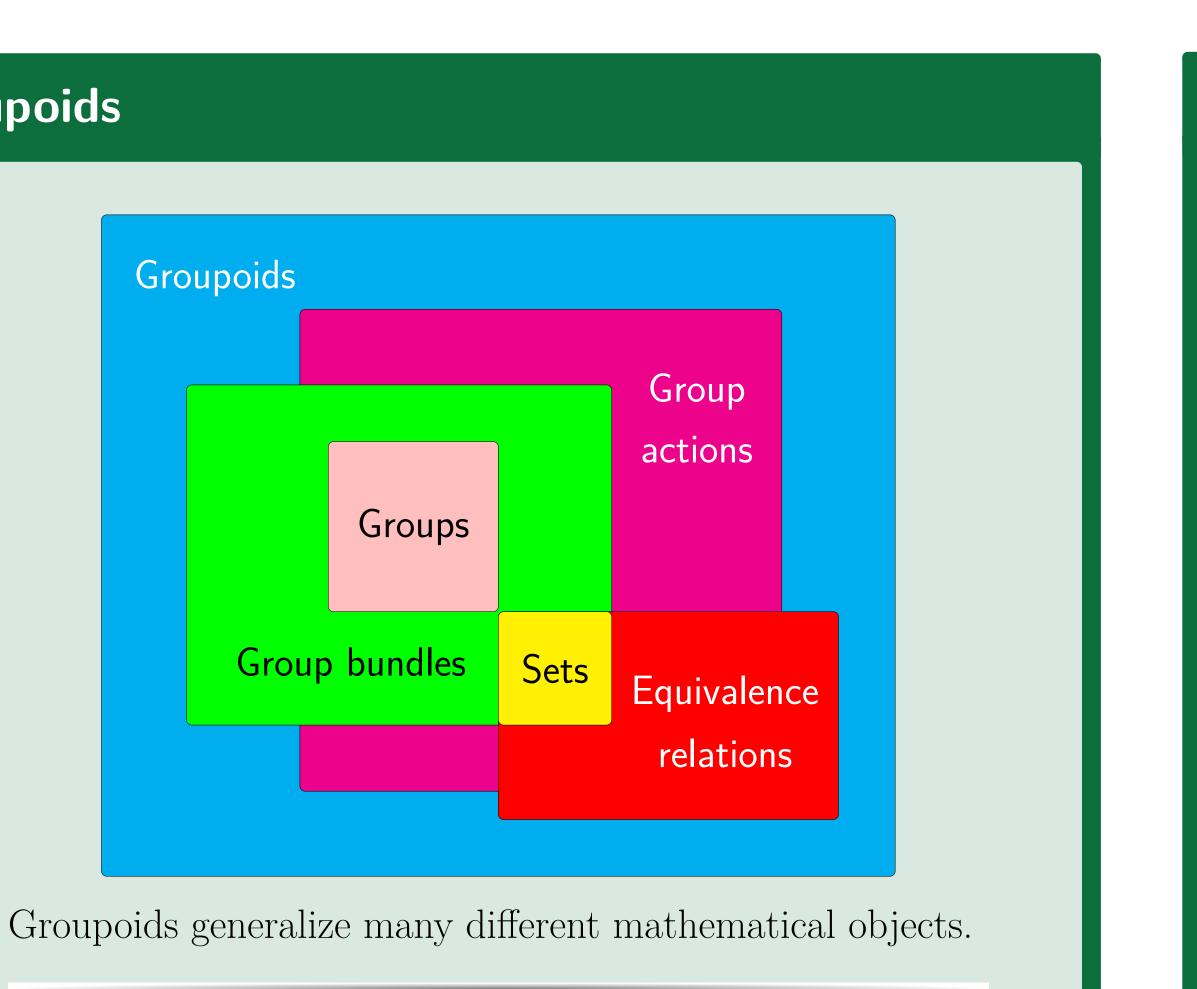
$$\alpha = \{\alpha_x\}_{x \in G}, \quad \alpha_x : \mathcal{A}_{s(x)} \to \mathcal{A}_{r(x)}.$$

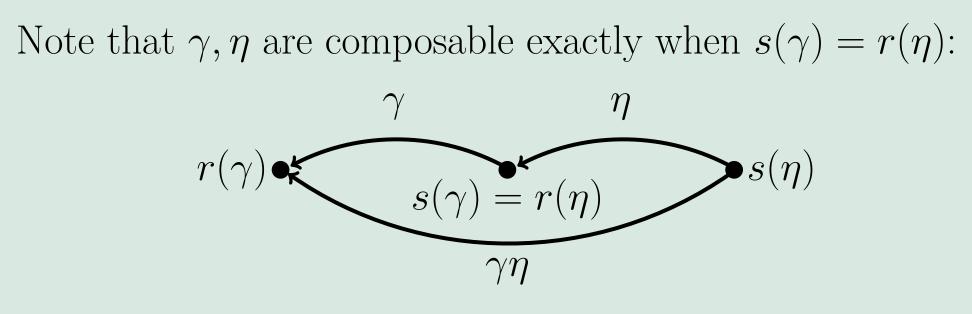
The triple (A, G, α) is referred to as a **groupoid dynam**ical system.



We assume that G carries a **Haar system** – a family of measures which plays the role of the Haar measure on a locally compact group. Using these measures, it's possible to define a convolution-like product and an involution which make $\Gamma_c(G, r^*\mathcal{A})$ into a *-algebra. We can define a norm on it by considering an appropriate collection of *-representations of $\Gamma_c(G, r^*\mathcal{A})$ on Hilbert space. The completion is a C^* algebra,

The groupoid crossed product directly generalizes the idea of a crossed product by a *group* (which in turn generalizes group C^* -algebras). Indeed, if G is a locally compact group, then the groupoid crossed product associated to G agrees with the usual one.





Crossed Products

Given a groupoid dynamical system (A, G, α) , one can build a new C^* -algebra that encodes information about the system. We start by forming the pullback bundle

$$r^*\!\mathcal{A} \to G$$

and we consider the space of continuous compactly supported sections

$\Gamma_c(G, r^*\mathcal{A}).$

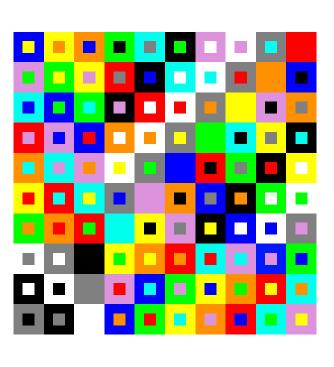
$A \rtimes_{\alpha} G$,

called the **crossed product** of A by G.

Theorem 1 (L., 2012) If (A, G, α) is a groupoid dynamical system with A nuclear and G amenable, then the crossed product $A \rtimes_{\alpha} G$ is nuclear.

It is also known [4] that if A is exact and G is an amenable group, then $A \rtimes_{\alpha} G$ is an exact C^* -algebra. The following analogue holds for groupoids.

Theorem 2 (L., 2013) If (A, G, α) is a groupoid dynamical system with A exact and G amenable, then the crossed product $A \rtimes_{\alpha} G$ is exact.



Main Results

It was shown by Philip Green in [2] that if A is a nuclear C^* -algebra and G is an amenable group, then $A \rtimes_{\alpha} G$ is nuclear. We present the analogue for groupoids here. It requires measurewise amenability for groupoids, which is a technical, measure-theoretic condition.

Applications

Groupoids and their C^* -algebras have many potential uses.

• Groupoids generalize many sorts of objects, so they provide a very general mathematical framework in which to work.

• Groupoids can be used to analyze symmetries of objects. In particular, one may be able to recover more information with groupoids instead of groups.

• It has recently been proposed that groupoid crossed products may be useful in time-frequency analysis. Guillemard and Iske [3] have suggested that crossed products of AF-algebras by certain groupoids, coupled with persistent homology, could be used to examine the structure of data coming from a given signal.

References

[1] Geoff Goehle, *Groupoid crossed products*, Ph.D. thesis, Dartmouth College, May 2009.

[2] Philip Green, The local structure of twisted *covariance algebras*, Acta Math. **140** (1978), 191–250.

[3] Mijail Guillemard and Armin Iske, On groupoid C^* -algebras, persistent homology, and time-frequency analysis, Preprint, September 2011.

[4] Eberhard Kirchberg, Commutants of unitaries in UHF algebras and functorial properties of exactness, J. Reine Angew. Math. **452** (1994), 39–77.

[5] Dana P. Williams, Crossed products of C^* -algebras, Mathematical Surveys and Monographs, no. 134, American Mathematical Society, Providence, RI, 2007.