Fundamentals of Mathematics for Nursing

Cynthia M. McAlister
ARNP, MSN, CS
Associate Professor
Eastern Kentucky University

Sandra G. Shapiro
ARNP, MSN, CS, MS
Associate Professor
Eastern Kentucky University

Revised 5/04 - Becky Gaffney, MSN
12/06 - Cedaliah Melton, MSN
Melissa Powell, MSN
MEMORANDUM

TO: Nursing Students
FROM: NUR Faculty
RE: Dosage Calculations

Math proficiency is considered one of the critical skills necessary to meet one of the requirements of nursing. This proficiency is basic to safely administering medications and intravenous fluids.

Enclosed is a booklet to guide you in mastering the mathematical competencies necessary for the accurate computation of medication dosages. This self-instructional booklet is designed to allow you to analyze the areas of mathematics that you may need to review. We encourage you to begin utilizing this booklet at the earliest possible date in your nursing program of study.

There are multiple mathematical formulas that may be used to calculate dosages accurately. This booklet will instruct students to use the ratio and proportion method.
Table of Contents

Math Requirements ... 5
Math Learning Resources ... 6
Systems of Measurement and Approximate Equivalents 7
Common Pharmacologic Abbreviations 9

PART A BASIC MATH REVIEW
1. Roman Numerals .. 11
2. Fractions .. 12
3. Decimals ... 14
4. Practice Problems ... 17

PART B MEASUREMENT SYSTEMS
1. Ratios and Proportions .. 20
2. Metric System ... 22
3. Practice Problems .. 23
4. Household System ... 23
5. Practice Problems .. 23

PART C DOSAGE CALCULATIONS
1. Single-Step Calculation ... 24
2. Multiple-Step Calculation 26
3. Dosage by Weight .. 29

PART D PRACTICE DOSAGE CALCULATION EXAMS
Criteria for Grading Dosage Calculation Exams 32
Practice Exam #1 ... 32
Practice Exam #2 ... 37

PART E PEDIATRIC MEDICATIONS
Pediatric Medications ... 41
Practice Exam #3 ... 43

PART F PARENTERAL MEDICATIONS
Directions for Calculating IV Flow Rates 44
IV Formulas .. 44
Practice Exam #4 ... 48
Practice Exam #5... 50
Practice Exam #6... 53

PART G ANSWERS

Basic Math Answers ... 57
Practice Exam Answers.. 59

PART H IV DRIP CALCULATIONS ADDENDUM

Calculation of Weight Based IV Drips 67
Practice Exam #7... 68
MATH REQUIREMENTS

One of the major objectives of nursing is that the student be able to administer medications safely. In order to meet this objective, the student must be able to meet the following math competencies.

1. Translate Arabic numbers to Roman numerals.
2. Translate Roman numerals to Arabic numbers.
3. Add, subtract, multiply and divide whole numbers.
4. Add, subtract, multiply and divide fractions.
5. Add, subtract, multiply and divide decimals.
6. Convert decimals to percents.
7. Convert percents to decimals.
8. Set up and solve ratio and proportion problems.
9. Convert from one system of measure to another using:
 a) metric system
 b) apothecary system
 c) household system
10. Solve drug problems involving non-parenteral and parental medications utilizing metric, apothecary, and household systems of measurement.
11. Solve IV drip rate problems.

Preparation for the math in nursing is a personal independent student activity. In order to facilitate this task it is suggested that the student utilize an organized approach.

2. Use an assessment sheet to pinpoint problem areas.
3. Use the suggested resources to work on the problem areas.
4. Retake the diagnostic test to determine the need for further help.

Students are encouraged to follow the above procedures. It will organize their own learning efforts and also serve as a basis for assistance from tutors or clinical instructors.

*NOTE: Part G – IV Drip Calculations contains material that will be tested on after the first semester. Refer to this section beginning in the second semester to solve practice problems.
MATH LEARNING RESOURCES

1. This booklet, Fundamentals of Mathematics for Nursing.

2. Self-diagnostic math tests - enclosed.

3. General math text - Sixth grade math books will include material on whole numbers, fractions, decimals, and ratio and proportion.

Middle School math books will include material on solving for an unknown.

These texts can be obtained from school or public libraries.

4. College of Health Sciences -- Learning Resource Center (LRC) -- Rowlett 310 -- 622-3576 -- has additional resources in the form of textbooks, computer programs and on-line access.
Conversions

There are three measurement systems commonly used in health care facilities: the metric, household, and apothecary system. In order to compare measured amounts in the systems, approximate equivalents have been developed. An example of an approximate equivalent is 1 teaspoon is approximately equal to 5 milliliters. Because the measures are not exactly equal, a conversion which takes more than one step will not produce as accurate a value as a conversion which takes only one step. For example, it is more accurate to convert from teaspoons to milliliters by using the conversion factor directly from teaspoons to milliliters than it is to go from teaspoons to ounces to milliliters.

RULE: Always convert from one unit of measure to another by the shortest number of steps possible.

Systems of Measurement and Approximate Equivalents

The following conversion table will have to be memorized in order to accurately calculate dosage problems.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Apothecaries</th>
<th>Household</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOLUME</td>
<td></td>
</tr>
<tr>
<td>1 milliliter (ml) (cc)*</td>
<td>15-16 gtts</td>
<td></td>
</tr>
<tr>
<td>5 milliliters (ml)</td>
<td>1 teaspoon (t)</td>
<td>60 drops (gtts)</td>
</tr>
<tr>
<td>15 milliliters (ml)</td>
<td>1 tablespoon (T)</td>
<td>3 teaspoons (t)</td>
</tr>
<tr>
<td>30 milliliters (ml)</td>
<td>1 ounce (oz)</td>
<td>2 tablespoon (T)</td>
</tr>
<tr>
<td>240 milliliters</td>
<td>8 ounces (oz)</td>
<td>1 cup (c)</td>
</tr>
<tr>
<td>1000 milliliter (1 liter)</td>
<td>1 quart</td>
<td>1 quart</td>
</tr>
</tbody>
</table>
Metric Apothecaries Household

WEIGHT

<table>
<thead>
<tr>
<th>Metric</th>
<th>Apothecaries</th>
<th>Household</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 milligrams (mg)</td>
<td>1 grain (gr)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 ounces (oz)</td>
</tr>
<tr>
<td>1 Kilogram (Kg)</td>
<td></td>
<td>2.2 pounds (lb)</td>
</tr>
<tr>
<td>1000 grams</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units and milliequivalents (meq) **cannot** be converted to units in other systems. They have their value given and will never need to be converted. 1 unit = 1000 miliunits

Cubic centimeters (cc’s) and milliliters (ml’s) are the same equivalents. However, ml is the preferred usage.

Metric Weight

1 milligram (mg) = 1000 micrograms (mcg)
1 gram (g) = 1000 milligrams (mg)
1 kilogram (Kg) = 1000 grams (gm)

Metric Weight to Volume

1 gram (gm) = 1 milliliter (ml) (approximately)
Common Pharmacologic Abbreviations

To transcribe medication orders and document drug administration accurately, review the following commonly used abbreviations for drug measurements, dosage forms, routes and times of administration, and related terms. Remember that abbreviations often are subject to misinterpretation especially if written carelessly or quickly. If an abbreviation seems unusual or doesn’t make sense to you, given your knowledge of the patient or the drug, always question the order, clarify the terms, and clearly write out the correct term in your revision and transcription.

DRUG AND SOLUTION MEASUREMENTS

- oz. Ounce
- G, gm gram
- gr grain
- gtt drop
- Kg kilogram
- L liter
- mcg microgram
- mEq milliequivalent
- mg milligram
- ml milliliter
- pt pint
- qt quart
- Tbs, T tablespoon
- Tsp, t teaspoon

DRUG DOSAGE FORMS

- cap capsule
- DS double strength
- EC enteric coated
- Elix elixir
- Liq liquid
- Sol solution
- Supp suppository
- Susp suspension
- Syr syrup
- Tab tablet

ROUTES OF DRUG ADMINISTRATION

- IM intramuscular
- IV intravenous
- IVPB intravenous piggyback
V, PV vaginally
PO by mouth
R, PR by rectum
Subcut subcutaneous
S&S swish & swallow

TIMES OF DRUG ADMINISTRATION

ac before meals
ad lib as desired
Bid twice a day
Tid three times a day
Qid four times a day

pc after meals
Prn as needed
Daily Every day
Qh (hr) every hour
Q2h (hr) every 2 hours
Q3h (hr) every 3 hours, and so on
STAT immediately

COMMON INTRAVENOUS FLUIDS

D₅W – 5% Dextrose in water
D₅NS – 5% Dextrose in normal saline
D₅ ½NS – 5% Dextrose in ½ normal saline
L.R. – Lactated Ringers
PART A
BASIC MATH REVIEW

The following section serves as a review of basic math principles and allows students to identify any areas that will require further study. Students who find they need further development in basic math should refer to the table of math resources on page 5. Answers for practice problems are located in Part G, beginning on page 48.

1. Roman Numerals

I = 1 V = 5 X = 10

The basic form is to place the larger numerals to the left and add other numerals.

XXXIII = 33 (30 + 3 = 33)

There is an exception to the basic form. If smaller numeral precedes a larger numeral, the smaller should be subtracted from the larger.

IX = 9 (10 - 1 = 9)

If there seems to be several ways of writing a number - use the shorter form.

XVVI - incorrect
XXI - correct
(10 + 10 + 1 = 21)

Only one smaller numeral is allowed to precede a larger numeral.

...
VIII = 8 correct
11X = incorrect

Numerals may be written as lower case letters and the number one may have a line and/or a dot over it.

iv = 4 \hat{I} = 1 \ddot{xv} = 17
5 - 1 = 4 \hat{1} = 1 10 + 5 + 2 = 17
2. Fractions

Numerator
Denominator

2 = Proper fraction = numerator is **smaller** than denominator.

3

3 = Improper fraction = numerator is **larger** than denominator.

2

1 1 = Mixed fraction = whole number and a fraction.

2

To change an improper fraction to a mixed number:

a. Divide the numerator by the denominator.

\[
\frac{13}{5} = 2 \frac{3}{5}
\]

b. Place remainder over denominator.

To change a mixed number to an improper fraction:

a. Multiply denominator by the whole number.

\[
\frac{3}{2} \times 7 = \frac{21}{2}
\]

b. Add numerator.

c. Place sum over the denominator.

To reduce a fraction to its lowest denominator:

a. Divide numerator and denominator by the greatest common divisor.

b. The value of the fraction does not change.

EXAMPLE: Reduce \(\frac{12}{60}\)

12 divides evenly into both numerator and denominator

\[
\frac{12}{60} = \frac{12}{60} = \frac{1}{5}
\]

EXAMPLE: Reduce \(\frac{9}{12}\)

3 divides evenly into both

\[
\frac{9}{12} = \frac{3}{4}
\]

EXAMPLE: Reduce \(\frac{30}{45}\)

15 divides evenly into both

\[
\frac{30}{45} = \frac{2}{3}
\]
45 ÷ 15 = 3

\[
\frac{30}{45} = \frac{2}{3}
\]

You can multiply or divide when denominators are NOT alike. You CANNOT add or subtract unless the fractions have the same denominator.

Addition of fractions:

a. Must have common denominator.

b. Add numerators.

\[
\frac{1}{4} + \frac{2}{8} = \frac{2}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}
\]

Subtraction of fractions:

a. Must have common denominator.

b. Subtract numerators.

\[
\frac{6}{8} - \frac{3}{4} = \frac{3}{4} - \frac{3}{4} = 0
\]

Multiplication of fractions:

a. To multiply a fraction by a whole number, multiply numerator by the whole number and place product over denominator.

\[
\frac{4}{8} \times 3 = 12 = \frac{1}{4} + \frac{1}{2}
\]

b. To multiply a fraction by another fraction, multiply numerators and denominators.

\[
\frac{5}{6} \times \frac{3}{4} = \frac{15}{24} = \frac{5}{8}
\]

Division of fractions:

a. Invert terms of divisor.

b. Then multiply.

EXAMPLE 1: \(\frac{2}{3} ÷ \frac{4}{5}\)

\[
\frac{2 \times 5}{3 \times 4} = \frac{10}{12} \quad \text{Reduced to lowest terms} = \frac{5}{6}
\]

EXAMPLE 2: \(\frac{4}{5} ÷ \frac{5}{6}\)

\[
\frac{4 \times 6}{5 \times 5} = \frac{24}{25} = \frac{4}{4} \quad \frac{5}{5}
\]
3. Decimals

<table>
<thead>
<tr>
<th>Millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands (1000)</th>
<th>hundreds (100)</th>
<th>tens (10)</th>
<th>ones (1)</th>
<th>tenths (0.1)</th>
<th>hundredths (0.01)</th>
<th>thousandths (0.001)</th>
<th>ten thousandths</th>
<th>hundred thousandths</th>
<th>millionths</th>
</tr>
</thead>
</table>

Reading from right to left, each place is 10 times larger in value. For example, 100 is 10 times larger than 10 and 1.0 is 10 times larger than 0.1.

Changing decimals to fractions:

a. Express the decimal in words.
b. Write the words as a fraction
c. Reduce to lowest terms.

EXAMPLE 1: 0.3

a. three tenths b. \(\frac{3}{10} \) c. already reduced to lowest terms

EXAMPLE 2: 0.84

a. eighty-four hundredths b. \(\frac{84}{100} \) c. \(\frac{21}{25} \)

Changing fractions to decimals:

Divide the numerator by the denominator.

EXAMPLE 1: \(\frac{3}{4} \) 4 \(\frac{3.00}{.75} \) so \(\frac{3}{4} = 0.75 \)

\[
\begin{array}{c|c|c|c}
\hline
\text{Numerator} & \text{Denominator} & \text{Division} & \text{Result} \\
\hline
3 & 4 & 0.75 & \\
\hline
\end{array}
\]
EXAMPLE 2:
\[
\begin{array}{c}
8 \\
\text{40}
\end{array}
\begin{array}{c}
8.0 \\
\text{80} \\
\text{0}
\end{array}
\text{so } \frac{8}{40} = 0.2
\]

Addition and Subtraction of decimals:

Use the decimal point as a guide and line up the numbers by their decimal place so that all the ones places are lined up under each other, all the tens places lined up and so on.

ADDITION EXAMPLE 1:
\[
\begin{array}{c}
7.4 \\
\text{+12.39}
\end{array}
\begin{array}{c}
2.4 \\
\text{+.15}
\end{array}
\begin{array}{c}
2.57457
\end{array}
\]

ADDITION EXAMPLE 2:
\[
\begin{array}{c}
.003
\end{array}
\begin{array}{c}
\text{+.02157}
\end{array}
\begin{array}{c}
2.57457
\end{array}
\]

SUBTRACTION EXAMPLE 1:
\[
\begin{array}{c}
86.4
\end{array}
\begin{array}{c}
\text{-3.817}
\end{array}
\begin{array}{c}
82.583
\end{array}
\]

SUBTRACTION EXAMPLE 2:
\[
\begin{array}{c}
6.079
\end{array}
\begin{array}{c}
\text{-0.85}
\end{array}
\begin{array}{c}
5.229
\end{array}
\]

Multiplication of decimals:

a. Multiply the numbers as if they were whole numbers.
b. Count the total number of decimal places to the right of the decimal point for each of the numbers.
c. Use that total to count decimal places in the answer.

a.
\[
\begin{array}{c}
17.3 \\
\times 0.45
\end{array}
\begin{array}{c}
865 \\
692
\end{array}
\begin{array}{c}
7785 = 7.785
\end{array}
\]

b. 17.3 has 1 decimal place past the decimal point.
\[
\begin{array}{c}
17.3 \\
\times 0.45
\end{array}
\begin{array}{c}
.45 \\
3 \text{ total}
\end{array}
\]

c. Count 3 places for decimal in answer - 7.785

Division of decimals:

To divide a decimal by a whole number, the decimal is placed directly above the decimal in the dividend.

<table>
<thead>
<tr>
<th>Divisor</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.37</td>
</tr>
<tr>
<td>6.85</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
</tr>
</tbody>
</table>
To divide a decimal by a decimal:

Shift the decimal of the divisor enough places to make it a whole number. The decimal in the dividend is moved the same number of places as the divisor. Decimal point of quotient is placed directly above the new place of the decimal in the dividend.

EXAMPLE 1:

\[
\begin{array}{c|c}
0.6 & 3.0 \\
\hline
V & V \\
\end{array}
\]

\[
\begin{array}{c|c}
6 & 30.0 \\
\hline
V & 30 \\
\end{array}
\]

EXAMPLE 2:

\[
\begin{array}{c|c}
1.3 & 22.36 \\
\hline
V & V \\
\end{array}
\]

\[
\begin{array}{c|c}
13 & 223.6 \\
\hline
V & 93 \\
\end{array}
\]

Rounding off decimals:

Decide how far the number is to be rounded, such as to the tenths place or the hundredths place. Mark that place by putting a line under it.

If the digit to the right of that place is less than 5, drop that digit and any others to the right. If the digit to the right of the place to be rounded to is 5 or greater, increase the number in the place by 1 and drop the digits to the right.

EXAMPLE 1:

\[
7.42357
\]

Rounded to nearest hundredth

EXAMPLE 2:

\[
87.852
\]

Rounded to nearest tenth

Rules for rounding off for nursing math tests:

1. At the end of each step round the answer to the nearest hundredths before proceeding to the next step.
2. If the final answer is less than one, the answer should be rounded off to hundredths, Example .6666 .67
3. If the final answer is greater than one, the answer should be rounded to tenths, Example 1.812 1.8
4. In IV problems, if the final answer is ml/hour or gtts/min, round to the nearest whole number. Therefore, you must round the final answer up if equal to or greater than .5 and round down if less than .5. See example, page 46. If the question states that the IV solution is administered by IV pump, the final answer must be rounded to the nearest hundredth.
4. Practice Problems

Basic Math Practice
Practice #1
Roman Numerals

1. xvi = __________
2. XXi =
3. 29 =
4. 19 =
5. 3 =

ANSWERS: Page 57

Practice #2
Fractions

1. \(\frac{15}{2} \) =
2. \(\frac{13}{6} \) =
3. \(\frac{7}{4} \) =
4. \(\frac{11}{3} \) =
5. \(\frac{15}{8} \) =
6. \(\frac{37}{5} \) =
7. \(\frac{4}{6} \) =
8. \(\frac{3}{9} \) =
9. \(\frac{15}{60} \) =
10. \[\frac{1}{16} + \frac{4}{5} + \frac{3}{4} = \]

11. \[\frac{5}{9} + \frac{2}{5} = \]

12. \[\frac{2}{7} + \frac{1}{2} + \frac{9}{14} = \]

13. \[\frac{1}{2} - \frac{1}{3} = \]

14. \[\frac{9}{12} - \frac{3}{4} = \]

15. \[\frac{6}{7} - \frac{2}{3} = \]

16. \[\frac{7}{8} \times \frac{2}{3} = \]

17. \[\frac{1}{2} \times \frac{3}{4} = \]

18. \[\frac{12}{25} \times \frac{1}{100} = \]

19. \[\frac{2}{8} \div \frac{1}{2} = \]

20. \[\frac{12}{3} \div \frac{1}{3} = \]

21. \[\frac{2}{2} \div \frac{1}{6} = \]

22. \[\frac{2}{9} \div \frac{1}{2} = \]

ANSWERS: Page 57

Practice # 3
Decimals

Change fractions to decimals

1. \(\frac{6}{8} = \)

2. \(\frac{5}{10} = \)

3. \(\frac{3}{3} = \)
4. \(\frac{2}{3} \)

Change decimals to fractions

5. 0.54 =
6. 0.154 =
7. 0.60 =
8. 0.2 =

Add decimals

9. 1.64 + 0.6 =
10. 0.02 + 1.0 =
11. 2.63 + 0.01 =
12. 1.54 + 0.3 =

Subtract decimals

13. 1.23 - 0.6 =
14. 0.02 - 0.01 =
15. 2.45 - 0.03 =
16. 0.45 - 0.02 =

Multiply decimals

17. 0.23 x 1.63 =
18. 0.03 x 0.123 =
19. 1.45 x 1.63 =
20. 0.2 x 0.03 =

Divide

21. 3.2 ÷ 4 =
22. 1.86 ÷ 3.0 =
23. 1.00 ÷ 25 =
24. 68.8 ÷ 2.15 =
Round to hundredths
25. 0.4537 =
26. 0.00584 =

Round to tenths
27. 9.888 =
28. 50.09186 =

Round to tens
29. 5619.94 =
30. 79.13 =

ANSWERS: Page 58

PART B
MEASUREMENT SYSTEMS

1. Ratios and Proportions

The faculty is aware that ratio/proportional problems can be set up in several forms to solve the problem. We believe the fractional form is more conceptual in nature. The fractional form helps the student visualize what is ordered and is available to determine the correct amount of medication to administer.

Students will be required to set up all dosage calculation problems in the fractional form. This method is demonstrated on the following pages:

A ratio compares 2 quantities and can be written as a fraction, 3 to 4 or \(\frac{3}{4} \).

4 quarters to 1 dollar is a ratio and can be written \(\frac{4}{1} \).

(Other familiar ratios are 60 minutes to 1 hour; 2 cups to 1 pint; 16 ounces to 1 pound).

A proportion is 2 ratios equal to each other.

\[
\frac{4 \text{ quarters}}{1 \text{ dollar}} = \frac{8 \text{ quarters}}{2 \text{ dollars}}
\]
This proportion can be read 4 quarters are to 1 dollar as 8 quarters are to 2 dollars.

In a proportion, the products of cross multiplication are equal. Using the proportion above:

\[
\frac{4}{1} = \frac{8}{2} \quad \text{or} \quad 4(2) = 1(8) \quad 8 = 8
\]

There are 4 basic steps to solving proportion problems:

1) Set up a known ratio.
2) Set up a proportion with known and desired units. Use x for the quantity that is desired or unknown.

 Example: ounces = ounces
 pounds = pounds

 Be sure the units are the same horizontally.

3) Cross multiply.
4) Solve for x.

To solve a proportion problem such as 3 lbs. = ? ounces:

a) Set up a known ratio of pounds to ounces.

 1 lb.: 16 oz.

b) Make a proportion using the known ratio on one side and the desired ratio on the other.

 \[
 \frac{16 \text{ oz.}}{1 \text{ lb.}} = \frac{x \text{ oz.}}{3 \text{ lbs.}}
 \]
 Be sure the units are the same horizontally, such as ounces on the top and pounds on the bottom of each ratio.

c) Cross multiply.

 \[
 \frac{16 \text{ oz.}}{1 \text{ lb.}} = \frac{x \text{ oz.}}{3 \text{ lbs.}} \quad 1x = 16 \times 3
 \]

d) Solve for x.

 \[
 1(x) = 16 \times 3
 \]
 \[
 x = 48
 \]
 Therefore, 3 lbs. = 48 ounces.

Another name for a ratio with numerator and denominator of approximately the same value is a conversion factor. The ratios 4
quarters to 1 dollar and 2 pints to 1 quart are conversion factors. Systems of measure use conversion factors to change from one unit to another.

2. Metric System

The basic unit of weight in the metric system is the gram (G or gm.). The basic length is the meter (m) and the basic volume is the liter (l or L). Metric measurements uses the decimal system as the basis for its units. The prefix of the unit identifies its decimal location and value.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Decimal Location</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>micro (mc)</td>
<td>millionths</td>
<td></td>
</tr>
<tr>
<td>milli (m)</td>
<td>thousandths</td>
<td></td>
</tr>
<tr>
<td>centi (c)</td>
<td>hundredths</td>
<td></td>
</tr>
<tr>
<td>deci (d)</td>
<td>tenths</td>
<td></td>
</tr>
<tr>
<td>deka (da)</td>
<td>tens</td>
<td></td>
</tr>
<tr>
<td>hecto (h)</td>
<td>hundreds</td>
<td></td>
</tr>
<tr>
<td>Kilo (k)</td>
<td>thousands</td>
<td></td>
</tr>
</tbody>
</table>

The faculty desire that you use a ratio and proportion format to make conversions within the metric system.

Conversion Examples

1. \(0.5 \text{ G} = \text{______ mg.} \)

\[
\frac{1000 \text{ mg}}{1 \text{ G}} = \frac{x \text{ mg}}{0.5 \text{ G}}
\]

\[1(x) = 1000 (0.5)\]

\[x = 500 \text{ mg}\]

2. \(2000 \text{ mcg} = \text{______ mg.} \)

\[
\frac{1000 \text{ mcg}}{1 \text{ mg}} = \frac{2000 \text{ mcg}}{x \text{ mg}}
\]

\[1000(x) = 2000 (1)\]

\[1000x = 2000\]

\[x = 2 \text{ mg}\]
3. Practice Problems

METRIC SYSTEM PRACTICE #4 PROBLEMS

1. 7 kg = ________ gm
2. 0.05 l = ________ ml
3. 2.5 gm = ________ mg
4. 5.07 kg = ________ gm
5. 0.5 ml = ________ l
6. 0.0193 l = ________ ml
7. 1.34 kg = ________ mg
8. 3.7 mg = ________ gm

ANSWERS: Page 58

4. Household System

This system of measure is not as accurate as the metric or apothecary systems.

The units of volume include drop (gtts), teaspoon (tsp or t.), tablespoon (tbsp. or T) and ounces (oz.).

\[
\begin{align*}
1 \text{ tsp} & = 60 \text{ gtts} \\
1 \text{ tbsp.} & = 3 \text{ tsp.} \\
1 \text{ oz.} & = 2 \text{ tbsp.}
\end{align*}
\]

Conversion example: 4 tsp. = X gtts

\[
\begin{align*}
60 \text{ gtts} & = x \text{ gtts} \\
1 \text{ tsp.} & = 4 \text{ tsp.}
\end{align*}
\]

\[
\begin{align*}
1x & = 60 \times (4) \\
x & = 240 \\
4 \text{ tsp.} & = 240 \text{ gtts}
\end{align*}
\]

5. Practice Problems

HOUSEHOLD CONVERSION PRACTICE #5 PROBLEMS

1. 2 tsp. = ________ gtt
2. 1 $\frac{1}{2}$ tbsp. = ________ tsp.
3. 45 gtts = ________ tsp.
4. 5 tbsp. = ________ oz.
5. 8 oz. = ________ tbsp.
6. 12 tsp. = ________ tbsp.

ANSWERS: Page 58

PART C
DOSAGE CALCULATIONS

1. Single-Step Calculation

Medication may be ordered in a form or amount different from what is available. Proportion may be used to calculate the right dosage.

Steps:

a. Set up proportion.
b. Check to be sure units are the same horizontally.
c. Cross multiply and solve for x.

EXAMPLE 1:

60 mg of medication are ordered. Tablets are available which have 30 mg of medication in each of them. How many tablets are needed to give 60 mg?

a) Set up the problem as a proportion. 30 mg are to 1 tablet as 60 mg are to X tablets.

\[
\frac{30 \text{ mg}}{1 \text{ tab}} = \frac{60 \text{ mg}}{x \text{ tab}}
\]

b) Remember to have the same units horizontally (mg to mg and tablets to tablets).

c) Cross multiply and solve for x.

\[
30x = 60
\]

\[
x = \frac{60}{30} = 2
\]

2 tablets = 60 mg = the amount of medication ordered

EXAMPLE 2:

Ordered: 15 mEq
Available: 10 mEq/5 ml
How many ml's needed?
a) Set up proportion.

\[
\frac{10 \text{ mEq}}{5 \text{ ml}} = \frac{15 \text{ mEq}}{x \text{ ml}}
\]

b) Units are matched therefore no need to convert (mEq to mEq and ml to ml)

c) Cross multiply and solve for \(x \).

\[
10x = 75 \quad x = \frac{75}{10} = 7.5 \quad 15 \text{ mEq} = 7.5 \text{ ml}
\]

EXAMPLE 3:

Ordered: \(\text{gr} \ \frac{1}{800} \)

Available: \(\text{gr} \ \frac{1}{200} \) per ml

How many mls?

a) Set up proportion.

\[
\frac{\frac{1}{200}}{1 \text{ ml}} = \frac{\frac{1}{800}}{x \text{ ml}}
\]

b) Units are the same horizontally.

c) Cross multiply and solve for \(x \).

\[
\frac{1}{200} (x) = \frac{1}{800} \quad (1)
\]

\[
x = \frac{\frac{1}{800}}{\frac{1}{200}} = \frac{1}{800} \times \frac{200}{1}
\]

\[
x = \frac{200}{800} = 0.25
\]

\(\text{gr} \ \frac{1}{800} = 0.25 \text{ ml} \)
2. Multiple-Step Calculations

It may be necessary to convert from one unit to another first before solving a dosage problem.

Steps:

a) Set up proportion.

b) Convert to like units.

c) Substitute converted unit into the proportion.

d) Cross multiply and solve for x.

EXAMPLE 1:

240 mg are ordered. Medication is available in 2 grains/1 tablet. How many tablets should be given?

a) Set up proportion.

\[
\frac{2 \text{ gr}}{1 \text{ tab}} = \frac{240 \text{ mg}}{x \text{ tab}} \quad \text{Units do not match.}
\]

b) Convert to like units.

The units are not alike so grains need to be converted to milligrams or milligrams to grains. It is usually more convenient to convert to the units of the tablet or liquid. Therefore in this problem convert milligrams to grains.

\[
1 \text{ gr} = 60 \text{ mg}
\]

\[
\frac{1 \text{ gr}}{60 \text{ mg}} = \frac{x \text{ gr}}{240 \text{ mg}}
\]

\[
60x = 240
\]

\[
x = \frac{240}{60}
\]

\[
x = 4
\]

\[
x = 4 \text{ gr}
\]

c) Now substitute in the original proportion so the units now match.

\[
\frac{2 \text{ gr}}{1 \text{ tab}} = \frac{4 \text{ gr}}{x \text{ tab}}
\]
d) Cross multiply and solve for \(x \).

\[
2x = 4(1)
\]

\[
x = \frac{4}{2} = 2
\]

\(x = 2 \) tablets

EXAMPLE 2:

Ordered: 0.016 gm

Available: 4 mg/1 ml

How many ml should be given?

a) Set up proportion.

\[
\frac{4 \text{ mg}}{1 \text{ ml}} = \frac{0.016 \text{ gm}}{x \text{ ml}} \quad \text{Units do not match.}
\]

b) Convert to like units.

\[
\frac{1 \text{ gm}}{1000 \text{ mg}} = \frac{0.016 \text{ gm}}{x \text{ mg}} \quad x = 1000 \times 0.016 \quad x = 16 \text{ mg}
\]

c) Substitute converted units into proportion.

\[
\frac{4 \text{ mg}}{1 \text{ ml}} = \frac{16 \text{ mg}}{x \text{ ml}}
\]

d) Cross multiply and solve for \(x \).

\[
4x = 1(16)
\]

\[
x = \frac{16}{4} = 4
\]

\(x = 4 \) ml

EXAMPLE 3:

Ordered: 10.5 grams

Available: 300 mg/5 ml

How many ml's should be given?

a) Set up proportion

\[
\frac{300 \text{ mg}}{5 \text{ ml}} = \frac{10.5 \text{ gr}}{x \text{ ml}}
\]
b) Convert to like units (grains or grams or grams to grains)

\[
\frac{1 \text{ gr}}{60 \text{ mg}} = \frac{x \text{ gr}}{300 \text{ mg}}
\]

\[60x = 300 x \text{ l}
\]

\[x = 5 \text{ gr}
\]

c) Substitute converted units into the proportion.

\[
\frac{5 \text{ gr}}{5 \text{ ml}} = \frac{10.5 \text{ gr}}{x \text{ ml}}
\]

d) Cross multiply and solve for \(x\).

\[5x = 10.5 \times 5 \quad (52.5)
\]

\[x = 10.5 \text{ ml}
\]

EXAMPLE 4:

Ordered: Two tablespoons of a liquid every 2 hours for 12 hours. How many ml's of the drug will the client receive over the 12 hour period?

a) Set up proportion.

\[
\frac{2 \text{ Tbsp}}{2 \text{ hours}} = \frac{x \text{ ml}}{12 \text{ hrs.}}
\]

b) Convert to like units.

\[
\frac{15 \text{ ml}}{1 \text{ Tbsp.}} = \frac{x \text{ ml}}{2 \text{ Tbsp.}}
\]

\[1x = 30
\]

\[x = 30
\]

c) Substitute converted units into the proportion.

\[
\frac{30 \text{ ml}}{2 \text{ hours}} = \frac{x \text{ ml}}{12 \text{ hours}}
\]

d) Cross multiply and solve for \(x\).

\[
\frac{30 \text{ ml}}{2 \text{ hours}} = \frac{x \text{ ml}}{12 \text{ hours}}
\]

\[2x = 360
\]

\[x = 180 \text{ ml}
\]

The client will receive 180ml over a 12 hour period.

EXAMPLE 5:

A client is to receive 2 gm of a drug. The drug comes 500 mg/5 ml. Each vial contains 10 ml's. How many vials would you need?

\[
\frac{2 \text{ gm}}{x \text{ ml}} = \frac{500 \text{ mg}}{5 \text{ ml}}
\]
3. Dosage by Weight

Order: 25 mg/kg of body wt.
Available: 5 gm/20 ml
How many ml's do you give to a 30 lb. child?

The order first needs to be clarified to establish exactly what has been ordered.

STEP 1:

1. Clarify the order (How much medicine is 25 mg/kg for a 30 lb. patient?)

 a) Set up proportion.

 \[
 \frac{25 \text{ mg}}{1 \text{ kg}} = \frac{x \text{ mg}}{30 \text{ lbs}}
 \]

 Units don't match so they must be converted.

 b) Convert to like units.

 \[
 \frac{2.2 \text{ lbs.}}{1 \text{ kg}} = \frac{30 \text{ lbs.}}{x \text{ kg}}
 \]

 \[
 2.2x = 30
 \]

 \[
 x = \frac{30}{2.2} = 13.64 \text{ kg}
 \]

 (NOTE: Remember to round the Kg to hundredths place before
continuing with the problem)

c) Substitute converted units into the original proportion.

\[
\frac{25 \text{ mg}}{1 \text{ kg}} = \frac{x \text{ mg}}{13.64 \text{ kg}}
\]

\[(1)x = 25(13.64)\]

\[x = 341 \text{ mg}\]

STEP 2:

Now, as in previous problems a proportion is set up with what is ordered and what medicine is on hand (available).

a) Set up proportion.

\[
\frac{5 \text{ gm}}{20 \text{ ml}} = \frac{341 \text{ mg}}{x \text{ ml}}
\]

b) Convert to like units.

\[
\frac{1 \text{ gm}}{1000 \text{ mg}} = \frac{x \text{ gm}}{341 \text{ mg}}
\]

\[1000x = 341\]

\[x = 0.341 \text{ gm} \quad x = 0.34 \text{ gm}\]

c) Substitute converted units and solve for x.

\[
\frac{5 \text{ gm}}{20 \text{ ml}} = \frac{0.34 \text{ gm}}{x \text{ ml}}
\]

\[5x = 20 (0.34)\]

\[5x = 6.8\]

\[x = \frac{6.8}{5} = 1.364 \text{ ml} \quad \text{(final answer rounded to 1.4 ml per rounding rules)}\]

Give 1.4 ml to 30 lb child ordered to have 25 mg/kg of body wt.

A twenty-two pound infant is to receive 2 mg/kg of a drug. The drug is available in 10 mg/0.5 ml. How many ml's will be given?

\[
\frac{22 \text{ lbs}}{x \text{ mg}} = \frac{1 \text{ kg}}{2 \text{ mg}}
\]

1. \[
\frac{22 \text{ lbs}}{x \text{ kg}} = \frac{2.2 \text{ lbs}}{1 \text{ kg}}
\]
\[
\frac{2.2x}{2.2} = \frac{(1)22}{2.2} \\
x = 10 \text{ kg}
\]

2. \[
\frac{2 \text{ mg}}{1 \text{ kg}} = \frac{x \text{ mg}}{10 \text{ kg}} \\
1x = 10 \times 2 \\
1x = 20 \\
x = 20 \text{ mg}
\]

3. \[
\frac{20 \text{ mg}}{x \text{ ml}} = \frac{10 \text{ mg}}{0.5 \text{ ml}} \\
10x = (0.5)20 \\
10x = 10 \\
\frac{10}{10} \\
x = 1 \text{ ml}
\]
PART D
PRACTICE DOSAGE CALCULATION EXAMS

This is the format of the dosage calculation exams. Each practice exam should be completed in one hour.

PRACTICE EXAM #1

Criteria for Grading Dosage Calculation Exams

1. Each problem must be set up in the fractional format.
2. Must show fractional format for each step in multiple step problems.
3. Must show units in formulas.
4. Must solve for x in each formula.
5. Always convert from one unit of measure to another by the shortest number of steps.

Rules for rounding off for nursing math tests:

1. At the end of each step round the answer to the nearest hundredths before proceeding to the next step.
2. If the final answer is less than one, the answer should be rounded off to hundredths, Example .6666 .67
3. If the final answer is greater than one, the answer should be rounded to tenths, Example 1.812 1.8
4. In IV problems, if the final answer is ml/hour or gtts/min, round to the nearest whole number. Therefore, you must round the final answer up if equal to or greater than .5 and round down if less than .5. See example, page 46. If the question states that the IV solution is administered by IV pump, the final answer must be rounded to the nearest hundredth.

1. Ordered: 40 units
 Available: 100 units/ml
 How many ml's should be given? ________
2. Ordered: 3 mg
 Available: 1.5 mg/tablet
 How many tablets should be given? ________

3. Ordered: 1.5 gr
 Available: 1/2 gr/tablet
 How many tablets should be given? ________

4. Ordered: 1000 mg
 Available: 250 mg/tablet
 How many tablets should be given? ________

5. Ordered: 5 mg
 Available: 10 mg/2 ml
 How many ml's should be given? ________

6. Ordered: 0.125 mg
 Available: 0.25 mg/tablet
 How many tablets should be given?

7. Ordered: 1/200 gr
 Available: 1/100 gr/tablet
 How many tablets should be given? ________

33
8. Ordered: 0.5 mg
 Available: 2 mg/ml
 How many ml's should be given? ________

9. Ordered: 0.3 gm
 Available: 300 mg/tablet
 How many tablets should be given? ________

10. Ordered: 150 mg
 Available: 1 gr/tablet
 How many tablets should be given? ________

11. Ordered: 0.03 gm
 Available: 6 mg/8 ml
 How many ml's should be given? ________

12. Ordered: 2 gr
 Available: 60 mg/tablet
 How many tablets should be given? ________
13. Ordered: 0.75 gm
 Available: 250 mg/tablet
 How many tablets should be given? ________

14. Ordered: 600 mg
 Available: 60 mg/ml
 How many tsp should be given? ________

15. Ordered: 0.25 Gm
 Available: 125 mg/ml
 How many ml's should be given? ________

16. Ordered: 250 mg
 Available: 0.5 gm/tablet
 How many tablets should be given? ________

17. Ordered: 1/6 gr
 Available: 5 mg/ml
 How many ml's should be given? ________
18. Ordered: Two tablespoons of a liquid every 2 hours for 12 hours. How many ml's of the drug will the client receive over the 12 hour period? ________

19. A client weighing 110 lbs. is to receive a drug at the dosage of 2.5 mg/kg of body weight. How many mg of the drug will the client receive? ________

20. A client is to receive 0.2 ml/kg of a drug every 2 hours. The client weighs 110 lbs. How many ml's of drug will the client receive in 24 hours? ________

ANSWERS: Page 59
PRACTICE EXAM #2

Criteria for Grading Dosage Calculation Exams

1. Each problem must be set up in the fractional format.
2. Must show fractional format for each step in multiple step problems.
3. Must show units in formulas.
4. Must solve for x in each formula.
5. Always convert from one unit of measure to another by the shortest number of steps.

Rules for rounding off for nursing math tests:

1. At the end of each step round the answer to the nearest hundredths before proceeding to the next step.
2. If the final answer is less than one, the answer should be rounded off to hundredths, Example \[.6666 \rightarrow .67 \]
3. If the final answer is greater than one, the answer should be rounded to tenths, Example \[1.812 \rightarrow 1.8 \]
4. In IV problems, if the final answer is ml/hour or gtts/min, round to the nearest whole number. Therefore, you must round the final answer up if equal to or greater than .5 and round down if less than .5. See example, page 46. If the question states that the IV solution is administered by IV pump, the final answer must be rounded to the nearest hundredth.

1. Ordered: 800,000 units
 Available: 2,000,000 units/10 ml
 How many ml's should be given? ________

2. Ordered: 60 mg
 Available: 30 mg/5 ml
 How many ml's should be given? ________
3. Ordered: 2 mg
 Available: 10 mg/2 ml
 How many ml's should be given? ________

4. Ordered: 2.5 gm
 Available: 1 gm/tab
 How many tablets should be given? ________

5. Ordered: 80 mg
 Available: 60 mg/0.6 ml
 How many ml's should be given? ________

6. Ordered: 0.25 mg
 Available: 0.05 mg/ml
 How many ml's will the client receive? ________

7. Ordered: XV gr
 Available: 7.5 gr/tablet
 How many tablets should be given? ________

8. Ordered: 1/4 gr
 Available: 1/2 gr/tablet
 How many tablets should be given? ________

9. Ordered: gr 1/4
 Available: 30 mg/tab
 How many tablets should be given? ________
10. Ordered: 50 mg
 Available: 250 mg/tsp
 How many ml's should be given? ________

11. Ordered: gr X
 Available: 300 mg tab
 How many tablets should be given? ________

12. Ordered: 15 meq
 Available: 5 meq/10 ml
 How many tablespoons should be given? ________

13. Ordered: 0.5 gm
 Available: 250 mg/tab
 How many tablets should be given? ________

14. Ordered: 60 mg
 Available: 1/2 gr/tablet
 How many tablets should be given? ________

15. Ordered: 0.6 gm
 Available: 300 mg/ml
 How many ml's should be given? ________

16. Ordered: 15 meq
 Available: 5 meq/10 ml
 How many teaspoons should be given? ________
17. Ordered: 1 gm
 Available: 800 mg/2 ml
 How many ml's should be given? ________

18. A client receives 30 ml of a drug every 4 hours for 24 hours. How many ounces will the client receive in 24 hrs? ________

19. A 66 lb. child is to receive a drug 2.5 mg/kg body weight. How many mg's will the child receive? ________

20. A sixty-six pound child is to receive 0.4 meq/kg of a drug. The drug is available in 2 meq/4 ml. How many ml's will be given? ________

ANSWERS: Page 63
PART E
PEdiATRIC MEdicATions

Steps:

1. Convert pounds to kilograms.

2. If weight is in ounces, convert ounces to nearest hundredth of a pound and add this to total pounds.

3. Since 16 oz. = 1 lb., change oz. to part of a pound by dividing by 16. Carry arithmetic out to three places and round off.

4. Then, convert total pounds to kilograms to nearest hundredths.

Example I:

O: Lasix 15 mg. po BID
A: 2 mg/kg

The infant weighs 16 lbs. 10 oz. How many mg will you give? Single dose? Bid?

\[
\begin{align*}
0.625 \times 16 & = 0.63 \text{ lb. Child’s wt. is 16.63 lbs.} \\
10 \text{ oz} & = 16 \text{ lbs} \times 10.000 \\
16 \text{ oz} & = 96 \\
40 & \\
32 & \\
80 & \\
80 & \\
0 & \\
1.1 \text{ kg} & = x \text{ kg} \\
2.2 \text{ lb.} & = 16.63 \text{ lb.} \\
2.2 \times x & = 16.6 \\
0 & \\
16.620 & \\
V & V \\
22 & 166.300 \\
154 & 123 \\
x & = 7.559 \text{ kg} \\
x & = 7.56 \text{ kg} \\
110 & 130 \\
110 & 200 \\
198 & 2
\end{align*}
\]

2. \[\frac{2 \text{ mg}}{1 \text{ kg}} \times \frac{x \text{ mg}}{7.56 \text{ kg}} = \text{ single dose} \]

BID \(15.1 \times 2 = 30.2 \text{ mg/day}\)

x = 15.12 mg.
Example II:

O: 115 mg/ml tid
A: 30 mg/kg/day in divided doses

Infant weighs 25 lbs. 4 oz. How many mg will nurse give in 1 day?

4 oz. = 1 or 0.25 = 0.250
16 oz. = 4

Infant weighs 25.25 lbs.

1. \[\frac{25.250 \text{ lb.}}{1 \text{ kg}} = 2.2 \text{ lbs.} \]

\[x \text{ kg} \]

\[\begin{array}{c|c|c|c|c|c|c}
2.2 & 25.25 & 22 & 11.477 \\
22 & 32 & 22 & \hline
105 & 88 & 170 & 160 \\
154 & 154 & & & & \\
\end{array} \]

\[2.2x = 25.25 \]

\[x = 11.477 \text{ Round 11.48} \]

2. \[\frac{30 \text{ mg}}{1 \text{ kg}} = \frac{x \text{ mg}}{11.48 \text{ kg}} \]

\[x \text{ kg} \]

\[\begin{array}{c|c|c|c}
30 & 11.48 & x & 11.48 \\
344.4 \text{ mg} & 344.4 \text{ mg} & & \hline
\end{array} \]

\[x = 30 \times 11.48 \]

\[x = 344.4 \text{ mg} \]
1. A 20 pound, 8 ounce child is to receive Cosmegen 20 mcg/kg of body weight. How many micrograms should the child receive?

2. Ordered: Phenergan 1 mg/kg of body weight. How many mgs should you give to a 45 pound post-op child?

3. Ordered: 30 meq per kg. Client weighs 8 lb. 8 oz. How many meq should you give?

4. Ordered: 40 mg per kg of body wt.
 Available: 100 mg per 1 ml
 How many ml’s should you give to a 8 lb. 4 oz infant?

5. Ordered: 40 meq per kg of body wt. Your client weighs 8 lbs. 6 oz. How many meq should you give?

ANSWERS: Page 63
PART F
PARENTERAL MEDICATIONS

Directions for Calculating IV Problems

A. To find flow rate stated in ml’s per hour (if not given in the order):

Divide the total volume of the solution in ml by the total number of hours to run.

Example: 1000 ml IV solution ordered to infuse over 8 hours.

\[
\frac{1000 \text{ ml}}{8 \text{ hrs.}} = \frac{x \text{ ml}}{1 \text{ hr.}}
\]

\[
8x = 1000
\]

\[
x = 125 \text{ ml/hr}
\]

Answer: 125 ml/hour

This number (ml/hr) is used to calculate drops per minute.

When answer does not come out evenly, round off to the nearest whole number. If 5 & greater round up. Below 5, round down.

Example: 1000 ml solution to infuse over 6 hours.

\[
\frac{1000 \text{ ml}}{6 \text{ hrs.}} = 166.6 = 167
\]

Answer: 167 ml/hr

B. To find flow rate stated in drops per minute:

Drop factor is the number of drops it takes to equal 1 ml with a specific type of IV tubing. The drop factor is stated on the tubing package.

\[
\text{ml/hr.} \times \text{drop factor} = \text{gtts/min}
\]

60 minutes/hr is a constant in this formula

Example: The drop factor is a 15 gtts/ml and the flow rate is 120ml/hr.

\[
\frac{120\text{ml/hr}}{60 \text{ mins/hr}} \times 15 \text{gtts/ml} = 1800 = 30 \text{gtts/min}
\]
Example: The drop factor is 20 gtts/ml and the flow rate is 100 ml/hr.

\[
\frac{100\text{ml/hr} \times 20 \text{gtts/ml}}{60 \text{mins/hr}} = \frac{2000}{60} = 33 \text{gtts/min}
\]

*Remember, when answer does not come out even, round off to nearest whole number.

Example: 32.5 gtts = 33 gtts
32.4 gtts = 32 gtts

C. How much drug in 1 ml of fluid?

Example: \[
\frac{500 \text{mg of Keflin}}{1000 \text{ml}} = \frac{x \text{mg Keflin}}{1 \text{ml}}
\]
\[
1000x = 500
\]
\[
x = 0.5 \text{mg/ml}
\]

D. How much drug in hour?

\[
\frac{500 \text{mg Keflin}}{10 \text{hr}} = \frac{x \text{mg}}{1 \text{hr}}
\]
\[
10x = 500
\]
\[
x = 50 \text{mg/hr}
\]

E. What time of day will the IV end?

Current time + hours to run = end time.

Example: \[
\frac{1000 \text{ml}}{100 \text{ml/hr}} = 10 \text{hr}
\]
9 AM + 10 = 7 PM, end time
With IV fluids - round off to the nearest whole number. With 5 or greater round up, less than 5 round down.

Example:
166.6 = 167 ml/hr
163.4 = 163 ml/hr

Examples of Problems

1. Ordered: 5 mg
 \[
 \begin{align*}
 &\text{2 mg} = 5 \text{ mg} \\
 &2X = 5
 \end{align*}
 \]
 Available: 2 mg/ml
 \[
 \begin{align*}
 &1 \text{ ml} \times x \text{ ml} \\
 &x = 2.5 \text{ ml}
 \end{align*}
 \]
 How many ml do you give?

2. Ordered: 5 ml
 \[
 \begin{align*}
 &10 \text{ mg} = x \text{ mg} \\
 &1 \text{ ml} \times 5 \text{ ml} \\
 &x = 50 \text{ mg}
 \end{align*}
 \]
 Available: 10 mg/ml

3. IV Order: D5W with 20 meq Kcl per liter to infuse at 50 ml/hour.

 To prepare this solution, the nurse uses the stock preparation of Kcl (10 meq/5 ml) to add to the liter of D5W to make the concentration ordered.

 \[
 \begin{align*}
 &10 \text{ meq} = 20 \text{ meq} \\
 &5 \text{ ml} \times x \text{ ml} \\
 &x = 10 \text{ ml}
 \end{align*}
 \]

 The drop factor is 60 gtts/ml. How many gtts/min will IV run?

 \[
 \frac{50 \text{ ml/hr} \times 60 \text{ (drop factor)}}{60 \text{ min./hr}} = 50 \text{ gtts/min}
 \]

 How much fluid will client receive in 24 hours?

 \[
 50 \text{ ml} \times 24 \text{ hours} = 1200 \text{ ml}
 \]

 How many meq of Kcl will client receive in one hour?

 \[
 \begin{align*}
 &20 \text{ meq} = x \text{ meq} \\
 &1000 \text{ ml} \times 50 \text{ ml}
 \end{align*}
 \]
 (amount of solution received in one hour)

 \[
 1000 \times x = 1000
 \]

 \[
 x = 1 \text{ meq}
 \]

4. Ordered: 2 mg/kg
 \[
 \begin{align*}
 &2.2 \text{ lbs} = 44 \text{ lbs} \\
 &1 \text{ kg} \times X \text{ kg}
 \end{align*}
 \]
 Client weighed: 44 lbs.

 How many mg will client receive?

 \[
 \begin{align*}
 &2.2 \times x = 44 \\
 &x = 20 \text{ kg}
 \end{align*}
 \]

 \[
 \begin{align*}
 &2 \text{ mg} = x \text{ mg} \\
 &1 \text{ kg} \times 20 \text{ kg}
 \end{align*}
 \]

 \[
 x = 40 \text{ mg}
 \]
5. Ordered: D$_5$1/2NS to infuse 2 liters over 16 hours. How many ml’s/hr will be infused per hour?

\[
\frac{2000 \text{ ml}}{16 \text{ hrs.}} = \frac{x \text{ ml}}{1 \text{ hr.}}
\]

\[16x = 2000\]

\[x = 125 \text{ ml/hr}\]
Dosage Calculation Directions:

1. At the end of each step round the answer to the nearest hundredths before proceeding to the next step.
2. If the final answer is less than one, the answer should be rounded off to hundredths, Example .6666 .67
3. If the final answer is greater than one, the answer should be rounded to tenths, Example 1.812 1.8
4. In IV problems, if the answer is in ml/hr or gtts/min, round to the nearest whole number. Therefore, you must round the final answer up if equal to or greater than .5 and round down if less than .5. See example, page 46. If the question states that the IV solution is administered by IV pump, the final answer must be rounded to the nearest hundredth.

5. **ALL WORK MUST BE SHOWN!**

6. The answer must be clearly identified by placing answer on the blank line or circled on the worksheet by the question.

1. Order: IV of D$_5$1/2NS at 100 ml/hr (20 gtts/ml)
 How many drops per minute? _______________________

2. Order: 500 ml of LR with 20 meq Kcl over 8 hours (15 gtts/ml)
 How many drops per minute? _______________________

3. Order: 1.5 Gm po
 Available: 500 mg/tablet
 How many tablets will you give? _______________________

4. Order: gr 1/6 IM
 Available: 30 mg/ml
 How many ml’s will you give? ________________________
5. Order: 0.5 gm po
 Available: 250 mg/ml
 How many ml’s will you give? ____________________________

6. Order: 200,000 units IM
 Available: 500,000 units/5 ml
 How many ml’s will you give? ____________________________

7. Order: 200 mg IM
 Available: 500 mg/ml
 How many ml’s will you give? ____________________________

8. Order: 750 mcg po
 Available: 0.5 mg/tablet
 How many tablets will you give? __________________________

9. Order: 4 mg IM
 Available: gr 1/20/ml
 How many ml’s will you give? ____________________________

10. Order: 250 mcg IM
 Available: 1 mg per 2 ml
 How many ml’s do you give? ____________________________

ANSWERS: Page 66
Dosage Calculation Directions:

1. At the end of each step round the answer to the nearest hundredths before proceeding to the next step.
2. If the final answer is less than one, the answer should be rounded off to hundredths, Example .6666 .67
3. If the final answer is greater than one, the answer should be rounded to tenths, Example 1.812 1.8
4. In IV problems, if the answer is in ml/hr or gtts/min, round to the nearest whole number. Therefore, you must round the final answer up if equal to or greater than .5 and round down if less than .5. See example, page 46. If the question states that the IV solution is administered by IV pump, the final answer must be rounded to the nearest hundredth.

5. **ALL WORK MUST BE SHOWN!**

6. The answer must be clearly identified by placing answer on the blank line or circled on the worksheet by the question.

Order: 1000 ml of D5W to infuse over 12 hours (20 gtts/ml)
1. How many ml per hour? ____________________
2. How many drops per minute? ____________________

Order: 1000 ml of D5NS to infuse at 125 ml/hr (60 gtts/ml)
3. How many drops per minute? ____________________

Order: 100 ml D5W with 2 gm Keflin to infuse in 1 hour (15 gtts/ml)
4. How many drops per minute? ____________________
5. How many mg of Keflin in 1 ml? ____________________

Order: 500 ml LR to infuse over 10 hours (60 gtts/ml)
6. How many ml per hour? ____________________
7. How many drops per minute? ____________________

Order: 500 ml D5W with 500 mg Aminophyllin to infuse at 150 ml/hr (20 gtts/ml).
8. How many drops per minute? ____________________
Order: 1000 ml LR to infuse over 10 hours (60 gtts/ml)
9. How many ml per hour? ____________________
10. How many drops per minute? ____________________

Order: 250 ml NS to infuse at 50 ml/hour - started at 9 a.m. (60 gtts/ml)
11. How many drops per minute? ____________________
12. At what time of day will the NS have infused? ___________

13. Order: gr ½ IM
 Available: 15 mg/ml
 How many ml’s will you give? _________________

14. Order: 2 gm po
 Available: 500 mg/tablet
 How many tablets will you give? _______________

15. Order: 4000 units subcut
 Available: 5000 units/0.5 ml
 How many ml’s will you give? _________________

16. Order: 10 mg po
 Available: 5 mg/4 ml
 How many ml’s will you give? _________________

17. Order: gr 1/4 IM
 Available: gr 1/6 per ml
 How many ml’s will you give? _________________
18. Order: 250 mcg
Available: 0.25 mg/tablet
How many tablets will you give? ____________________

19. Order: gr 1½ IM
Available: 50 mg/ml
How many ml’s will you give? ____________________

20. Order: 30 mg/kg po (Client weighs 110 lbs.)
Available: 500 mg/capsule
How many capsule(s) will you give? ____________________

ANSWERS: Page 67
Dosage Calculation Directions:

1. At the end of each step round the answer to the nearest hundredths before proceeding to the next step.

2. If the final answer is less than one, the answer should be rounded off to hundredths, Example: .6666 = .67

3. If the final answer is greater than one, the answer should be rounded to tenths, Example: 1.812 = 1.8

4. In IV problems, if the answer is in ml/hr or gtts/min, round to the nearest whole number. Therefore, you must round the final answer up if equal to or greater than .5 and round down if less than .5. See example, page 46. If the question states that the IV solution is administered by IV pump, the final answer must be rounded to the nearest hundredth.

5. **ALL WORK MUST BE SHOWN!**

6. The answer must be clearly identified by placing answer on the blank line or circled on the worksheet by the question.

1. Order: IV of D5W to infuse at 140 ml/hr (20 gtts/ml)
 How many drops per minute?

2. Order: 1000 ml of D5LR with 20 units Pitocin over 10 hours (15 gtts/ml)
 How many drops per minute? ________________

3. Order: gr 1/8 IM
 Available: 15 mg/ml
 How many ml’s will you give? ________________

4. Order: 1 gm po
 Available: 250 mg/tablet
 How many tablet(s) will you give? ________________
5. Order: 3000 units subcut
 Available: 5000 units/0.5 ml
 How many ml’s will you give? ____________________

6. Order: 15 mg po
 Available: 5 mg/teaspoon
 How many ml’s will you give? ____________________

7. Order: gr 1/6 IM
 Available: gr 1/4 per 2 ml
 How many ml’s will you give? ____________________

8. Order: 750 mcg po
 Available: 0.25 mg/tablet
 How many tablet(s) will you give? ____________________

9. Order: 3 gr IM
 Available: 90 mg/ml
 How many ml’s will you give? ____________________

10. Order: 7 mg/kg (Client weighs 11 lbs.)
 Available: 70 mg/ml
 How many ml’s will you give? ____________________

11. Order: IV of NS to infuse at 90 ml/hr (12 gtts/ml)
 How many drops per minute? ____________________

12. Order: 1000 ml of LR to infuse over 5 hours (20 gtts/ml)
 How many drops per minute? ____________________
13. Order: gr 1/4 IM
 Available: 10 mg/ml
 How many ml’s will you give? ____________________

14. Order: 1.5 gm po
 Available: 750 mg/tablet
 How many tablet(s) will you give? ________________

15. Order: 5000 units subcut
 Available: 10,000 units/ml
 How many ml’s will you give? ____________________

16. Order: 7.5 mg po
 Available: 5 mg/teaspoon
 How many ml’s will you give? ____________________

17. Order: gr 1/150 IM
 Available: gr 1/200 per ml
 How many ml’s will you give? ____________________

18. Order: 125 mcg po
 Available: 0.25 mg/tablet
 How many tablet(s) will you give? ________________
19. Order: gr 1½ IM
Available: 60 mg/ml
How many ml’s will you give? ____________________

20. Order: 15 mg/kg IM (Client weighs 154 lbs.)
Available: 500 mg/ml
How many ml’s will you give? ____________________

ANSWERS: Page 67
Roman Numerals #1

1. 16
2. 21
3. XXIX
4. XIX
5. III

Fractions #2

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7 1/2</td>
<td>8</td>
<td>1/3</td>
</tr>
<tr>
<td>2</td>
<td>2 1/6</td>
<td>9</td>
<td>1/4</td>
</tr>
<tr>
<td>3</td>
<td>1 3/4</td>
<td>10</td>
<td>1 49/80</td>
</tr>
<tr>
<td>4</td>
<td>3 2/3</td>
<td>11</td>
<td>43/45</td>
</tr>
<tr>
<td>5</td>
<td>1 7/8</td>
<td>12</td>
<td>1 3/7</td>
</tr>
<tr>
<td>6</td>
<td>7 2/5</td>
<td>13</td>
<td>1/6</td>
</tr>
<tr>
<td>7</td>
<td>2/3</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Decimals #3

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.75</td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>0.5</td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>0.375</td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>0.67</td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>(\frac{54}{100} = \frac{27}{50})</td>
<td>15.</td>
</tr>
<tr>
<td>6.</td>
<td>(\frac{154}{1000} = \frac{77}{500})</td>
<td>16.</td>
</tr>
<tr>
<td>7.</td>
<td>(\frac{60}{100} = \frac{3}{5})</td>
<td>17.</td>
</tr>
<tr>
<td>8.</td>
<td>(\frac{2}{10} = \frac{1}{5})</td>
<td>18.</td>
</tr>
<tr>
<td>9.</td>
<td>2.24</td>
<td>19.</td>
</tr>
<tr>
<td>10.</td>
<td>1.02</td>
<td>20.</td>
</tr>
<tr>
<td>11.</td>
<td>2.64</td>
<td>21.</td>
</tr>
<tr>
<td>12.</td>
<td>1.84</td>
<td>22.</td>
</tr>
<tr>
<td>13.</td>
<td>0.63</td>
<td>23.</td>
</tr>
<tr>
<td>14.</td>
<td>0.01</td>
<td>24.</td>
</tr>
<tr>
<td>15.</td>
<td>2.42</td>
<td>25.</td>
</tr>
<tr>
<td>16.</td>
<td>0.43</td>
<td>26.</td>
</tr>
<tr>
<td>17.</td>
<td>0.3749</td>
<td>27.</td>
</tr>
<tr>
<td>18.</td>
<td>0.00369</td>
<td>28.</td>
</tr>
<tr>
<td>19.</td>
<td>2.3635</td>
<td>29.</td>
</tr>
<tr>
<td>20.</td>
<td>0.006</td>
<td>30.</td>
</tr>
</tbody>
</table>

Metric Systems #4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7000 gm</td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>50 ml</td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>2,500 mg</td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>5,070 gm</td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>0.0005 liter</td>
<td>15.</td>
</tr>
<tr>
<td>6.</td>
<td>19.3 ml</td>
<td>16.</td>
</tr>
<tr>
<td>7.</td>
<td>1,340,000 mg</td>
<td>17.</td>
</tr>
<tr>
<td>8.</td>
<td>0.0037 gm</td>
<td>18.</td>
</tr>
</tbody>
</table>

Household System #5

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>120 gtts</td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>4.5 t or (\frac{4}{2}) t</td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>3 or (\frac{0.75}{4}) t</td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>2 (\frac{1}{2}) or 2.5 oz.</td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>16 T</td>
<td>15.</td>
</tr>
<tr>
<td>6.</td>
<td>4 T</td>
<td>16.</td>
</tr>
</tbody>
</table>

Metric Systems #4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7000 gm</td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>50 ml</td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>2,500 mg</td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>5,070 gm</td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>0.0005 liter</td>
<td>15.</td>
</tr>
<tr>
<td>6.</td>
<td>19.3 ml</td>
<td>16.</td>
</tr>
<tr>
<td>7.</td>
<td>1,340,000 mg</td>
<td>17.</td>
</tr>
<tr>
<td>8.</td>
<td>0.0037 gm</td>
<td>18.</td>
</tr>
</tbody>
</table>

Household System #5

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>120 gtts</td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>4.5 t or (\frac{4}{2}) t</td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>3 or (\frac{0.75}{4}) t</td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>2 (\frac{1}{2}) or 2.5 oz.</td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>16 T</td>
<td>15.</td>
</tr>
<tr>
<td>6.</td>
<td>4 T</td>
<td>16.</td>
</tr>
</tbody>
</table>

Metric Systems #4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7000 gm</td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>50 ml</td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>2,500 mg</td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>5,070 gm</td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>0.0005 liter</td>
<td>15.</td>
</tr>
<tr>
<td>6.</td>
<td>19.3 ml</td>
<td>16.</td>
</tr>
<tr>
<td>7.</td>
<td>1,340,000 mg</td>
<td>17.</td>
</tr>
<tr>
<td>8.</td>
<td>0.0037 gm</td>
<td>18.</td>
</tr>
</tbody>
</table>

Household System #5

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>120 gtts</td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>4.5 t or (\frac{4}{2}) t</td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>3 or (\frac{0.75}{4}) t</td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>2 (\frac{1}{2}) or 2.5 oz.</td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>16 T</td>
<td>15.</td>
</tr>
<tr>
<td>6.</td>
<td>4 T</td>
<td>16.</td>
</tr>
</tbody>
</table>

Metric Systems #4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7000 gm</td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>50 ml</td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>2,500 mg</td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>5,070 gm</td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>0.0005 liter</td>
<td>15.</td>
</tr>
<tr>
<td>6.</td>
<td>19.3 ml</td>
<td>16.</td>
</tr>
<tr>
<td>7.</td>
<td>1,340,000 mg</td>
<td>17.</td>
</tr>
<tr>
<td>8.</td>
<td>0.0037 gm</td>
<td>18.</td>
</tr>
</tbody>
</table>

Household System #5

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>120 gtts</td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>4.5 t or (\frac{4}{2}) t</td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>3 or (\frac{0.75}{4}) t</td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>2 (\frac{1}{2}) or 2.5 oz.</td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>16 T</td>
<td>15.</td>
</tr>
<tr>
<td>6.</td>
<td>4 T</td>
<td>16.</td>
</tr>
<tr>
<td>Practice Exam #1 Answers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1. 100 units = 40 units</td>
<td>2. 1.5 mg = 3 mg</td>
<td></td>
</tr>
<tr>
<td>1 ml = x ml</td>
<td>1 tablet = x tablets</td>
<td></td>
</tr>
<tr>
<td>100 x = 40</td>
<td>1.5x = 3</td>
<td></td>
</tr>
<tr>
<td>100x = 40</td>
<td>1.5x = 3</td>
<td></td>
</tr>
<tr>
<td>100 100</td>
<td>1.5 1.5</td>
<td></td>
</tr>
<tr>
<td>x = 0.4 ml</td>
<td>x = 2 tablets</td>
<td></td>
</tr>
<tr>
<td>3. 1/2 gr = 1/2 gr</td>
<td>4. 250 mg = 1000 mg</td>
<td></td>
</tr>
<tr>
<td>1 tab = x tab</td>
<td>1 tablet = x tablet</td>
<td></td>
</tr>
<tr>
<td>1/2 x = 1/2 x</td>
<td>250x = 1000</td>
<td></td>
</tr>
<tr>
<td>1/2 x = 1/2 x</td>
<td>250 250</td>
<td></td>
</tr>
<tr>
<td>x = 3 tablets</td>
<td>x = 4 tablets</td>
<td></td>
</tr>
<tr>
<td>5. 10 mg = 5 mg</td>
<td>6. 0.25 mg = 0.125 mg</td>
<td></td>
</tr>
<tr>
<td>2 ml = x ml</td>
<td>1 tablet = x tablet</td>
<td></td>
</tr>
<tr>
<td>10x = 10</td>
<td>0.25x = 0.125</td>
<td></td>
</tr>
<tr>
<td>10x = 10</td>
<td>0.25x = 0.125</td>
<td></td>
</tr>
<tr>
<td>10 10</td>
<td>0.25 0.25</td>
<td></td>
</tr>
<tr>
<td>x = 1 ml</td>
<td>x = 0.5 tablet</td>
<td></td>
</tr>
<tr>
<td>7. 1/100 gr = 1/200 gr</td>
<td>8. 2 mg = 0.5 mg</td>
<td></td>
</tr>
<tr>
<td>1 tablet = x tablet</td>
<td>1 ml = x ml</td>
<td></td>
</tr>
<tr>
<td>1/100 x = 1/200</td>
<td>2x = 0.5</td>
<td></td>
</tr>
<tr>
<td>1/100x = 1/200</td>
<td>2x = 0.5</td>
<td></td>
</tr>
<tr>
<td>1/100 1/100</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>x = 1 tablet</td>
<td>x = 0.25 ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 9. | \[
\begin{align*}
300 \text{ mg} &= 0.3 \text{ gm} \\
1 \text{ tablet} &= x \text{ tablet}
\end{align*}
\]
| | \[
\begin{align*}
A. \quad &1000 \text{ mg} = x \text{ mg} \\
&1 \text{ gm} = 0.3 \text{ gm} \\
x &= 0.3 \times 1000 \\
x &= 300 \text{ mg}
\end{align*}
\]
| | \[
\begin{align*}
B. \quad &300 \text{ mg} = 300 \text{ mg} \\
&1 \text{ tablet} = 1 \text{ tablet} \\
300x &= 300 \\
x &= \frac{300}{300} \\
x &= 1 \text{ tablet}
\end{align*}
\]
| 10. | \[
\begin{align*}
1 \text{ gr} &= 150 \text{ mg} \\
1 \text{ tablet} &= x \text{ tablet}
\end{align*}
\]
| | \[
\begin{align*}
A. \quad &60 \text{ mg} = 150 \text{ mg} \\
&1 \text{ gr} = x \text{ gr} \\
60x &= 150 \\
\frac{60x}{60} &= \frac{150}{60} \\
x &= 2.5 \text{ gr}
\end{align*}
\]
| | \[
\begin{align*}
B. \quad &1 \text{ gr} = 2.5 \text{ gr} \\
&1 \text{ tablet} = x \text{ tablet} \\
x &= 2.5 \text{ tablets}
\end{align*}
\]
| 11. | \[
\begin{align*}
6 \text{ mg} &= 0.03 \text{ mg} \\
8 \text{ ml} &= x \text{ ml}
\end{align*}
\]
| | \[
\begin{align*}
A. \quad &1 \text{ gm} = 0.03 \text{ gm} \\
&1000 \text{ mg} = x \text{ mg} \\
1x &= 1000x \times 0.03 \\
x &= 30 \text{ mg}
\end{align*}
\]
| | \[
\begin{align*}
A. \quad &6 \text{ mg} = 30 \text{ mg} \\
&8 \text{ ml} = x \text{ ml} \\
6x &= 30 \times 8 \\
x &= 240 \\
x &= 40 \text{ ml}
\end{align*}
\]
| 12. | \[
\begin{align*}
60 \text{ mg} &= 2 \text{ gr} \\
1 \text{ tablet} &= x \text{ tablet}
\end{align*}
\]
| | \[
\begin{align*}
A. \quad &1 \text{ gr} = 2 \text{ gr} \\
&60 \text{ mg} = x \text{ mg} \\
x &= 2 \times 60 \\
x &= 120 \text{ mg}
\end{align*}
\]
| | \[
\begin{align*}
B. \quad &60 \text{ mg} = 120 \text{ mg} \\
&1 \text{ tablet} = x \text{ tablet} \\
60x &= 120 \\
\frac{60x}{60} &= \frac{120}{60} \\
x &= 2 \text{ tablets}
\end{align*}
\]
13. $250 \text{ mg} = 0.75 \text{ gm}
\begin{align*}
\text{A. } & \quad \frac{1000 \text{ mg}}{1 \text{ gm}} = \frac{x \text{ mg}}{0.75 \text{ gm}} \\
& \quad x = 0.75 \text{ gm} \\
& \quad x = 0.75 \times 1000 \\
& \quad x = 750 \text{ mg} \\
\text{B. } & \quad \frac{250 \text{ mg}}{1 \text{ tablet}} = \frac{750 \text{ mg}}{x \text{ tablet}} \\
& \quad 250x = 750 \\
& \quad x = 3 \text{ tablets}
\end{align*}

14. $60 \text{ mg} = 600 \text{ mg}
\begin{align*}
\text{A. } & \quad \frac{60 \text{ mg}}{1 \text{ ml}} = \frac{600 \text{ mg}}{x \text{ tsp}} \\
& \quad 60x = 600 \\
& \quad x = 10 \text{ ml} \\
\text{B. } & \quad \frac{1 \text{ tsp}}{5 \text{ ml}} = \frac{x \text{ tsp}}{10 \text{ ml}} \\
& \quad 5x = 10 \\
& \quad x = 2 \text{ tsp}
\end{align*}

15. $125 \text{ mg} = 0.25 \text{ gm}
\begin{align*}
\text{A. } & \quad \frac{1000 \text{ mg}}{1 \text{ gm}} = \frac{x \text{ mg}}{0.25 \text{ gm}} \\
& \quad x = 0.25 \times 1000 \\
& \quad x = 250 \text{ mg} \\
\text{B. } & \quad \frac{125 \text{ mg}}{1 \text{ ml}} = \frac{250 \text{ mg}}{x \text{ ml}} \\
& \quad 125x = 250 \\
& \quad \frac{125x}{125} = \frac{250}{125} \\
& \quad x = 2 \text{ ml}
\end{align*}

16. $0.5 \text{ gm} = 250 \text{ mg}
\begin{align*}
\text{A. } & \quad \frac{1000 \text{ mg}}{1 \text{ gm}} = \frac{250 \text{ mg}}{x \text{ gm}} \\
& \quad 1000x = 250 \\
& \quad \frac{1000x}{1000} = \frac{250}{1000} \\
& \quad x = 0.25 \text{ gm} \\
\text{B. } & \quad \frac{0.5 \text{ gm}}{1 \text{ tablet}} = \frac{0.25 \text{ gm}}{x \text{ tablet}} \\
& \quad 0.5x = 0.25 \\
& \quad \frac{0.5x}{0.5} = \frac{0.25}{0.5} \\
& \quad x = 0.5 \text{ tablet}
\end{align*}
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>$5 \text{ mg} = \frac{1}{6} \text{ gr}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1 \text{ ml} \quad x \text{ ml}$</td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>$60 \text{ mg} = x \text{ mg}$</td>
<td>B.</td>
</tr>
<tr>
<td></td>
<td>$1 \text{ gr} \quad \frac{1}{6} \text{ gr}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x = \frac{1}{6} \times 60$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x = 10 \text{ mg}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>$2 \text{ Tbsp} \quad \frac{x \text{ ml}}{2 \text{ hr}} \quad 12 \text{ hr}$</td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>$1 \text{ Tbsp} = \frac{2 \text{ Tbsp}}{15 \text{ ml}} \quad x \text{ ml}$</td>
<td>B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x = 15 \times 2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x = 30 \text{ ml}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>$2.5 \text{ mg} \quad \frac{x \text{ mg}}{1 \text{ Kg}} \quad 110 \text{ lb}$</td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>$2.2 \text{ lb} = \frac{110 \text{ lb}}{1 \text{ Kg}} \quad x \text{ Kg}$</td>
<td>B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2.2x = 110$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x = 50 \times 2.5$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{2.2x = 110}{2.2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x = 125 \text{ mg}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. 0.2 ml = x ml
 1 Kg 110 lbs

A. 1 Kg ___ = x Kg
 2.2 lbs 110 lbs

 2.2x = 110
 2.2
 x = 50 Kg

B. 0.2 ml = x ml
 1 Kg 50 Kg

 x = 0.2 x 50
 x = 10 ml

C. 10 ml = x ml
 2 hr 24 hr

 2x = 10 x 24
 2
 x = 120 ml q 24 hrs

Practice Exam #2 Answers

1. 4 ml
2. 10 ml
3. 0.4 ml
4. 2.5 tablets
5. 0.8 ml
6. 5 ml
7. 2 tablets
8. 0.5 tablet
9. 0.5 tablet
10. 1.25 ml
11. 2 tablets
12. 2 tablespoons
13. 2 tablets
14. 2 tablets
15. 2 ml
16. 6 teaspoons
17. 2.5 ml
18. 6 ounces
19. 75 mg
20. 24 ml’s

These practice problems should assist the student to identify strengths and weaknesses in math skills. There are appropriate resources in the Learning Resource Center to assist with identified weakness. Refer to page 6 in this booklet.

Answers to Practice Exam #3 (Pediatric Problems)

1. ① 8 oz = .5
 16 oz
② 2.2 lb = 20.5 lb
 1 Kg. x Kg
③ 20 meq = x meq
 1 Kg 9.32 Kg

 x = 9.32 Kg
 x = 186.4
2. \[2.2 \text{ lb.} = 45 \text{ lb.} \]
\[\frac{2.2 \text{ lb.}}{1 \text{ kg}} \times \frac{x \text{ kg}}{1 \text{ kg}} = 45 \text{ lb.} \]
\[2.2x = 45 \]
\[x = \frac{45}{2.2} = 20.45 \text{ kg} \]

\[\frac{1 \text{ mg}}{20.45 \text{ kg}} \times \frac{x \text{ mg}}{1 \text{ kg}} = 88 \]
\[x = \frac{20.5 \text{ mg}}{100} \]

\[x = 20.45 = 20.5 \text{ mg of phenergan} \]

3. \[1 \text{ kg} = x \text{ kg} \]
\[\frac{8 \text{ oz}}{2.2 \text{ lb.}} = \frac{1 \text{ oz}}{1 \text{ lb}} = 1 = 0.5 \]
\[\frac{2.2 \times 8.5 \text{ lb}}{2.2 \text{ x}} = 8.5 \text{ lb} \]
\[x = \frac{3.86}{2.2} \times 8.5 \text{ lb} = 3.86 \text{ kg} \]

\[\frac{30 \text{ meq}}{1 \text{ kg}} = \frac{x \text{ meq}}{3.86 \text{ kg}} \]
\[x = \frac{115.8 \text{ meq}}{80} \]
\[x = 30 \times 3.86 \]
\[x = 115.8 \text{ meq} \]
4.

1. \[\frac{4 \text{ oz}}{16 \text{ oz}} = 0.25 \]

\[\frac{1 \text{ kg}}{2.2 \text{ lb}} = \frac{x \text{ kg}}{8.25 \text{ lb}} \]

\[2.2x = 8.25 \]

\[x = 3.75 \text{ kg} \]

2. \[\frac{40 \text{ mg}}{1 \text{ kg}} = \frac{x \text{ mg}}{3.75 \text{ kg}} \]

\[x = 40 \times 3.75 \]

\[x = 150 \text{ mg} \]

3. \[\frac{100 \text{ mg}}{1 \text{ ml}} = \frac{150 \text{ mg}}{x \text{ ml}} \]

\[100x = 152 \]

\[x = 1.5 \text{ ml} \]
5. \(\frac{1 \text{ kg}}{2.2 \text{ lb}} = \frac{x \text{ kg}}{8.4 \text{ lb}} \)
\(\frac{6 \text{ oz.}}{16 \text{ oz.}} = 0.375 \)

\[
\begin{align*}
\frac{2.2x}{16} &= 8.4 \\
0.375 &= 0.4 \\
\frac{2.2x}{16} &= 6.000 \\
\frac{2.2x}{48} &= 1200 \\
x &= 3.82 \text{ kg}
\end{align*}
\]

\[
\begin{align*}
2.2 &| 8.40 \\
66 & \\
1800 & \\
176 & \\
40 & \\
22 & \\
180 & \\
176 & \\
4 &
\end{align*}
\]

\[
\begin{align*}
\frac{40 \text{ meq}}{1 \text{ kg}} &= \frac{x \text{ meq}}{3.82 \text{ kg}} \\
3.8 &= 40 \times 3.82
\end{align*}
\]

\[
\begin{align*}
x &= 40 \times 3.82 \\
x &= 152.8 \text{ meq}
\end{align*}
\]

Answers to Practice Exam #4 (IV Problems)

1. 33 gtts/minute
2. 16 gtts/minute
3. 3 Tabs
4. 0.33 ml
5. 2 ml
6. 2 ml
7. 0.4 ml
8. 1.5 tablets
9. 1.3 ml
10. 0.5 ml
Answers to Practice Exam #5

<table>
<thead>
<tr>
<th></th>
<th>Answers to Practice Exam #5</th>
<th></th>
<th>Answers to Practice Exam #6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83 ml/hr</td>
<td>1</td>
<td>47 gtts/minute</td>
</tr>
<tr>
<td>2</td>
<td>28 gtts/minute</td>
<td>2</td>
<td>25 gtts/minute</td>
</tr>
<tr>
<td>3</td>
<td>125 gtts/minute</td>
<td>3</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>4</td>
<td>25 gtts/minute</td>
<td>4</td>
<td>4 tablets</td>
</tr>
<tr>
<td>5</td>
<td>20 mg</td>
<td>5</td>
<td>0.3 ml</td>
</tr>
<tr>
<td>6</td>
<td>50 ml/hour</td>
<td>6</td>
<td>15 ml</td>
</tr>
<tr>
<td>7</td>
<td>50 gtts/minute</td>
<td>7</td>
<td>1.3 ml</td>
</tr>
<tr>
<td>8</td>
<td>50 gtts/minute</td>
<td>8</td>
<td>3 tablets</td>
</tr>
<tr>
<td>9</td>
<td>100 ml/hour</td>
<td>9</td>
<td>2 ml</td>
</tr>
<tr>
<td>10</td>
<td>100 gtts/minute</td>
<td>10</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>11</td>
<td>50 gtts/minute</td>
<td>11</td>
<td>18 gtts/minute</td>
</tr>
<tr>
<td>12</td>
<td>2 p.m.</td>
<td>12</td>
<td>67 gtts/minute</td>
</tr>
<tr>
<td>13</td>
<td>2 ml</td>
<td>13</td>
<td>1.5 ml</td>
</tr>
<tr>
<td>14</td>
<td>4 tablets</td>
<td>14</td>
<td>2 tablets</td>
</tr>
<tr>
<td>15</td>
<td>0.4 ml</td>
<td>15</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>16</td>
<td>8 ml</td>
<td>16</td>
<td>7.5 ml</td>
</tr>
<tr>
<td>17</td>
<td>1.5 ml</td>
<td>17</td>
<td>1.3 ml</td>
</tr>
<tr>
<td>18</td>
<td>1 tablet</td>
<td>18</td>
<td>0.5 tablets</td>
</tr>
<tr>
<td>19</td>
<td>1.8 ml</td>
<td>19</td>
<td>1.5 ml</td>
</tr>
<tr>
<td>20</td>
<td>3 capsules</td>
<td>20</td>
<td>2.1 ml</td>
</tr>
</tbody>
</table>

Part H IV DRIP CALCULATIONS

Calculation of Weight Based IV Drips

Drugs can be administered to clients in continuous IV drips. The medication bag/syringe is labeled with the concentration of medication in the solution (i.e. units/ml, mcg/ml, meq/ml). The medication order will be used to determine the setup of the problem. Ratio and proportions can be set up to solve these problems, and depending upon the complexity of the order several steps may be needed. The following examples will show you the basis for solving these problems.

A. When the order is written as mg/hr.

Example

Order: Fentanyl 5 mg/hr. The bag is labeled 250 mg in 500 ml of solution.

How fast will the IV need to be infused to give the correct dose?

1. The IV rate will be as an hourly rate, so no conversion needs to be made for time. If the order was written with a different time, you would need to calculate the mg/hr. (use ratio and proportion)

2. Put the problem in ratio and proportion.

\[
\frac{5 \text{ mg}}{x \text{ ml}} = \frac{250 \text{ mg}}{500 \text{ ml}} \quad \text{or} \quad \frac{5 (500)}{250} = 250x \quad \frac{2500}{250} \quad x = 10 \text{ ml/hr}
\]
B. The order may be written as unit of measurement/Kg of weight/hour.

Example
Order: Heparin 100 units/Kg/hr. The label on the solution reads 10,000 units/50 ml. The patient weighs 70 Kg. How fast should the solution run to give the correct dosage?

1. First you need the total dosage/hr.
 Dose (units/hr) x weight in Kg equals the hourly dose. If the weight is in lbs, that must be converted to Kg first.

 \[100 \text{ units} \times 70 \text{ Kg} = 7,000 \text{ units/hr} \]

2. Now put the dose in ratio and proportion with the concentration.

 \[
 \frac{7,000 \text{ units}}{x \text{ ml}} = \frac{10,000 \text{ units}}{50 \text{ ml}}
 \]

 \[10,000x = 50(7,000) \]

 \[x = \frac{350,000}{10,000} = 35 \text{ ml/hr} \]

C. When the order is written as unit of measurement/Kg of wt/minute.

Example
Order: Dopamine 20 mcg/Kg/minute. The bag is labeled Dopamine 100 mg/50 ml. The patient weighs 88 lbs. How fast will the IV run to give the dose?

1. First because the weight is in lbs, you must convert lbs. to Kg.
 (88 lbs = 40 Kg)

2. Find the hourly dose. Because it is written in mcg/K/min you must multiply by 60 minutes to get the hourly dose.

 \[20 \text{ mcg} \times 40 \text{ Kg} \times 60 \text{ minutes} = 48,000 \text{ mcg/hr} \]

3. Note that the concentration is in mg/ml not mcg, so you must convert to obtain like units of measure.

 \[
 \frac{100 \text{ mg}}{x \text{ mcg}} = \frac{1 \text{ mg}}{1000 \text{ mcg}}
 \]

 \[x = 100,000 \text{ mcg/ml} \]

4. Lastly set the problem up in ratio and proportion.

 \[
 \frac{100,000 \text{ mcg}}{50 \text{ ml}} = \frac{48,000 \text{ mcg/hr}}{x \text{ ml}}
 \]

 \[100,000x = 2,400,000 \]

 \[x = 24 \text{ ml/hr} \]

Practice Exam #7

1. Order: Morphine 5 mg/hr. The syringe is labeled 100 mg/100 ml. How fast will the IV run to deliver the correct dosage? __________

2. Order: Heparin 50 units/Kg/hr. The solution is labeled 1000 units/ml. The patient weighs 10 Kg. What is the correct rate? __________

3. Order: Dobutamine 10 mcg/Kg/min. The bag is labeled 1 mg/ml. The patient weighs 23 Kg. What is the correct rate? __________
4. Order: Pitocin 5 miliunits/minute. The bag is labeled 10 units/liter. What is the correct rate?__________

5. Order: Ritodrine 0.05 mg/min. The bag is labeled 0.15 gm/500 ml. The patient weighs 198 lbs. What is the correct rate in ml/hrs?__________

PRACTICE EXAM #7 ANSWERS

1. \[
\begin{align*}
\text{5 mg} & = \frac{100 mg}{x \text{ ml}} \\
\end{align*}
\]

\[
100x = 500 \text{ ml}
\]

\[
x = \frac{500}{100} = 5 \text{ ml/hr. rate}
\]

2. a. \[
\begin{align*}
50 \text{ units} & \times 10 \text{ Kg} \times 60 \text{ min} = 30,000 \text{ units/hr}
\end{align*}
\]

b. \[
\begin{align*}
\frac{30,000 \text{ units}}{x \text{ ml}} & = \frac{1000 \text{ units}}{1 \text{ ml}}
\end{align*}
\]

\[
1000x = 30,000 (1)
\]

\[
x = \frac{30,000}{1000} = 30 \text{ ml/hr IV rate}
\]

3. a. \[
\begin{align*}
10 \text{ mcg} & \times 23 \text{ kg} \times 60 \text{ min} = 13,800 \text{ mcg/hr}
\end{align*}
\]

b. \[
\begin{align*}
\frac{13,800 \text{ mcg}}{x \text{ ml}} & = \frac{1 \text{ mg}}{1 \text{ ml}}
\end{align*}
\]

NOTE: You must have like units of \(1\text{mg} = 1000\text{ mcg}\)

c. \[
\begin{align*}
\frac{13,800 \text{ mcg}}{x \text{ ml}} & = \frac{1000 \text{ mcg}}{1 \text{ ml}}
\end{align*}
\]

\[
1000x = 13,800 (1)
\]

\[
x = \frac{13,800}{1000} = 13.8 \text{ ml/round to 14 ml/hr}
\]
4.
 a. 5 miliunits x 60 min = 300 mililunits/hr

 b. $\frac{300 \text{ milliunits}}{x \text{ ml}} = \frac{10 \text{ units}}{1 \text{L}}$
 10 units = 10,000 milliunits
 1 Liter = 1000 ml

 \[
 \frac{300 \text{ milliunits}}{x \text{ ml}} = \frac{10,000}{1,000}
 \]

 \[
 10,000x = 300,000
 \]

 \[
 x = \frac{300,000}{10,000}
 \]

 \[
 x = 30 \text{ ml rate}
 \]

5.
 a. $0.15 \text{ gms} = \frac{1 \text{ gm}}{x \text{ mg}}$
 1000 mg

 \[
 1x = 150 \text{ mg}
 \]

 b. $0.05 \text{ mg} = \frac{x \text{ mg}}{1 \text{ min}}$
 60 min

 \[
 1x = 3 \text{ mg}
 \]

 c. $\frac{150 \text{ mg}}{500 \text{ ml}} = \frac{3 \text{ mg}}{x \text{ ml}}$

 \[
 150x = 1500
 \]

 \[
 x = 10 \text{ ml}
 \]