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A shape matching method based on concepts tied to integral geometry is studied. The
method consists of computing the distribution of random chords over the figures to be matched
and comparing them by means of the Kolmogorov-Smirnov test. A simplified form of the
procedure for matching figures to a circle yields a test for circularity. It is generalized to obtain
a statistical test for shape matching and then modified to produce a dissimilarity measure
between shapes. The circularity test is performed on 30 shapes and compared to two other
circularity measures found in the literature. Experiments are also performed using the matching
procedures.

1. INTRODUCTION

Shape is a concept that has an intuitive appeal; however, attempts to quantify
shape for the analysis of images have had only limited success [1]. In this paper, we
assume a “shape” is a simply connected compact region in a two-dimensional
Euclidean space, which may or may not be convex. The set of boundary or frontier
points of the region will be used to characterize its shape.

Shape matching attempts to assess the proximity of two or more shapes. A shape
matching procedure can yield a proximity measure between shapes or it can
implement the predicate SIMILAR. The similarity predicate or the proximity
measure should have invariance, or at least insensitivity, to changes in the size, the
position, and the rotation of the figures to which it is applied. Also, for digitized
shapes, the effect of the digitization resolution should be minimized. A further useful
feature is the ability to simulate human performance in shape discrimination, though
this is a feature that is inherently ambiguous and difficult to evaluate.

A shape matching procedure that is by its definition position, rotation, and size
invariant is presented in this paper. Also, for digital figures, it appears to be
insensitive to digitization resolution. The method yields both a statistical test for
similarity and, with modification a dissimilarity measure between shapes. First, we
present background literature. Then we present a simplified form of the shape
matching method which matches shapes to the form of a circle, thus generating a test
and a measure of circularity. The method is expanded to yield a test for the
similarity of two digitized figures and is then modified to give a dissimilarity
measure between shapes. Next, the data set of shapes on which experiments were
performed is described. We then give the experiments along with their results. The
first experiment compares the circularity test with two other measures described in
the literature. The next involves testing the country outlines in the data set for
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similarity. The final experiment involves computing a dissimilarity measure between
the country outlines. The paper is then concluded with a summary of the results.

2. RELATED WORK
One way to Iook at shape matching is based on concepts taken from integral

have the same measure (in the measure theoretic sense) under a given group of
transformations [2]. For shape analysis, this group is taken to be the group of
rigid-body motions. It can then be shown that the “dp df differential” is the only
invariant measure for lines in the plane, where 4 is the angle of the perpendicular to
the line with the x axis, and p is the distance of the line from the origin [2].

Next, given a geometric property F, integral geometry addresses the problem of

intersection of S with clements of M. As an example, let M be the set of all lines in
the plane, so that L(p, 6) € M is the line at distance p from the origin, where the
perpendicular to the line makes an angle 6 with the x axis. If we let SN L(p,6)
be the length of § N L(p, ), then the mean of the distribution, i.e., [/F(Sn
L(p, 8)) dp db, can be shown to be the area of §.

Novikoff [3] defines the basic ideas needed to apply the paradigm of integral
geometry to pattern recognition. Tenery [4] uses these ideas to define P(d), which is
the conditional probability that if the origin of a directed line segment of length 4
falls within an object S, then the terminal point of the segment also falls within §.
Tenery claims that this distribution should characterize the “shape” of S. One

Wong and Steppe [5] define the measuring device to be the set of all infinite
straight lines and define to be the length of the intersection of a line with . This
corresponds to the example presented above. They set up a number of two-class
decision problems, and use Wald’s sequential probability ratio test for classifying a

for two different (nonidentical) shapes.
Moore [7, 8] presents a method for extracting features to describe shapes based on
two functions, the metric pattern function and the angle pattern function, which use
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the concept of random chords. These are related to integrals of the autocorrelation
of the member function defining Tenery’s probability distribution. Moore shows that
global measures relating to these two functions cluster shapes in a reasonable way.

3. PROPOSED CIRCULARITY TEST

We propose using an easily implementable technique for shape matching based on
the above ideas. As in Wong and Steppe’s method, our technique utilizes the
distribution of lengths of random chords over a figure. We define a random chord,
however, by choosing two points at random from the boundary of a shape. This way
of choosing random chords further complicates the problem of computing the
distribution of chord lengths over arbitrary sets [9). For digital pictures, however, we
have a finite set of boundary points from which we can randomly choose two 10
define the end points of our chord, and so one can easily compute the empirical
distribution of chord lengths. Also, the exact distribution of these chord lengths over
a circle is known [10]. A direct method for computing this distribution is shown in
the Appendix.

We first simplify the matching procedure t0 match a given figure with the simple
parametric shape of the circle. The test for circularity of a digital figure with n points
along its boundary is derived by computing the empirical distribution of distances
between points chosen at random along the boundary and testing for equality with
the known theoretical distribution using the Kolmogorov—Smirnov (K-S) test of
goodness of fit. Two problems arise with this procedure. First, care must be taken in
choosing the sample of distances between boundary points to be included in
computing the sample distribution. This is because the K-S test assumes that the
samples from which the empirical distribution is formed are independent. Note that
for a digital figure with 1 boundary points, all n(#n — 1)/2 interpoint distances of
chord lengths are not independent. Hence, in computing the sample distribution, we
are forced to choose randomly and without replacement at most [n/2] pairs of
boundary points and include only the corresponding [n/2] distances in our sample,
where [-] denotes the greatest integer function.

A more fundamental problem concerns the selection of a member of the family of
theoretical distributions of interpoint distances for the K-S test, since the family 1s
indexed by the parameter 7, the radius of the circle. The radius must be estimated
from the given boundary points of a digital figure. We used the longest length in the
sample set of [r/2] distances to estimate this parameter.

Since the [n/2] distances used to compute the sample distribution may not
adequately characterize the given figure, we generated ten different sets of [n/2]
distances using a Monte Carlo procedure. The K-S test is applied to each of these
10 empirical distributions. We define a measurc of circularity using the 10 tests as
— In(average p value), where the p value for each of the tests is the critical value for
the test, i.c., the lowest allowable error in the test that would result in the rejection of
the null hypothesis (the equality of the distributions) under the K-§ test. The
quantity —In(average p value) gives 2 measure of ciroularity with limiting valucs of
zero for a perfect circle and infinity for a perfect «pnoncircle.” Alternatively, the
number of rejections of the null hypothesis among the 10 K-S tests may be used to
characterize the circularity of a test figure. By increasing the number of Monte Carlo
runs, a more accurate estimate of the circularity measure should be obtained.
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4. PROPOSED SHAPE MATCHING METHODS

The shape similarity test for two given digitized shapes is a generalization of the
circularity test. If the two shapes have respective boundary sizes of n and m points,
the empirical distributions of chord lengths are formed using [n/2] and [m/2]
randomly selected pairs. Size invariance is again a problem and the two distributions
are scaled so that the perimeter of the figure from which they arose would have a
length of one unit. A two-sample K-S test is performed on the two resulting
distributions. Again, 10 Monte Carlo runs of the procedure are performed to ensure
adequate information is retained about the shape of each figure.

To use all the information present in each of the figures an ad hoc shape matching
method that produces shape dissimilarities can also be defined. The empirical
distributions are computed but with the independence assumption among the
random chords violated. Thus for figures with m and »n boundary points, (';) - m

and ( Z) — n distances are included in the chord distributions, respectively. Distances
along the perimeter are excluded since these arise from digitization or smoothing.
The distributions are normalized by the perimeters of their respective figures and the
value of the K-S test statistic is computed between the two normalized chord
distributions. The K-S test can no longer be applied since the distribution of its
statistic under the null hypothesis with dependent samples is unknown, but the
statistics value can be used as a shape dissimilarity measure.

5. DATA SET

We now present the test figures used in the experiments.

5.1. Circles with Equidistant Points: CIRU

Three hundred equidistant points are generated on the perimeter of a circle
(radius = 100, 500, 1000).

5.2. Circles with Random Points: CIRR

Here, 300 points are generated on the perimeter of a circle (radius = 100, 500,
1000) with angles from the center chosen randomly from the interval [0, 27).

5.3. Noisy Circles: CV1 and CV2

To test for the robustness of the circularity measures in the presence of “noise,”
noisy circles were generated in the following manner. Points are generated as in 5.1
and Gaussian noise with mean zero and variance o is added to the distance from
the center of the circle to every point on the boundary. The variance o2 equals ¥
times the radius of the circle, ¥ = 1,2. See Fig. 1 for a circle of radius 100 with
V =1 and Fig. 2 for a circle of radius 100 and ¥V = 2 generated in this manner.
Again, the radii of 100, 500, and 1000 were used to test for size invariance and
effects of digitization.

5.4. Equilateral Triangles: TRI

Here, 300 equidistant points are generated on the perimeter of an equilateral
triangle with the radius of the circumscribing circle set to 100, 500, and 1000.
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Fic. 1. Noisy ciscle, radius = 100, V= 1.

\\\

F1c6. 2. Noisy circle, radius = 100, V = 2.
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F16. 3. Digitized boundary for SHAPE1L

5.5. Octagon: OCTA

This figure is a digital octagon with 39 pixels on each side, for a total of 304 points
on the perimeter.

5.6. Muscle Cells: SHAPE] to SHAPES

These are the digitized boundaries of muscle cells described in [11]. The number of
points on the perimeters of SHAPEI-SHAPE6 are 128, 193, 191, 87, 338, 58,
respectively. They are shown in Figs. 3-8.

5.7. Country OQutlines

These are the digitized boundaries of England, Italy, India, and Cuba. The border
of each country has been digitized twice, once at low resolution and once at high

S5

FiG. 4. Digitized boundary for SHAPEZ.
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F1G. 5. Digitized boundary for SHAPE3.

Bﬁi\\x//

F1G. 6. Digitized boundary for SHAPE4.

F16. 7. Digitized boundary for SHAPES.
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F16. 8. Digitized boundary for SHAPES.

resolution. Englandl, Italyl, Indial, and Cubal have 482, 292, 346, and 296 points,
respectively, whereas England2, Italy2, India2, and Cuba?2 have 715, 343, 457, and
737 points, respectively.

6. EXPERIMENT 1

Experiment 1 consists of comparing the results from the proposed circularity test
to two measures of circularity given in the literature. The first of these measures is
the classic dispersion measure P?/4w4 [12, 13]. The isoperimetric inequality states
that for any closed planar figure with perimeter P and area 4, P2/A > 4z, with
equality if and only if the figure is a circle. The other measure is Haralick’s M /o
[14], the ratio of the mean of chords from the center of a figure to its boundary
points to the standard deviation of these distances. A circle should have an infinite
value of M /o since the variance of these distances should be zero.

The results of applying each of the circularity measures to the data set are listed in
Table 1. For the random chord method, we also list the number of rejections among
the 10 K-S tests at a 0.95 level of confidence. For the two sets of “perfect” circles
CIRU and CIRR, Haralick’s measure tends to assume widely varying values as the
size of the circle is changed, probably because this measure is infinity for a “ perfect”
circle. This could be eliminated by taking the logarithm of the values of the measure.
Also, Haralick’s measure determines noisy circles (CV1 and CV2) to be more
circular than a perfect circle (CIRR) of radius 500. Because in CIRR the points are
randomly chosen on the boundary of the perfect circle, it is more likely that the
estimated center would have substantial error. This would result in large variance in
the distance of the boundary points from the center, thus decreasing M/o. In the
case of CV1 and CV2, the points are equally spaced around the center and the above
problem does not occur. The dispersion measure and the random chord measure
label CIRR more circular than CV1 and CV2.

Even though the shape of the triangle data (TRI) substantially differs from that of
a circle, the dispersion measure does not assign significantly different values to them.
In fact, this measure considers noisy circles (CV1 and CV2) to be less circular than
triangles.

Note that the measure of circularity of the octagon (1.060) is in the same range of
values as for the two sets of circles (1.046 for CIRR and 1.038 for CIRU) based on
the dispersion measure. The octagon is also considered to be more circular than
CIRR based on Haralick’s circularity measure. This again is due to the fact that
M /o is more sensitive to how points are chosen on the boundary. The octagon,
however, is discriminated well from circles using the random chord measure.



CHORD DISTRIBUTIONS FOR SHAPE MATCHING 267

TABLE 1
The Three Circularity Measures for the 30 Shapes

Random chord

Test Haralick’s
data set Dispersion M/o Rej. —In(avg)
1 CIRU 100 1.038 353.030 1 1.146
2 500 1.001 1153.275 1 1.164
3 1600 1.001 999.423 1 1.371
4 CIRR 100 1.046 22.854 0 1.112
5 500 1.003 9.691 1 1.204
6 1000 1.002 23.747 1 1119
7 CV1 100 33.317 9.747 i0 9.885
8 500 8.119 18.168 7 4337
9 1000 4958 21.057 7 3.689
10 CV2 100 62.620 7.413 10 12.262
11 500 14.532 16.698 10 8.154
12 1000 8.120 18.629 8 4.601
13 TRI 160 1.730 4.439 10 13.685
14 500 1.660 4.466 10 10.180
15 1000 1.655 4.470 10 14.830
16 OCTA 1.060 30.919 7 3.775
17 SHAPE! 3.903 2.078 10 18.984
18 SHAPE2 4.530 2.408 10 23.239
19 SHAPE3 4939 2626 10 21.685
20 SHAPE4 1.868 4.747 10 6.174
21 SHAPES 8.329 2.136 10 43.366
22 SHAPES 1.326 9.477 0 1.887
23 England1 8.488 2318 10 54.004
24 England2 9.552 2.370 10 88.661
25 Italyl 4.949 2.520 10 22.121
26 Italy2 5.433 2423 10 34.347
27 Indial 4.086 3.524 10 25.286
28 India2 4.165 3.535 10 33.288
29 Cubal 7.193 2.014 10 39.686
30 Cuba2 11.529 2.043 10 41.234

For the muscle cells (SHAPE1-SHAPES6), we can produce a ranking of the cells
based on each measure’s estimate of circularity. This yields the following ranking
(from most circular to least circular):

Dispersion : 6>4>1>2>3>35,
Haralick’s M /o  6>4>3>2>5>1,
Random chord method: 6 >4>1>3>2>5.

The three circularity measures tend to agree for the more circular shapes (SHAPE6
and SHAPE4), but Haralick’s measure diverges from the other two after that.
Referring to SHAPEI and SHAPE3 (Figs. 3 and 5) one can see that Haralick’s
measure seems to judge elongated shapes as less circular than shapes which contain a
circular body and sharp protrusions. Haralick’s measure also ranks SHAPEI] as the
least circular shape over SHAPES, the least circular shape for the other two
measures. Again, this may be due to the hypothesis stated above.
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The results of the performance of each measure on the country border data may
be compared. Haralick’s measure gives the best results, in terms of giving the most
stable values for the same shape digitized at different resolutions. Note, however,
that the random chord measure depends on the number of points sampled along the
boundary, since this number is used in computing the significance probability from
the K-S test value. As the number of boundary points increases, more information
is available to make the decision on the circularity of a given shape. Of course, for

circle asymptotically, the empirical results show that values close to 1 imply that the
given test figure is circular.

point, both of which can be done in order(n) time and order(n) space. The random
chord method requires the computation of [7/2] interpoint distances and the
computation of the K-8 test statistic. The [n,/2] distances require order(n) time and
order(n) space. Qur implementation of the K_§ test statistic takes order(nlog n)
time and order(n) space, and this can be reduced to order(n) time [15].

One can assess the circularity of a given digital figure by looking at the numerical
values assigned to it by each of the three circularity measures studied here. If one is
interested in only making a simple decision, however, such as circular versus

number of Monte Carlo runs, Other experiments, however, indicate that the ratio of
the number of rejections of the K-S test to the total number of K-S tests remains
less than ten percent for circular figures and more than 70% for noncircylar figures

as the number of Monte Carlo Tuns is increased, For example, out of 50 K-§ tests,

7. EXPERIMENT 2

We performed the shape similarity test using the [r,/2] random chord method op
the country outlines. The number of acceptances out of 10 Monte Carlo trials with
test of size 0.05 are shown in Table 2. The whole dissimilarity matrix ig shown so
that each pair of distinct country outlines is tested twice. This gives some idea of the
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TABLE 2

Results of the Similarity Test on the Country Outlines®
England] England? Italyl Italy? India} India2 Cubai Cuba2
England1 1

0 10 0 0 0 0 0 0
England2 9 9 0 0 0 0 0 0
Italyl 0 0 9 8 7 3 10 2
Italy2 0 0 10 10 8 s 6 3
Indial 0 0 5 7 9 10 4] 3
India2 0 0 4 4 10 10 0 3
Cubal 0 0 8 -8 1 0 10 2
Cuba2 0 0 6 2 2 2 3 10

“Entries are the number of acceptances out of 10,

except for the two outlines representing Cuba. This error is probably due to the
digitization of Cuba2 which contained considerable boundary noise because of its

oceurs for the pair of outlines Italyl and Cuba2 which had acceptances of 6 out of
10 and 2 out of 10. This seems reasonable for such a statistical test,

3. EXPERIMENT 3

Experiment 3 looks at the shape dissimilarities computed by using all ( ;’) - n
Interpoint distances for a figure with » boundary points, Again the country outline
data is used, but to cut down on sorting time for the K-S test all figures are
smoothed so that there are only 50 boundary points. The upper triangular dissimilar-
ity matrix that results is shown in Table 3. The entries in the matrix are the value of
the K-S statistic times 107", Here, the outlines representing the same country are

TABLE 3
Dissimilarities between Smoothed Country Outlines®

England2 Italyl Iialy2 Indial India2 Cubal Cuba2

Englandl 0.22 1.45 1.41 1.56 1.64 1.78 1.75
England2 1.48 1.48 1.48 1.62 1.86 1.79
Italyl 0.12 1.27 1.24 0.63 0.63
Italy2 ' 1.28 1.26 0.59 0.57
Indial 0.25 1.62 1.63
India2 161 1.59
Cubal 0.14

e e

“Entries are values of the K-8 statistic x 10~ 1
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9. SUMMARY

We have viewed shape matching as matching chord distributions. This yields both
statistical tests for the similarity of figures and also dissimilarities between shapes.
The circularity test presented appears to perform well against circularity measures
found in the literature. The expanded form of the test, used to test figures for
similarity, appears weak in distinguishing differing forms. To alleviate this problem,
the method is modified to yield shape dissimilarities which appear reasonable on the
modest experimental figures.

Future work in the area should include a theoretical analysis of the shape
discrimination ability of these types of chord distributions. Can radically different
shapes generate the same chord distribution? Also, the ad hoc method using all the
interpoint distances should be tried with some other measure of distance of the
distributions rather than the sup-norm used in the K-S statistic.

APPENDIX

Analytical Distribution of the Distance between Two Points Chosen
Uniformly on the Boundary of a Circle

By symmetry, we look at the distribution of distances in half a circle, and, without
loss of generality, we assume that one point is fixed at (0,0) and the other point
(x, y) is placed randomly on the boundary of the circle (see Fig. 9). It is easy to
show by using a simple transformation that placing a point (x, y) uniformly on the
boundary of the circle is equivalent to assuming that # is uniform on the interval
[0, 7 /2], where 8 is the angle which the chord joining points (0,0) and (x, y) makes
with the X axis. Now, for a circle of radius r, the length of the chord is

d=2rcos(m/2 — 0)=2rsin(f), 0<6b<m/2.

So we get

%g = 2rcos(4).

»l
Ll

v (x,y)

{0,0)

F1G. 9. Point (x, y) is placed randomly on the haif circle to define the distance 4.
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Therefore, for the appropriate intervals of d, §, and u,

fo(d) =f9(u)/(2rcos(z9)),

where f,,(d) is the density of a random chord of length 4, and fo(u) is the density of
¢ which is uniform on the interval [0, 7/2]. It is easy to verify from Fig. 9 that

2rsin(w/2 — 0)=0p= ((2r)2 _ (d)Z)l/z
or

2os(8) = sin(n/2 = 8) = (@r)* - (a)) "2y
Therefore,

@/m)(@r) = @) o<acor
= (, otherwise,

/o(d)

]

and the corresponding distribution function is

Fp(d) =, d<0,
= (2/w)sin"l(d/2r), 0<dx<2r,
=1, d>2r.

See Coleman | 10] for details of how this definition of a random chord relates to
other possible definitions,
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