

MARS: AN OBJECT-ORIENTED DISCRETE-EVENT SIMULATOR TO ANALYZE
SEMICONDUCTOR FABRICATION MANUFACTURING STRATEGIES

Stephen P. Smith

Intel, CH2-68

5000 W Chandler, Chandler AZ, 85226

SSmith@FA.Intel.COM

ABSTRACT

This paper describes the software analysis, design, and implementation of

an object-oriented simulation system. This system allows the synthesis

and analysis of manufacturing strategy rules which control

semiconductor fabrication factories (Fabs). These rules capture resource

tradeoff decisions such as when to prefer to run one step over another on

a machine that can run both steps.

Because of the complexity of the manufacturing process, simulation is

the only effective technique to answer many key questions about strategy

rules. However, because of the need to experiment with alternative

strategy rules, we felt it was worthwhile to develop our own low-level

simulation model using the CLOS Object-Oriented programming

language.

This paper discusses the MARS project and the object-oriented approach

used. We focus on some interesting design and implementation tradeoffs

needed to make MARS both computationally efficient and extensible to

new rules and behaviors. Our conclusion is that the application of a few

OO-derived techniques produced a simulator with advanced modeling

power and remarkable extension capability.

BACKGROUND

Semiconductor fabrication is the complicated process by which raw

silicon wafers are converted into microelectronic devices by deposited

layers and patterns of metal and semiconductor materials. The process is

characterized by complex re-entrant product flow, random yields, random

machine availability, diverse equipment characteristics, etc. [Uzoy 1992]

An important problem is the choice of management strategies in wafer

fabrication facilities (Fabs) to maximize output while holding down

inventory and keeping quality high. These strategies are the rules that

make resource tradeoff decisions (when to run Step A as opposed to Step

B on a machine that can run both), resource setup decisions, and other

control decisions (such as how to assign repair technicians to broken

machines, when to introduce starting wafers into the line, when to bring a

production machine down for preventative maintenance or to run a line-

yield experiment, etc.).

The MARS project began after extensive talks with manufacturing

managers and our own work on real-time scheduling systems for Intel’s

Fabs [Kempf 1994]. Key questions of strategies kept emerging. What is

the long term effect of short term decisions made every shift in the Fab?

How do I manage a toolset that is used over multiple steps in the line?

Should I manage steps by their output rates? Should I manage a

constraint toolset with an inventory buffer? If I have a number of near

constraints, how do I make sure they feed each other correctly?

We decided to focus on strategies directly related to the movement of

WIP (WIP-management strategies, as opposed to, say, equipment

maintenance strategies) as we could delineate reasonable WIP-

management rules, some of them supported by simple analytic models.

However, for our complex Fabs, we still could not prove any one was

better than another without fall back to religious convictions; Thus to

answer the above questions, we resorted to simulation models.

Unfortunately, while some previous simulation work studied the

semiconductor fabrication area [Glassey 1990, Miller 1990, Wein 1988]

and some excellent commercial simulators exist [AutoSimulations 1993],

no commercial simulation package included the ability to quickly define

new WIP-management rules. Therefore, we developed MARS, The

Manufacturing Rules Simulator.

BASIC DEVELOPMENT TECHNIQUES

We used the following software development techniques. The system

was

(1) analyzed and designed using an Object-Oriented methodology, and

(2) designed around a simulation “micro-kernel”, and

(3) implemented using the CLOS OO rapid prototyping language

[Steele 1990, Keene 1989, Paepcke 1993].

The first technique ensured those objects with stable domain identities

(machines, steps, rules, etc.) were encapsulated into the software via

well-designed simulation interfaces. We felt that the meaning of

machines/steps etc. would be less likely to change (and more likely to be

merely extended) than other possible primitives. For instance, when new

types of strategy rules are added, their previous supporting components

(for example parsers and printers for high-level rule input/output) are

immediately available for incremental redefinition.

Technique (2) ensured that supporting code could be developed

incrementally around a stable simulation core. This core consists of all of

the main code for maintaining a simulation event queue and all basic

events sent to objects. For instance, to include random machine

downtime models, a supporting program downloads machine

“availability calendars” into the simulation kernel. By default, the

standard class of machines has an availability calendar whose shift-long

buckets are each filled with a default taken from model input.

Technique (3) ensured that the system is geared to the rapid introduction

of fixes, changes, and enhancements. We were aware that new rule types

and the need to store new supporting data in domain objects would mean

that, even with the stability ingrained via technique (1), we would have to

make code-level changes. We believed that most of the changes would

come via specializing classes using CLOS forms, rather than via

modifications to the underlying structure of the simulation micro-kernel.

For instance, during initial month-long prototyping, we implemented

three radically different forms of resource tradeoff rules by extending a

basic parent rule class.

THE SOFTWARE DEVELOPMENT PROCESS

We now give an overview of the development process used for MARS

and some of the key design decisions. Though our software development

group had the formal requirement of using the Shlaer-Mellor

methodology [Shlaer 1992] as the methodology of choice, we were less

tied to one formal methodology, and borrowed from other methods

[Booch 1994, Martin 1992] where appropriate. We took the MARS

project through the formal sign-off process steps in our organization and

produced some of the work products described below to meet the

requirements of this process.

Requirements Phase

We began with some basic requirements. While we wanted to build a

general and extensible simulation system, we were willing to narrow its

scope to our style of manufacturing when we deemed it appropriate. We

knew the basic workings of our Fabs and their current style of WIP-

management rules. We had a few new types of rules we wanted to study,

including those using constraint-management techniques [Goldratt

1986], but we knew that these rules, and the required data needed to

support them, would be one of the most changeable parts of the system.

We wanted the simplest of these changes to be achievable by non-

programming manufacturing personnel. We wanted less than one hour of

run time to get answers for full Fab-level simulations involving more than

300 process steps, and on the order of the same number of machines, for

months worth of simulated time, while starting more than 4K wafers per

week into the line.

All accounting rollups would be on a shift-by-shift basis. MARS would

store all history data for later on-line analysis. MARS should collect

enough information to plot:

• Lot "Outs" per shift per step,

• WIP per shift per step,

• Machine setups per shift,

• Machine utilization per shift, etc.

These requirements lead to some interesting compromises. We decided

to model the Fab resources at the level of a number of single-usage, non-

interruptible machines per process step. Additional delays would be used

to represent pipelined machines. Resource availability would be modeled

as “buckets of availability” per shift. There would be one “route” for

product modeled. For runtime speed, true “lot” objects would not exist

and we would merely count WIP queue lengths.

Some of these initial requirements changed, and we will discuss this

effect in a later section.

Analysis and Design Phase

At the top-level of analysis, MARS was designed to operate by

simulating the beginning and ending of steps (i.e., recipes) running in

batches (some number of lots) on machines. Steps may run on a number

of alternative machines, each with different parameters, such as cycle-

time, the amount of operator time required, maximum batch size, etc.

Each step has a WIP buffer of waiting lots in front of it.

The top-level resource assignment algorithm of MARS proceeds by

looking for empty machines. For any empty machine, MARS determines

from the model what steps may run on it. If none of these steps have

WIP, then the machine remains idle until WIP arrives. If only one step

has WIP, then MARS (if the strategy rules allow it) starts the maximum

batch that it can on the machine. If more than one step has available WIP,

then MARS uses the strategy rules given by the user to resolve which

step should use the machine.

Figures 1 through 3 show some of the main work products of the OO

analysis phase. Figure 1 shows a portion of the basic object information

model, with classes and relationships. This diagram is simplified by

omitting inverse relations and cardinality notations (one-to-one, one-to-

many, etc.).

This is an early analysis phase diagram. An important point is that such

diagrams evolve as analysis, design, and implementation proceed. We

will discuss major changes to this diagram below. However, take the

case of the activity class, which represents the physical act of running a

batch of lots on a machine. In the implementation of MARS, activity

objects have two attributes (besides their start and stop times and the lots

undergoing the activity) one of which is a pointer to the step object they

are performing and the other a pointer to the machine object on which

they run. Likewise, a machine has an attribute which is a pointer to its

current activity. However, step objects only have pointers to the current

set of lots processing at the step, so finding the activity objects associated

with a step involves searching all the machines that can run the step.

This was deemed appropriate given the algorithms used. Thus, because

of the computational needs of the algorithm, the actual class relations

implemented has changed from the overview given in Figure 1.

Figure 2 shows a simple object communication diagram for the

End_of_Shift event which diagrams the main messages used in

responding to that event. For simplicity, other messages are not shown.

The simulation control object triggers messages to all machines and steps

telling them to collect their shift-by-shift history data. The control object

decides if it should place another shift end on the simulation event queue

or whether the simulation has completed its required number of shifts.

Figure 1: Portion of Basic Object Information Model

Next_Step

History

SM-Group

Step M achine

Batch

Activity

Shiftly_U/A

Shiftly_Setups

Shiftly_Outs

Shiftly_Outs

Shiftly_W IP

Setup_for

Performs

Runs
Recipe-for

In In

Figure 2:Object Communication Diagram for End_of_Shift
Event

Control

End_of_Shift

M achine

End_of_Shift

History

Step

End_of_Shift

Put_Value

Put_Value
Update_Utilization

Start_of_Shift
End_of_Sim ulation

We produced communication diagrams for all events. We were careful to

differentiate those communications that happened with delay (thus going

through the discrete event simulation queue) and those that happened

without delay.

Figure 3 shows a portion of the current implementation inheritance

hierarchy. We talk about some of the design tradeoffs present on this

diagram in the next section.

DESIGN TRADEOFFS

In this section, we give details of some of the more interesting design

tradeoffs in MARS.

Figure 3: Portion of Inheritance Hierarchy

MARS Object

Simulation Object

Collector Class
Step

Species

Route

SM Group

Batch Defun

Object with Avail

Operator

Machine

Strategy Rule
Control Rule

Object Rule

Inventory Control Route

Calendar

Simulation Control

Support Object

Event

Period

Computed Cal

Weekly Cal

Down Distribution

Tranform Cal

Local versus Global Decision Making

A natural tendency when using an OO approach is to focus on algorithms

composed of local decisions made by objects based mainly on their own

local state; It is well known such greedy heuristic methods can be sub-

optimal [French 1982].

To account for more global algorithms, our solution is to include the

decision making object as another object class. Thus in Figure 1, you see

an SM-Group class, which actually embodies the rules needed to make

all resource tradeoff decisions for all steps which potentially interact by

running on an overlapping set of machines.

Another interesting approach which solves a piece of this problem uses

CLOS multi-methods. These encapsulate the protocol among multiple

class into one method. Rather than dispatching on a single class, as in

most common OO language such as Smalltalk, multi-methods can

dispatch based on multiple classes at once. For instance, the method

definition:

(defmethod compute-cycle-time ((step basic-step)
 (machine pipeline-machine))
 ...)

could potentially behave differently for the (basic-step, pipeline-
machine) (step, machine) class pair than any other pair of step and

machine classes. However, we have used multi-methods sparingly in

MARS.

Collecting Groups of Objects

We have used various forms of object collectors in MARS.

Note the meta-class CollectorClass in Figure 3. Using the CLOS Meta-

Object Protocol (MOP) [Kiczales 1991], it allows classes built from it to

collect their instance, a behavior not supplied by default by CLOS. The

simulation uses this behavior to iterate over all objects of a certain type.

This has one drawback, namely that an object can only be in one such

collector (since in CLOS an instance is a member of only one class at a

time). To remedy this, we occasionally use a generic collector class, such

as a queue, which can hold any type of object.

In our implementation, an instance of one of the rule classes shown in

Figure 3 is actually the definition of one generic rule type. As such, it is

the instances themselves which function as collectors of the rule forms

input from the user.

Finally, the single instance of the Simulation_Control object provides a

place for more global collectors such as the cached set of ready-to-run

SM-Group objects.

Machine Types and Classes for Machine Types

If you have two types of machines, say a certain type of Lithography

machine and a certain type of Etch machine, a natural tendency is to

create a class for each and inherit from the generic machine class. If

these “Litho” and “Etch” classes are to be part of the input of the user

model, rather than hardcoded into the simulation, this can create a

problem for some compile-time only class languages, such as C++.

In fact, though dynamic class creation is quite easy in CLOS, we have

avoided it in this context in MARS for two reasons. First, our initial

requirements did not determine a need to have method dispatches based

on these semantic categories. Second, specialized classes based on the

behavior modification required, not on one simple “type” of the machine,

is a better model of the true semantics of the situation. This is because

machines may be in a number of different such categorizations. In our

implementation, each “machine” object has a pointer to one or more

“equipment family” objects which control what summary data is

collected and reported.

Multiple Inheritance

CLOS supports multiple inheritance, though some OOAD techniques

suggest avoiding its use unless the class structure lattice is of a certain

type [Booch 1994]. Though the inheritance diagram in Figure 3 does not

show them, we have used multiple inheritance occasionally, specifically,

to share the structure of objects which control WIP queues (steps and

species) and those which are resources (species and machines).

At one point in the design, step inherited multiply from classes queue,

wipped-object, and linked-list.

Class Generality versus Specific Encoding of Behavior

There is a certain dynamic tension in most OO development. For us,

steps represent (at least!) two main things: a logical place where WIP

queues and a specification for a recipe type runnable on some set of

machines. As such, steps need both queuing behavior and behavior to

retrieve relevant activity parameters, such as cycle times.

The reasoning in [Glassey 1990] would suggest steps represent a

placeholder for both of these, more fundamental, behaviors. The “step”

class should add them, either through aggregation or through multiple

inheritance. We agree and have used both techniques where appropriate.

However, this sometimes becomes a question of implementation

convenience. Very often we create the desired behavior “on the fly” in

the object to avoid the syntactic pain of mapping domain specific method

names into the generic method names (of course, this assumes the

behavior is easy to replicate). In fact, the queuing behavior for steps

became so specialized and we used it so often that it became semantically

untenable, syntactically clumsy, and computationally troublesome not to

bury very specialized queuing code inside the step class.

As a specific example, for a FIFO lot selection rule, it became

computationally expensive to insist that the Add_to_WIP method

associated with a step call the Add_to_Queue method with the sort field

set to a lot’s step entry time. Therefore we created a specialized subclass

of queue which did only FIFO entry but did it very efficiently. But, since

the FIFO lot selection rule is used by default by MARS, all baseline step

objects actually call internal FIFO entry functions directly, without going

through an intermediate queue object. A simple specialization of the

baseline step class allows more complex behavior to come by using an

external queue object.

High-level User Rules

One of the most troublesome of the initial requirements was that rules be

modifiable by non-programming manufacturing personnel. In some

sense we were schizophrenic on this requirement. We knew that the

support of most experimental rules would come from programming-level

class specialization. However, we worked quite a bit on “high-level” user

input macros for both the rules and the domain objects in the user’s

models. To do so required us to focus on one highly adaptable form of

constraint-based rule.

Constraint-based strategy rules are much like standard dispatching rules

except they have a more global character. Rather than decide what to run

next based on the arrival of lots in the WIP queue for a resource class (for

instance, a FIFO rule), one should decide what to run based on the rate

and buffer goals at the constraint.

Because of the re-entrant flow of lots in Fab manufacturing, in which the

constraining resources are typically used in multiple steps in the process

flow, we distribute the notion of the constraint resource to the constraint

steps that utilize the constraining resource. For these steps, the user sets

the desired production rate by giving each a drumbeat which specifies

the output desired for the step per shift. Likewise, the user may give a

buffersize to each step, which specifies the amount of WIP it is useful to

maintain ahead of the step for safety reasons. It is of primary importance

to meet the drumbeat of constraint steps every shift. Of secondary

importance, the buffers at these steps should be full.

MARS uses these priorities to determine the strategy for allocating WIP

at steps to idle machines for both constraint machines and non-constraint

machines. At the beginning of every shift, MARS calculates the number

of lots that must move into a constraint step to meet both its buffer and

drumbeat goals. The calculation needed is:

Lots needed drumbeat buffer size WIP_ (_)= + −

which is the number of lots which need to flow into the constraint step

and, hence, an implied or calculated drumbeat for the step feeding the

constraint step. This calculation iterates backwards up the line assigning

drumbeats to each non-constraint step until the necessary WIP is found.

Note that there is a subtle object interaction with this design. We

designed the class SM_Group to handle all these resource tradeoff

decisions. However, step objects belonging to an SM_Group which use

a constraint rule have user-set buffer and drumbeat information. We

decided, by default, that all steps would store this information in internal

slots.

Figure 4 shows a portion of the user-level input of a constraint rule.

Certain model specific items are abbreviated in italics to save space.

Figure 4: Example User-Level Constraint Rule
(def-strategy-rules
 (base-route-order list-of-routes)
 (step-ordering default
 (under-drumbeat :wip) (overfull-buffer :wip) (underfull-buffer
:wip))
 (step-ordering Litho-Steps
 (under-drumbeat :step-filter ((list-of-critical-steps :pull) (t :pull)))
 (overfull-buffer :pull)
 (underfull-buffer :pull))
 (drumbeat litho-steps num-of-lots-per-shift)
 (buffersize litho-steps num-of-lots))

This rule states that certain routes are more important than others (the

base-route-order form). It says that all step/machine groups should run

the step with the largest current buffer, except for steps performing

lithography. For these steps, any step under its shift drumbeat goal

which is in the list-of-critical-steps runs before all other steps. In all

categories, the step closest to the end of its process (the :pull rule) is run

before another step.

Use of Dynamic Classification

We have not made extensive use of object state diagrams [Shlaer 1992],

so we haven’t made extensive use of the dynamic classification method

of [Martin 1992], though the CLOS change-class form [Steele 1990]

could support it. We do use it in two places:

• as inputs of model objects are being read they change into instances

of more refined object classes as more of their details become

known. These details include both the form of the external syntax

read and the detailed semantics contained in the form.

• after a model is read, non-baseline extensions are made by placing

an object in some extended class which has new behaviors.

As an example of the later, consider this simple case of a route which,

rather than releasing work onto the floor in a fixed amount per shift, as

does the baseline route class, would maintain the inventory on the floor at

some fixed amount. That is done with the definition show in Figure 5. It

works by overridding the default behavior of the num-of-starting-lots-
for-shift method.

Figure 5: Example Code to Allow A Route to Control Inventory
(def-class inventory-controlling-route (route)
 (desired-inventory 0))

(defmethod num-of-starting-lots-for-shift
 ((route inventory-controlling-route)
 (shiftnum integer))
 ;;;code to compute and return number of lots to maintain
inventory
)

(defmacro declare-route-to-be-inventory-controlling
 (route desired-inventory)
 `(progn (change-class ,route ‘inventory-controlling-route)
 (setf (desired-inventory ,route) ,desired-inventory)
 ,route))

REQUIREMENT CHANGES AND THEIR DESIGN TRADEOFFS

After initial requirements, analysis and design, we began an iterative

process of prototype development followed by re-analysis, design, and

implementation. However, for the most part, new formal analysis

workproducts were not produced. We believe this is unfortunately

typical in most OO projects, and it was encouraged by our advanced

CLOS development environment [Symbolics 1990] which focuses on

supporting rapid changes at the CLOS code level rather than at the

analysis level.

We will now discuss some highlights of the requirement changes and

design tradeoffs produced during the iterative prototyping.

Laundry List of Requirements Changes

The main requirement changes added more detail about the complex

behavior of objects:

• Operators as an additional resource in operations,

• Multiple routes, including rework routes,

• Lots as full fledged objects,

• Collection of lot throughput times,

• Transport times between operations,

• Complex rules for setup control,

• Non-constraint style rules based on lot priorities, etc.

In addition, we made a number of changes to maintain fast simulation

run times.

In general, most changes consisted of simple specialization to the current

set of base objects and the addition of more message coordination

between objects to ensure locations to hook in new behavior. Early on,

these additions effected the “simulation core” as we explained it

previously, but these type of additions tended to decrease.

Obviously, this later stability came via design. For instance, to include

transport times, we merely modeled step-to-step times and placed lots in

a new IN-TRANSPORT state while holding them in the WIP buffer of

the step to which they were moving. A new event type releasing lots

from the transport state was also needed. Then, the method that gave a

step’s runnable WIP was modified to filter out lots which were IN-
TRANSPORT. However, a much bigger change to the simulation core

would have had to have been made if we had chosen to model a full

transport system, with resource contention among delivery vehicles.

Some requirements changes greatly effected our implementation class

lattice. When there was only one route, steps inherited from a link-list

mixin [Paepcke 1993], so that they directly stored their previous and next

steps. However, when multiple routes were introduced, steps could no

longer take this liberty and the route object itself had to take over the

next/previous step storage.

Our early focus on implementation efficiency allowed us to design in

only those abstractions that we knew were required. On the other side of

the argument, as the previous linked-list example shows, we did

occasionally have to tear down much of the structure of MARS to

incorporate a radical requirements change.

Changes Related to Run Time Reduction

Many of the most effective changes to hold run time in check while

increasing behavioral complexity were from caching information. Our

original design followed the principle that a piece of information should

only be held in one place. For instance, in the initial design only steps

contained pointers to batch information. Asking what steps ran on a

machine involved looping through all steps in the SM-Group of the

machine and collecting a list of steps. However, this was asked often

enough that it was effective to pre-compile this list into a slot on each

machine object.

The problem with pre-compiled information is that it makes on-the-fly

changes more troublesome and error prone. Our solution is to expose

cached information using three techniques: (1) Every cache has a dirty

flag to say when it needs to be recomputed, (2) Every method that

changes a value cached elsewhere is given an :after method that sets this

dirty flag, and (3) The method that reads the cache value has a :before

method which checks the dirty flag to see if the cache needs to be

recomputed. Of course, the latter two technques depend on CLOS’s

support for before/after daemons.

EXAMPLE OF BEHAVIOR SPECIALIZATION

As mentioned before, using an Object Oriented approach allows us to

focus on two key items: (1) the domain objects, so the design is stable,

and (2) the object methods, so that the interacting objects are de-coupled

and encapsulated while places to “hook” new behaviors are exposed.

While MARS doesn’t have as many hook points as Autosched

[AutoSimulations 1993] or the class generality of BLOCS [Glassey

1990], it does contain enough of both to allow some interesting

modification to be achieved very simply. In addition, the choice of

CLOS as the object-oriented language of MARS allows some interesting

behavioral specializations to occur that would be difficult in other

languages.

Example: Adding Calendars to Arbitrary Slots

One of the most interesting uses for a simulator is to look for good

strategy rules when a Fab is ramping, that is increasing its wafer starts

per week, its number of resources, its run rate of resources, and its

process yield.

Initially, MARS was designed with the ability to represent ramps of

machines, yields, and wafer starts. Occasionally, we wanted to represent

and use cycle times which changed during the simulation period. This

was accomplished through use of a calendar object, which stores a value

indexed by the current shift number. Using CLOS, it was simple to

replace the integer minutes of cycle time with a calendar object. The

CLOS code segment shown in Figure 6 uses this calendar to return the

desired, time-dependent, cycle time.

Figure 6: CLOS :around Method to Add Ramping Cycle Times
(defmethod batch-cycle-time :around ((bd batch-def))
 (let ((res (call-next-method)))
 (if (typep res ‘calendar)
 (calculate-value res (current-shift-number))
 res)))

Interestingly, with only a minor performance penalty, this technique can

be made general for all slots using the MOP without the need for the slot-

by-slot :around method used in Figure 6.

Example: Counting the Number of Concurrently Used
Machines

An interesting user request was for the average number of machines

concurrently used on some step. The code in Figure 7 shows a simple

specialization which gathers that information.

Figure 7: Code for Counting Concurrent Machines
(def-class step-concur (step)
 (concur-count 0)
 (concur-history nil))

(defmethod start-of-simulation :after ((step step-concur))
 (setf (concur-count step) 0)
 (setf (concur-history step) nil))

(defmethod start-running :after ((step step-concur) event)
 (incf (concur-count step))
 (push (cons (current-time) (concur-count step))
 (concur-history step)))

(defmethod end-running :after ((step step-concur) event)
 (decf (concur-count step))
 (push (cons (current-time) (concur-count step))
 (concur-history step)))

From this gathered information, we could then compute the expected

number of machines running a step, using the integration technique

outlined in [Glassey 90]. Since MARS also has a start-running-event
message dispatching on both a machine and step, one could also easily

count concurrent usage for only a certain classes of machines.

INFORMATION ABOUT THE CURRENT SYSTEM

MARS currently contains 38 base classes and 22 rule classes (WIP

management, setup, and wafer start rules). In a complex Fab

environment, it simulates one week of simulated time in about 5 minutes

of real time. It was built in less than a year by two software engineers,

one full time and one part time. The first prototype was up and running

in less than one month and all changes there after were intermingled with

modeling and simulation experiments.

MARS has been used at Intel to help delineate and test manufacturing

strategies for most of our high-volume advanced microprocessor Fabs.

We have used it to study new manufacturing strategies which would be

too costly to try on the floor. It is currently being used to help design the

strategy and machine set of our newest billion dollar Fab.

CONCLUSIONS

Were we successful? We are quite happy with our management of the

competing system requirements of (1) rapid change, (2) modeling

generality and (3) swift run times. For instance, the turn around time on

most strategy experiments suggested by manufacturing personnel has

been less than one week.

Some exceedingly complex rules can be encoded in our rule language.

Most other changes can be made by specialization on the current set of

base classes. Early on, however, we came to the conclusion that, due to

other commitments, MARS would never be a simulator that was

delivered to manufacturing personnel. Thus, all naive user ease-of-use

considerations were dropped as requirements.

The simulation-building approach taken in MARS used a state-of-the-art

software development environment based on OO principles and

augmented with simulation class libraries. For the high-power user

interested in implementing complex new behaviors, we believe that this

approach produces better systems faster than the use of off-the-shelf

commercial simulation tools. This is due primarily to the fact that there

is much more industry effort and competition in developing general

software development environments than in more specialized simulation

environments.

Given the range of system changes we made and the additional

functionality we provided in MARS, we believe that focusing on the key

OO techniques outlined in this paper has proven worthwhile in keeping it

an extensible and speedy simulation system.

REFERENCES

AutoSimulations, Inc., AutoSched and the Simulator System User’s

Manual, Bountiful, Utah, 1993.

G. Booch, Object-Oriented Analysis and Design with Applications, 2nd

Edition, Benjamin/Cummings, 1994.

S. French, Sequencing and Scheduling: An Introduction to the

Mathematics of the Job-Shop, Ellis Horwood, 1982.

C.R. Glassey and S. Adiga, “Berkeley Library of Objects for Control and

Simulation of Manufacturing (BLOCS/M)”, in Applications of Object-

Oriented Programming, ed. L.J. Pinson and R.S. Wiener, Addison-

Wesley, 1990, pp. 1-27.

E.M. Goldratt, The Goal: A Process of Ongoing Improvement, North

River Press, 1986.

S.E. Keene, Object-Oriented Programming in Common Lisp, Addison-

Wesley, 1989.

K.G. Kempf, “Intelligently Scheduling Semiconductor Wafer

Fabrication”, in Intelligent Scheduling, M. Zweben and M. Fox, eds.,

Morgan Kaufman, 1994.

G. Kiczales, J. des Rivieres, D.G. Bobrow, The Art of the Metaobject

Protocol, MIT Press, 1991.

J. Martin and J.J. Odell, Object-Oriented Analysis and Design, Prentice

Hall, 1992.

D.J. Miller, “Simulation of a Semiconductor Manufacturing Line”,

Communications of the ACM, Vol. 33, No. 10, October 1990, pp. 98-

108.

A. Paepcke, ed, Object-Oriented Programming: The CLOS Perspective,

MIT Press, 1993.

S. Shlaer and S.J. Mellor, Object Lifecycles: Modeling the World in

States, Prentice-Hall, 1992.

G.L. Steele Jr., Common Lisp: The Language, 2nd Edition, Digital Press,

1990.

Symbolics, Symbolics Common Lisp Programming Constructs,

Burlington MA, 1990.

R. Uzoy, C.Y. Lee, and L.A. Martin-Vega, “A Suvey of Production

Planning and Scheduling Models in the Semiconductor Industry Part I:

System Characteristics, Performance Evaluation and Production

Planning”, IIE Trans. on Scheduling and Logistics, Vol. 24, 1992, pp.

47-61.

L.W. Wein, “Scheduling Semiconductor Wafer Fabrication”, IEEE

Trans. on Semiconductor Manufacturing, Vol. 1, No. 3, August 1988,

pp.115-130.

BIOGRAPHY

Dr. Smith recieved the B.S., M.S., and Ph.D. degress in Computer

Science from Michigan State University in 1977, 1979, and 1982,

respectively.

Since 1992, Dr. Smith has worked at Intel on various problems involved

in the planning, scheduling and control of semiconductor manufacturing.

His current interests are computer models which capture important

manufacturing tradeoffs and the process by which such models become

orgranizationally useful and supportable.

Prior to joining Intel, Dr. Smith was a research scientist at Northrop’s

Research and Technology Center. He worked on a wide variety of

advanced AI-based software systems, including those for manufacturing

scheduling and planning, image understanding, pattern recognition, and

computer-supported collaboration.

Dr. Smith has more that dozen technical publications and has served as a

technical reviewer for the National Science Foundation, IEEE Trans.

PAMI, IEEE Trans. SMC, IEEE Expert, and ACM Computer Reviews.

He is a member of IEEE, ACM, AAAI, and Phi Kappa Phi.

