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ABSTRACT 

This paper describes the software analysis, design, and implementation of 

an object-oriented simulation system.  This system allows the synthesis 

and analysis of manufacturing strategy rules which control 

semiconductor fabrication factories (Fabs).  These rules capture resource 

tradeoff decisions such as when to prefer to run one step over another on 

a machine that can run both steps. 

 

Because of the complexity of the manufacturing process, simulation is 

the only effective technique to answer many key questions about strategy 

rules.  However, because of the need to experiment with alternative 

strategy rules, we felt it was worthwhile to develop our own low-level 

simulation model using the CLOS Object-Oriented programming 

language. 

This paper discusses the MARS project and the object-oriented approach 

used.  We focus on some interesting design and implementation tradeoffs 

needed to make MARS both computationally efficient and extensible to 

new rules and behaviors.  Our conclusion is that the application of a few 

OO-derived techniques produced a simulator with advanced modeling 

power and remarkable extension capability. 

BACKGROUND 

Semiconductor fabrication is the complicated process by which raw 

silicon wafers are converted into microelectronic devices by deposited 

layers and patterns of metal and semiconductor materials.  The process is 

characterized by complex re-entrant product flow, random yields, random 

machine availability, diverse equipment characteristics, etc. [Uzoy 1992]   

An important problem is the choice of  management strategies in wafer 

fabrication facilities (Fabs) to maximize output while holding down 

inventory and keeping quality high. These strategies are the rules that 

make resource tradeoff decisions (when to run Step A as opposed to Step 

B on a machine that can run both),  resource setup decisions, and other 

control decisions (such as how to assign repair technicians to broken 

machines, when to introduce starting wafers into the line, when to bring a 

production machine down for preventative maintenance or to run a line-

yield experiment, etc.).  

The MARS project began after extensive talks with manufacturing 

managers and our own work on real-time scheduling systems for Intel’s 

Fabs [Kempf 1994]. Key questions of strategies kept emerging.  What is 

the long term effect of short term decisions made every shift in the Fab?  

How do I manage a toolset that is used over multiple steps in the line?  

Should I manage steps by their output rates?  Should I manage a 

constraint toolset with an inventory buffer?  If I have a number of near 

constraints, how do I make sure they feed each other correctly? 

We decided to focus on strategies directly related to the movement of 

WIP (WIP-management strategies, as opposed to, say, equipment 

maintenance strategies) as we could delineate reasonable WIP-

management rules, some of them supported by simple analytic models.  

However, for our complex Fabs,  we still could not prove any one was 

better than another without fall back to religious convictions; Thus to 

answer the above questions, we resorted to simulation models.  

Unfortunately, while some previous simulation work studied the 

semiconductor fabrication area  [Glassey 1990, Miller 1990, Wein 1988] 

and some excellent commercial simulators exist [AutoSimulations 1993], 

no commercial simulation package included the ability to quickly define 

new WIP-management rules.  Therefore, we developed MARS, The 

Manufacturing Rules Simulator. 

BASIC DEVELOPMENT TECHNIQUES 

We used the following software development techniques.  The system 

was 

(1) analyzed and designed using an Object-Oriented methodology, and 

(2) designed around a simulation “micro-kernel”, and 

(3) implemented using the CLOS OO rapid prototyping language 

[Steele 1990, Keene 1989, Paepcke 1993]. 

 

The first technique ensured those objects with stable domain identities 

(machines, steps, rules, etc.) were encapsulated into the software via 

well-designed simulation interfaces. We felt that the meaning of 

machines/steps etc. would be less likely to change (and more likely to be 

merely extended) than other possible primitives. For instance, when new 

types of strategy rules are added, their previous supporting components 

(for example parsers and printers for high-level rule input/output) are 

immediately available for incremental redefinition. 

Technique (2) ensured that supporting code could be developed 

incrementally around a stable simulation core.  This core consists of all of 

the main code for maintaining a simulation event queue and all basic 

events sent to objects.  For instance, to include random machine 

downtime models, a supporting program downloads machine 

“availability calendars” into the simulation kernel.  By default, the 

standard class of machines has an availability calendar whose shift-long 

buckets are each filled with a default taken from model input.  

Technique (3) ensured that the system is geared to the rapid introduction 

of fixes, changes, and enhancements. We were aware that new rule types 

and the need to store new supporting data in domain objects would mean 

that, even with the stability ingrained via technique (1), we would have to 

make code-level changes.  We believed that most of the changes would 

come via specializing classes using CLOS forms,  rather than via 

modifications to the underlying structure of the simulation micro-kernel. 

For instance, during initial month-long prototyping, we implemented 

three radically different forms of resource tradeoff rules by extending a 

basic parent rule class.  

THE SOFTWARE DEVELOPMENT PROCESS 

We now give an overview of the development process used for MARS 

and some of the key design decisions. Though our software development 

group had the formal requirement of using the Shlaer-Mellor 

methodology [Shlaer 1992] as the methodology of choice, we were less 

tied to one formal methodology, and borrowed from other methods 

[Booch 1994, Martin 1992] where appropriate.  We took the MARS 

project through the formal sign-off process steps in our organization and 

produced some of the work products described below to meet the 

requirements of this process.  



 

Requirements Phase 

We began with some basic requirements.  While we wanted to build a 

general and extensible simulation system, we were willing to narrow its 

scope to our style of manufacturing when we deemed it appropriate. We 

knew the basic workings of our Fabs and their current style of WIP-

management rules. We had a few new types of rules we wanted to study, 

including those using constraint-management techniques [Goldratt 

1986], but we knew that these rules, and the required data needed to 

support them, would be one of the most changeable parts of the system.  

We wanted the simplest of these changes to be achievable by  non-

programming manufacturing personnel. We wanted less than one hour of 

run time to get answers for full Fab-level simulations involving more than 

300 process steps, and on the order of the same number of machines, for 

months worth of simulated time, while starting more than 4K wafers per 

week into the line. 

All accounting rollups would be on a shift-by-shift basis.  MARS would 

store all history data for later on-line analysis.  MARS should collect 

enough information to plot: 

• Lot "Outs" per shift per step, 

• WIP per shift per step, 

• Machine setups per shift,  

• Machine utilization per shift, etc. 

 

These requirements lead to some interesting compromises.  We decided 

to model the Fab resources at the level of a number of single-usage, non-

interruptible machines per process step. Additional delays would be used 

to represent pipelined machines.  Resource availability would be modeled 

as “buckets of availability” per shift. There would be one “route” for 

product modeled.  For runtime speed, true “lot” objects would not exist 

and we would merely count WIP queue lengths. 

Some of these initial requirements changed, and we will discuss this 

effect in a later section. 

Analysis and Design Phase 

At the top-level of analysis, MARS  was designed to operate by 

simulating the beginning and ending of steps (i.e., recipes) running in 

batches (some number of lots) on machines. Steps may run on a number 

of alternative machines, each with different parameters, such as cycle-

time, the amount of operator time required, maximum batch size, etc. 

Each step has a WIP buffer of waiting lots in front of it. 

 

The top-level resource assignment algorithm of MARS proceeds by 

looking for empty machines.  For any empty machine, MARS determines 

from the model what steps may run on it.  If none of these steps have 

WIP, then the machine remains idle until WIP arrives.  If only one step 

has WIP, then MARS (if the strategy rules allow it) starts the maximum 

batch that it can on the machine. If more than one step has available WIP, 

then MARS uses the strategy rules given by the user to resolve which 

step should use the machine. 

 

Figures 1 through 3 show some of the main work products of the OO 

analysis phase. Figure 1 shows a portion of the basic object information 

model, with classes and relationships.  This diagram is simplified by 

omitting inverse relations and cardinality notations (one-to-one, one-to-

many, etc.). 

 

This is an early analysis phase diagram.  An important point is that such 

diagrams evolve as analysis, design, and implementation proceed.  We 

will discuss major changes to this diagram below.  However, take the 

case of the activity class, which represents the physical act of running a 

batch of lots on a machine.  In the implementation of MARS,  activity 

objects have two attributes (besides their start and stop times and the lots 

undergoing the activity) one of which is a pointer to the step object they 

are performing and the other a pointer to the machine object on which 

they run. Likewise, a machine has an attribute which is a pointer to its 

current activity.  However, step objects only have pointers to the current 

set of lots processing at the step, so finding the activity objects associated 

with a step involves searching all the machines that can run the step.  

This was deemed appropriate given the algorithms used.  Thus, because 

of the computational needs of the algorithm,  the actual class relations 

implemented has changed from the overview given in Figure 1. 

 

Figure 2 shows a simple object communication diagram for the 

End_of_Shift event which diagrams the main messages used in 

responding to that event.  For simplicity, other messages are not shown. 

The simulation control object triggers messages to all machines and steps 

telling them to collect their shift-by-shift history data.  The control object 

decides if it should place another shift end on the simulation event queue 

or whether the simulation has completed its required number of shifts.  

Figure 1: Portion of Basic Object Information Model 
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Figure 2:Object Communication Diagram for End_of_Shift 
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We produced communication diagrams for all events. We were careful to 

differentiate those communications that happened with delay (thus going 

through the discrete event simulation queue) and those that happened 

without delay. 

 

Figure 3 shows a portion of the current implementation inheritance 

hierarchy.  We talk about some of the design tradeoffs present on this 

diagram in the next section. 

DESIGN TRADEOFFS 

In this section, we give details of some of the more interesting design 

tradeoffs in MARS. 

Figure 3: Portion of Inheritance Hierarchy 
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Local versus Global Decision Making 

A natural tendency when using an OO approach is to focus on algorithms 

composed of  local decisions made by objects based mainly on their own 

local state;  It is well known such greedy heuristic methods can be sub-

optimal [French 1982].   

 

To account for more global algorithms, our solution is to include the 

decision making object as another object class.  Thus in Figure 1, you see 

an SM-Group class, which actually embodies the rules needed to make 

all resource tradeoff decisions for all steps which potentially interact by 

running on an overlapping set of machines. 

 



 

Another interesting approach which solves a piece of this problem uses 

CLOS multi-methods.  These encapsulate the protocol among multiple 

class into one method.  Rather than dispatching on a single class, as in 

most common OO language such as Smalltalk, multi-methods can 

dispatch based on multiple classes at once.  For instance, the method 

definition: 

 

(defmethod compute-cycle-time ((step basic-step)  
                                                    (machine pipeline-machine)) 
    ...) 
  

could potentially behave differently for the (basic-step, pipeline-
machine) (step, machine) class pair than any other pair of step and 

machine classes.  However, we have used multi-methods sparingly in 

MARS. 

Collecting Groups of Objects 

We have used various forms of object collectors in MARS. 

 

Note the meta-class CollectorClass in Figure 3.  Using the CLOS Meta-

Object Protocol (MOP) [Kiczales 1991], it allows classes built from it to 

collect their instance, a behavior not supplied by default by CLOS.  The 

simulation uses this behavior to iterate over all objects of a certain type.  

This has one drawback, namely that an object can only be in one such 

collector (since in CLOS an instance is a member of only one class at a 

time).  To remedy this, we occasionally use a generic collector class, such 

as a queue, which can hold any type of object.   

 

In our implementation, an instance of one of the rule classes shown in 

Figure 3 is actually the definition of one generic rule type.  As such, it is 

the instances themselves which function as collectors of the rule forms 

input from the user. 

 

Finally, the single instance of the Simulation_Control object provides a 

place for more global collectors such as the cached set of ready-to-run 

SM-Group objects. 

Machine Types and Classes for Machine Types 

If you have two types of machines, say a certain type of Lithography 

machine and a certain type of Etch machine, a natural tendency is to 

create a class for each and inherit from the generic machine class.  If 

these “Litho” and “Etch” classes are to be part of the input of the user 

model, rather than hardcoded into the simulation, this can create a 

problem for some compile-time only class languages, such as C++. 

 

In fact, though dynamic class creation is quite easy in CLOS, we have 

avoided it in this context in MARS for two reasons.  First, our initial 

requirements did not determine a need to have method dispatches based 

on these semantic categories.  Second,  specialized classes based on the 

behavior modification required, not on one simple “type” of the machine, 

is a better model of the true semantics of the situation.  This is because 

machines may be in a number of different such categorizations.  In our 

implementation, each “machine” object has a pointer to one or more 

“equipment family” objects which control what summary data is 

collected and reported. 

Multiple Inheritance 

CLOS supports multiple inheritance, though some OOAD techniques 

suggest avoiding its use unless the class structure lattice is of a certain 

type [Booch 1994].  Though the inheritance diagram in Figure 3 does not 

show them, we have used multiple inheritance occasionally, specifically, 

to share the structure of objects which control WIP queues (steps and 

species) and those which are resources (species and machines). 

 

At one point in the design, step inherited multiply from classes queue, 

wipped-object, and linked-list.  

Class Generality versus Specific Encoding of Behavior 

There is a certain dynamic tension in most OO development.  For us, 

steps represent (at least!) two main things: a logical place where WIP 

queues and a specification for a recipe type runnable on some set of 

machines.  As such, steps need both queuing behavior and behavior to 

retrieve relevant activity parameters, such as cycle times.   

 

The reasoning in [Glassey 1990] would suggest steps represent a 

placeholder for both of these, more fundamental, behaviors. The “step” 

class should add them, either through aggregation or through multiple 

inheritance.  We agree and have used both techniques where appropriate. 

 

However, this sometimes becomes a question of implementation 

convenience.  Very often we create the desired behavior “on the fly” in 

the object to avoid the syntactic pain of mapping domain specific method 

names into the generic method names (of course, this assumes the 

behavior is easy to replicate).  In fact, the queuing behavior for steps 

became so specialized and we used it so often that it became semantically 

untenable, syntactically clumsy, and computationally troublesome not to 

bury very specialized queuing code inside the step class.   

 

As a specific example, for a FIFO lot selection rule, it became 

computationally expensive to insist that the Add_to_WIP method 

associated with a step call the Add_to_Queue method with the sort field 

set to a lot’s step entry time. Therefore we created a specialized subclass 

of queue which did only FIFO entry but did it very efficiently.  But, since 

the FIFO lot selection rule is used by default by MARS, all baseline step 

objects actually call internal FIFO entry functions directly, without going 

through an intermediate queue object.  A simple specialization of  the 

baseline step class allows more complex behavior to come by using an 

external queue object. 

High-level User Rules 

One of the most troublesome of the initial requirements was that rules be 

modifiable by non-programming manufacturing personnel.  In some 

sense we were schizophrenic on this requirement. We knew that the 

support of most experimental rules would come from programming-level 

class specialization.  However, we worked quite a bit on “high-level” user 

input macros for both the rules and the domain objects in the user’s 

models.  To do so required us to focus on one highly adaptable form of 

constraint-based rule. 

 

Constraint-based strategy rules are much like standard dispatching rules 

except they have a more global character.  Rather than decide what to run 

next based on the arrival of lots in the WIP queue for a resource class (for 

instance, a FIFO rule), one should decide what to run based on the rate  

and buffer goals at the constraint.   

 

Because of the re-entrant flow of lots in Fab manufacturing, in which the 

constraining resources are typically used in multiple steps in the process 

flow, we distribute the notion of the constraint resource to the constraint 

steps that utilize the constraining resource.  For these steps, the user sets 

the desired production rate by giving each a drumbeat which specifies 

the output desired for the step per shift.  Likewise, the user may give a 

buffersize to each step, which specifies the amount of WIP it is useful to 

maintain ahead of the step for safety reasons. It is of primary importance 

to meet the drumbeat of constraint steps every shift.  Of secondary 

importance, the buffers at these steps should be full. 

 

MARS uses these priorities to determine the strategy for allocating WIP 

at steps to idle machines for both constraint machines and non-constraint 

machines.  At the beginning of every shift, MARS calculates the number 

of lots that must move into a constraint step to meet both its buffer and 

drumbeat goals.  The calculation needed is:  

Lots needed drumbeat buffer size WIP_ ( _ )= + −  



 

which is the number of lots which need to flow into the constraint step 

and, hence, an implied or calculated drumbeat for the step feeding the 

constraint step.  This calculation iterates backwards up the line assigning 

drumbeats to each non-constraint step until the necessary WIP is found. 

 

Note that there is a subtle object interaction with this design.  We 

designed the class SM_Group to handle all these resource tradeoff 

decisions.  However,  step objects belonging to an SM_Group which use 

a constraint rule have user-set buffer and drumbeat information.  We 

decided, by default, that all steps would store this information in internal 

slots. 

 

Figure 4 shows a portion of the user-level input of a constraint rule.  

Certain model specific items are abbreviated in italics to save space. 

Figure 4: Example User-Level Constraint Rule 
(def-strategy-rules  
  (base-route-order list-of-routes) 
  (step-ordering default  
     (under-drumbeat :wip) (overfull-buffer :wip) (underfull-buffer 
:wip)) 
  (step-ordering Litho-Steps 
     (under-drumbeat :step-filter ((list-of-critical-steps :pull) (t :pull))) 
     (overfull-buffer :pull) 
     (underfull-buffer :pull)) 
   (drumbeat litho-steps num-of-lots-per-shift) 
   (buffersize litho-steps num-of-lots)) 

This rule states that certain routes are more important than others (the 

base-route-order form).  It says that all step/machine groups should run 

the step with the largest current buffer, except for steps performing 

lithography.  For these steps, any step under its shift drumbeat goal 

which is in the list-of-critical-steps runs before all other steps.  In all 

categories, the step closest to the end of its process (the :pull rule) is run 

before another step. 

Use of Dynamic Classification  

We have not made extensive use of object state diagrams [Shlaer 1992], 

so we haven’t made extensive use of the dynamic classification method 

of [Martin 1992],  though the CLOS change-class form [Steele 1990] 

could support it.  We do use it in two places:   

 

• as inputs of model objects are being read they change into instances 

of more refined object classes as more of their details become 

known.  These details include both the form of the external syntax 

read and the detailed semantics contained in the form. 

  

• after a model is read, non-baseline extensions are made by placing 

an object in some extended class which has new behaviors. 

  

As an example of the later, consider this simple case of a route which, 

rather than releasing work onto the floor in a fixed amount per shift, as 

does the baseline route class, would maintain the inventory on the floor at 

some fixed amount.  That is done with the definition show in Figure 5. It 

works by overridding the default behavior of the num-of-starting-lots-
for-shift method. 

Figure 5: Example Code to Allow A Route to Control Inventory 
(def-class inventory-controlling-route (route) 
   (desired-inventory 0)) 
 
(defmethod num-of-starting-lots-for-shift  
                            ((route inventory-controlling-route) 
                             (shiftnum integer)) 
   ;;;code to compute and return number of lots to maintain 
inventory 
   ) 
 

(defmacro declare-route-to-be-inventory-controlling  
                                                                 (route desired-inventory) 
   `(progn (change-class ,route ‘inventory-controlling-route) 
               (setf (desired-inventory ,route) ,desired-inventory) 
               ,route))  

REQUIREMENT CHANGES AND THEIR DESIGN TRADEOFFS 

After initial requirements, analysis and design, we began an iterative 

process of prototype development followed by re-analysis, design, and 

implementation.  However, for the most part, new formal analysis 

workproducts were not produced.  We believe this is unfortunately 

typical in most OO projects, and it was encouraged by our advanced 

CLOS development environment [Symbolics 1990] which focuses on 

supporting rapid changes at the CLOS code level rather than at the 

analysis level.  

 

We will now discuss some highlights of the requirement changes and 

design tradeoffs produced during the iterative prototyping. 

Laundry List of Requirements Changes 

The main requirement changes added more detail about the complex 

behavior of objects: 

 

• Operators as an additional resource in operations, 

• Multiple routes, including rework routes, 

• Lots as full fledged objects, 

• Collection of lot throughput times, 

• Transport times between operations,  

• Complex rules for setup control, 

• Non-constraint style rules based on lot priorities, etc. 

  

In addition, we made a number of changes to maintain fast simulation 

run times. 

 

In general, most changes consisted of simple specialization to the current 

set of base objects and the addition of more message coordination 

between objects to ensure locations to hook in new behavior.  Early on, 

these additions effected the “simulation core” as we explained it 

previously, but these type of additions tended to decrease. 

 

Obviously, this later stability came via design.  For instance, to include 

transport times, we merely modeled step-to-step times and placed lots in 

a new IN-TRANSPORT state while holding them in the WIP buffer of 

the step to which they were moving.  A new event type releasing lots 

from the transport state was also needed. Then, the method that gave a 

step’s runnable WIP was modified to filter out lots which were IN-
TRANSPORT.   However, a much bigger change to the simulation core 

would have had to have been made if we had chosen to model a full 

transport system, with resource contention among delivery vehicles. 

 

Some requirements changes greatly effected our implementation class 

lattice.  When there was only one route, steps inherited from a link-list 

mixin [Paepcke 1993], so that they directly stored their previous and next 

steps.  However, when multiple routes were introduced, steps could no 



 

longer take this liberty and the route object itself had to take over the 

next/previous step storage. 

 

Our early focus on implementation efficiency allowed us to design in 

only those abstractions that we knew were required. On the other side of 

the argument, as the previous linked-list example shows, we did 

occasionally have to tear down much of the structure of MARS to 

incorporate a radical requirements change. 

Changes Related to Run Time Reduction 

Many of the most effective changes to hold run time in check while 

increasing behavioral complexity were from caching information.  Our 

original design followed the principle that a piece of information should 

only be held in one place.  For instance, in the initial design only steps 

contained pointers to batch information.  Asking what steps ran on a 

machine involved looping through all steps in  the SM-Group of the 

machine and collecting a list of steps.  However, this was asked often 

enough that it was effective to pre-compile this list into a slot on each 

machine object. 

 

The problem with pre-compiled information is that it makes on-the-fly 

changes more troublesome and error prone.  Our solution is to expose 

cached information using three techniques: (1) Every cache has a dirty 

flag to say when it needs to be recomputed, (2) Every method that 

changes a value cached elsewhere is given an :after method that sets this 

dirty flag, and (3) The method that reads the cache value has a :before 

method which checks the dirty flag to see if the cache needs to be 

recomputed.  Of  course, the latter two technques depend on CLOS’s 

support for before/after daemons. 

EXAMPLE OF BEHAVIOR SPECIALIZATION 

As mentioned before, using an Object Oriented approach allows us to 

focus on two key items: (1) the domain objects, so the design is stable, 

and (2) the object methods, so that the interacting objects are de-coupled 

and encapsulated while places to “hook” new  behaviors are exposed.  

While MARS doesn’t have as many hook points as Autosched 

[AutoSimulations 1993] or the class generality of BLOCS [Glassey 

1990],  it does contain enough of both to allow some interesting 

modification to be achieved very simply.  In addition, the choice of 

CLOS as the object-oriented language of MARS allows some interesting 

behavioral specializations to occur that would be difficult in other 

languages.  

Example: Adding Calendars to Arbitrary Slots 

One of the most interesting uses for a simulator is to look for good 

strategy rules when a Fab is ramping, that is increasing its wafer starts 

per week, its number of resources, its run rate of resources, and its 

process yield.   

 

Initially, MARS was designed with the ability to represent ramps of 

machines, yields, and wafer starts.  Occasionally, we wanted to represent 

and use cycle times which changed during the simulation period.  This 

was accomplished through use of a calendar object, which stores a value 

indexed by the current shift number.  Using CLOS, it was simple to 

replace the integer minutes of cycle time with a calendar object.  The 

CLOS code segment shown in Figure 6 uses this calendar to return the 

desired, time-dependent, cycle time. 

Figure 6: CLOS :around Method to Add Ramping Cycle Times 
(defmethod batch-cycle-time :around ((bd batch-def)) 
  (let ((res (call-next-method))) 
     (if (typep res ‘calendar) 
          (calculate-value res (current-shift-number)) 
          res)))  

Interestingly, with only a minor performance penalty, this technique can 

be made general for all slots using the MOP without the need for the slot-

by-slot :around method used in Figure 6.  

Example: Counting the Number of Concurrently Used 
Machines 

An interesting user request was for the average number of machines 

concurrently used on some step.  The code in Figure 7 shows a simple 

specialization which gathers that information. 

Figure 7: Code for Counting Concurrent Machines 
(def-class step-concur (step) 
    (concur-count 0) 
    (concur-history nil)) 
 
(defmethod start-of-simulation :after ((step step-concur)) 
    (setf (concur-count step) 0) 
    (setf (concur-history step) nil)) 
 
(defmethod start-running :after ((step step-concur) event) 
     (incf (concur-count step)) 
     (push (cons (current-time) (concur-count step)) 
               (concur-history step))) 
 
(defmethod end-running :after ((step step-concur) event) 
     (decf (concur-count step)) 
     (push (cons (current-time) (concur-count step)) 
               (concur-history step)))  

 

From this gathered information, we could then compute the expected 

number of machines running a step, using the integration technique 

outlined in [Glassey 90].  Since MARS also has a start-running-event 
message dispatching on both a machine and step, one could also easily 

count concurrent usage for only a certain classes of machines. 

INFORMATION ABOUT THE CURRENT SYSTEM 

MARS currently contains 38 base classes and 22 rule classes (WIP 

management, setup, and wafer start rules). In a complex Fab 

environment, it simulates one week of simulated time in about 5 minutes 

of real time. It was built in less than a year by two software engineers, 

one full time and one part time.  The first prototype was up and running 

in less than one month and all changes there after were intermingled with 

modeling and simulation experiments. 

 

MARS has been used at Intel to help delineate and test manufacturing 

strategies for most of our high-volume advanced microprocessor Fabs.  

We have used it to study new manufacturing strategies which would be 

too costly to try on the floor.  It is currently being used to help design the 

strategy and machine set of our newest billion dollar Fab. 

CONCLUSIONS 

Were we successful?  We are quite happy with our management of the 

competing system requirements of (1) rapid change, (2) modeling 

generality and (3) swift run times.  For instance, the turn around time on 

most strategy experiments suggested by manufacturing personnel has 

been less than one week. 

 

Some exceedingly complex rules can be encoded in our rule language. 

Most other changes can be made by specialization on the current set of 

base classes.  Early on, however, we came to the conclusion that, due to 

other commitments, MARS would never be a simulator that was 

delivered to manufacturing personnel.  Thus, all naive user ease-of-use 

considerations were dropped as requirements. 

 



 

The simulation-building approach taken in MARS used a state-of-the-art 

software development environment based on OO principles and 

augmented with simulation class libraries.  For the high-power user 

interested in implementing complex new behaviors, we believe that this 

approach produces better systems faster than the use of off-the-shelf 

commercial simulation tools.  This is due primarily to the fact that there 

is much more industry effort and competition in developing general 

software development environments than in more specialized simulation 

environments. 

 

Given the range of system changes we made and the additional 

functionality we provided in MARS, we believe that focusing on the key 

OO techniques outlined in this paper has proven worthwhile in keeping it 

an extensible and speedy simulation system. 
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