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D \ =  0 7 5  
Cluster # 1 d 4 = 0 7 5  
Cluster# 2 d > \  i 0 75 

D\ = 0 425 
Cluster # 1 d 4 = 0 40 
C i m t e r # 2  d 3 i 0 4 5  

F ( x  y )  = M a x  ( x  + y 1 0) 

D‘= 0 125 
Clurter # 1 d \ = 0 125 
C l u i t e r # 2  d 2 i r O 1 2 5  

IV. CONCLUDING REMARKS 
We have generalized some previous results of Ruspini and others 

in fuzzy clustering, using the new concept of indistinguishability 
relation based on the concept of t-norm and also we have studied 
its metrical properties through the dual concept of r-conorm that 
leads to G-pseudometrics. From the concept of G-pseudometric we 
have defined fuzzy r-clusters and fuzzy cluster coverages. Finally, 
we have proposed a measure of cluster validity based on the con- 
cept of fuzzy coverage. 

It is important to notice that the process of measuring the validity 
is carried out before any decision concerning the assignments of 
elements to the clusters. Therefore we can postpone the decision 
step until we have an acceptable cluster validity. That is, we have 
a sort of closed loop in the sense that a bad measure of validity 
obliges the user to reconsider a previous hypothesis, for example, 
the number of clusters, the values of the prototypes, etc. Right now 
we are studying this “close loop” aspect in the setting of different 
classification algorithms. 
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A Test to Determine the Multivariate Normality of a 
Data Set 

STEPHEN P. SMITH A N D  ANIL K. JAIN 

Abstract-This correspondence describes a new test for multivariate 
normality useful in pattern recognition. The test is based on the Fried- 
man-Rafsky multivariate extension of the Wald-Wolfowitz runs test. 
We perform Monte-Carlo experiments to determine if the test is reli- 
able in high dimensions with moderate sample size. We compare the 
test to some other tests mentioned in the literature. 

Index Terms-Covariance matrix, Friedman-Rafsky test, minimum 
spanning free, Monte-Carlo simulations, multivariate normal distri- 
bution, pattern recognition. 

I .  INTRODUCTION 
The use of the assumption that data follow the multivariate nor- 

mal distribution is common in pattern recognition and clustering 
[3]. However, few tests are available for determining if such an 
assumption is statistically valid, especially for data residing in high 
( > 2 )  dimensions, which are common in pattern recognition stud- 
ies. 

Tests for multivariate normality are few, but those that exist can 
be split into three categories: tests of marginal normality, tests for 
joint normality, and tests based on one-dimensional projections. 
The articles [ l ] ,  [8], [7], and [9] and sections of the book [6] pro- 
vide a good overview of such tests. However, little work has been 
done on the practical aspects of such tests. Cross, Wyse, and Jain 
[2] provide one example with a Monte-Carlo study of the sample 
size and dimensionality properties of a test proposed by Mardia. 
Our paper continues this program for the practical assessment of 
normality tests using a similar approach. 

Manuscript received July 31, 1986; revised January 20, 1988. Recom- 
mended for acceptance by J. Kittler. This work was supported in part by 
the National Science Foundation under Grant ECS 8300204 and Northrop 
Internal Research and Development. 

S .  P. Smith is with the Automation Sciences Laboratory, Northrop Re- 
search and Technology Center, I Research Park, Palos Verdes Peninsula, 
CA 90274. 

A. K. Jain is with the Department of Computer Science, Michigan State 
University, East Lansing, MI 48824. 

IEEE Log Number 8823 182. 

0162-8828/88/0900-0757$01 .OO 0 1988 IEEE 



75 8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. IO, NO. 5. SEPTEMBER 1988 

11. THE FRIEDMAN-RAFSKY TEST 
The FriedmanlRafsky test [4] was originally proposed as a mul- 

tivariate extension of the classic Wald-Wolfowitz two-sample runs 
test, whose null hypothesis is that the two univariate samples have 
the same distribution. The meaning of “runs” for the multivariate 
extension is based on the minimal spanning tree (MST) of the 
pooled samples. The test statistic is the count of the number of 
edges in the MST linking points belonging to the two different sam- 
ples. This is analogous to the univariate case, where the statistic is 
the total number of runs of elements from the same population in 
the sorted list of the pooled samples. In the multivariate extension, 
the MST is used to “sort” the elements of the samples, an opera- 
tion that is conceptually obvious in one dimension, but ill-defined 
in higher dimensions. 

More formally, let the N data points in one sample be labeled X 
and the M data points in the other sample be labeled Y .  The MST 
of the pooled samples is computed. The number of edges in the 
MST linking a point labeled X to a point labeled Y is found. Denote 
this X-to-Yjoin count as T. Under the null hypothesis that X and Y 
are independent random samples from the same distribution, Fried- 
man and Rafsky show that as M, N -+ 03 with M / N  bounded away 
from 0 and 00, the distribution of 

approaches the standard normal distribution for MST’s computed 
using the Euclidean distance metric, where Cis  the number of edge 
pairs in the realized MST which share a common node, and 

2MN 
L 

E [ T ]  = - 

V a r [ T l C ]  = 

c - L + 2  + [ L ( L  - 1 )  - 4MN + 21 
( L  - 2 ) ( L  - 3)  

with L = M + N .  
Note that the computational complexity for performing the 

Friedman-Rafsky test is O ( L 2 ) .  Computing the MST of L points 
in  a space of dimensionality greater than 2 (using the classic al- 
gorithm by Prim [lo]) is known to require O ( L 2 )  operations. The 
permutation parameter C ,  which is needed to compute the variance 
of the statistic, can be written as f.= I d, ( d ,  - 1 ) where d, is the 
degree of the ith node in the MST. Given the MST representation 
returned by Prim’s algorithm, finding the degree of each node re- 
quires O ( L )  operations per node. Thus the computational com- 
plexity needed to determine C is also O ( L 2 ) .  Computation of the 
test statistic T’ requires only O ( L )  operations, since there are 
L - 1 edges in the MST. 

Smith and Jain [13] have used the Friedman-Rafsky test to test 
a null hypothesis of uniformity against clustered alternatives. In 
[ l l ]  it was also shown th’at this test for the uniform distribution 
achieves high power against a multivariate swarm of points follow- 
ing the normal distribution, provided that the number of points is 
sufficiently large (about 200). A short note [12] contains some ini- 
tial results leading to this current paper. 

111. A MULTIVARIATE NORMALITY TEST 
To test whether a given sample follows the normal distribution, 

we modify the Friedman-Rafsky procedure as follows. The sample 
of N points to be tested for normality is labeled X. The mean vector 
V, and the covariance matrix C, of X are estimated. A second sam- 
ple Y of N points is generated from a multivariate normal distri- 
bution with parameters ( V,, C.r). The Friedman-Rafsky test is then 
performed with X and Y taken as independent samples; the null 
hypothesis of normality of the sample X is rejected if T’ < Z (  a )  
where Z ( a )  is the cr quantile of the standard normal distribution. 

Small values of T’ imply a spatial separation of X and Y while 
values larger than expected imply that the two samples are mixed 
“too much.” Thus, the one-sided test is appropriate for detecting 
most common deviations from normality. As described below, as- 
suming the normality of T’ precludes the use of the two-sided test. 

The test uses the assumption that the Y sample is independent of 
the X sample by relying on the asymptotic normality of T’. This 
assumption is clearly invalid since Y depends on V, and C,. Thus 
Y is “closer” to X than would be expected if both arose as inde- 
pendent samples. The effect of the dependency, made clear in the 
remaining section, is to make the one-sided test more conservative, 
i.e., to decrease its power against alternatives. We show, however, 
that the test still retains adequate power. 

One way to remove the difficulty with the independence as- 
sumption is to derive a more reliable critical region of the test. One 
computational method for doing so is to perform a Monte-Carlo 
simulation. For our test, this procedure is as follows. 

1) As before, from the X and Y samples, determine 7”. Call this 
value T;I. 

2 )  Generate a sample X* from N (  Vx,  C x ) .  Then generate a Y* 
sample from N (  Vx,,  Cx*) .  Compute the test statistic from the X* 
and Y* samples and call its value T; .  

3) Repeat Step 2 W - 2 more times, giving Ti, . . . , TW- ,. 
4) Let R be the rank order of TA among the W 7” values. Reject 

the null hypothesis of normality of X at the cr level if R 5 cr W. 
In the remainder of this paper, we shall refer to the test using 

the normal critical region as the “normal” test and the test using 
a Monte-Carlo determined critical region as the “Monte-Carlo’’ 
test. 

Besides the interdependence of the X and Y samples, two other 
problems arise with the proposed test. First, and most important, 
the computation of the test statistic depends on the generation of a 
normal random sample Y .  Different realizations of Y will yield dif- 
ferent test statistics. Practical use of the test demands that a number 
of test instances be carried out. 

Another issue is choosing the cardinality of the Y sample the 
same as the cardinality of the given X sample; choosing a larger 
cardinality for Y might lead to a test with higher power. A later 
section will address this issue. 

IV. EXPERIMENTAL RESULTS 
To illustrate the proposed test, we now provide two examples of 

its use. 
Fig. 1 shows 25 points following the standard normal distribu- 

tion (points graphed with a filled-in circle). These points are to be 
tested for normality using our proposed test and make up the X 
sample. Also shown in Fig. 1 are the 25 test points making up the 
Y sample (points graphed with a hollow triangle), which were gen- 
erated from a normal distribution with the mean and covariance 
matrix estimated from the X sample. Finally, in the figure, we show 
the MST formed using these pooled samples. There are 26 edges 
in the MST linking points in samples X and Y .  This yields a test 
statistic value of 7” = 0.218 and gives a significance level >0.33 
using the “normal” test. 

Likewise, Fig. 2 shows 25 points from a well-separated 
Gaussian mixture (the bimodal distribution with A = 7.5, de- 
scribed in a following section of the paper), 25 test points for the 
Y sample (points graphed with a hollow triangle) generated from a 
normal distribution with the mean and covariance matrix estimated 
from the X sample, and the MST formed using these pooled sam- 
ples. There are 18 edges in the MST linking points in samples X 
and Y.  This yields a test statistic value of T’ = - 1.968 and gives 
a significance level <0.025. 

A .  The Size of the Test 
The first question with the proposed test is whether the size of 

the test can be set by relying on the asymptotic normality of T’ 
given that the sample size is finite and that the Y sample is not 
independent of the X sample. 
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Fig. 1, Twenty-five points following the standard normal distribution, 25 
points generated as a testing sample, and the MST formed when using 
these two samples. This yields T‘ = 0.281, giving a significance level 
>0.33. 
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Fig. 2. Twenty-five points following the bimodal distribution with A = 
7.5, 25 points generated as a testing sample, and the MST formed when 
using these two samples. This yields 7” = - 1.968, giving a significance 
level <0.025. 

To check the null distribution of the test, we perform a Monte- 
Carlo study. In each Monte-Carlo run, N points following the stan- 
dard normal distribution are generated, the “normal” normality 
test is performed on that sample, and the number of rejections at 
various levels a are tabulated. To check the test for sample size 
dependence, we let N be 100, 500, or 1000. For a given sample 
size, samples of normal data in 2, 5, and 10 dimensions are used. 
In all cases the number of Monte-Carlo runs is 2000. 

Tables 1-111 show the results for each of the sample sizes. As 
can be seen, the number of rejections of the null hypothesis for the 
normal data is not significant. However, the results are all under 
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TABLE I 

N = 100 
“NORMAL” TEST NULL REJECTION RATES FOR VARIOUS DIMENSIONS WHEN 

1 0.20 ’ 0.178 10.115 1 0.041 1 

TABLE IV 

WHFW N = 100 
“MONTE-CARLO” TFST NULL REJECTION RATES FOR VARIOUS DIMENSIONS 

, True Rate I Dimension 

1 0.01 j 0.009 I 0.015 1 0.007 
I 1 2 j 5 j 1 0  

the true rejection rates. This is especially true when the number of 
dimensions is large and/or when N is small. Thus the “normal” 
test for normality is a conservative test. 

Table IV repeats Table I ,  but for the “Monte-Carlo’’ test. These 
simulations confirm the expected result that the size is properly set 
in the “Monte-Carlo” test for normality. 

B.  A Power Study 
To study the power of the proposed test against a deviation from 

normality, we use random samples of size N from the bimodal dis- 
tribution studied in [ 2 ] .  This distribution generates samples con- 
taining an equal number of points from two normal populations. 
One population contains points from a normal distribution which 
has a zero mean vector and an identity covariance matrix; the other 
population consists of points from a normal distribution also with 
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Fig. 3. Power versus A for bimodal distribution in various dimensions Fig. 5.  Power versus A for bimodal distribution in various dimensions 
when N = 100. 
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Fig. 4. Power versus A for bimodal distribution in various dimensions Fig. 6 .  Power versus A for bimodal distribution in five dimensions when 
when N = 500. N = 100 for various tests. 

identity covariance matrix but with a mean vector of length A .  Thus 
the means of the two mixture densities are separated by a distance 
of A .  When A is zero, an N point sample from the bimodal distri- 
bution follows the multivariate standard normal distribution, 
whereas increasing A gives a mixture distribution with increasing 
bimodal deviation from normality. 

We study the power of the “normal” normality test against the 
bimodal alternative by Monte-Carlo simulation. Each Monte-Carlo 
run consists of generating N points following the bimodal distri- 
bution and performing the normality test. To check the test for 
sample size dependence, we let N be 100, 500, or 1000. For a 
given sample size, samples of bimodal data in 2, 5, and 10 dimen- 
sions are taken with the mean separation parameter, A, ranging 
over integer values from 0 to 10, inclusive. In all cases the number 
of Monte-Carlo runs is 100 and 01 is 0.05. 

Fig. 3 shows the results for dimensions 2, 5, and 10 with N = 
100. Figs. 4 and 5 show the results for these dimensions when N is 
500 and 1000, respectively. 

We will compare these power results to other tests in the next 
section. For now, note that power appears to monotonically in- 
crease with increasing A .  Also, as N increases, the effect of the 

dimensionality of the data is less important. An interesting conjec- 
ture is that there is some asymptotic power cure. 

We can now compare the power results of the “normal” test to 
its variation when the cardinality of the Y sample is chosen much 
larger than that of the X sample and also to the “Monte-Carlo’’ 
test. Fig. 6 shows these comparisons for five dimensions and N = 
100. The curve labeled with the hollow circle is the baseline “nor- 
mal” test curve, repeated from Fig. 3 .  As above, 100 simulations 
are used to generate the other curves for integer values of A .  

The curve marked with an asterisk in Fig. 6 is the power curve 
generated for the “Monte-Carlo’’ test. The number of trials W to 
determine the critical region in the “Monte-Carlo” test is 102. 
Note that, as expected from the conservative nature of the “nor- 
mal” test, the power for the “Monte-Carlo” test is larger than the 
power for the “normal” test. However, the decrease in power for 
the “normal” test is not large. 

The curve marked with the filled in circle is the power curve 
generated by modifying the “normal” test by setting the size of 
the Y sample to 500 points rather than 100 points. It is clear that 
the size of this test suffers (29 percent rejects with A = 0.0) without 
a corresponding large increase in power. Further study supports 
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that this arises due to poor normalization of T to produce T’, using 
the asymptotic value for Var [ T I C].  This might be corrected by 
applying the Monte-Carlo procedure described for the “Monte- 
Carlo” test to the original T values. However, this does not look 
worthwhile, as the power of the test with large Y does not appear 
significantly greater than that for its nominally chosen size. 

C.  Comparisons to Other Tests 
We can compare the Monte-Carlo results of our proposed test to 

the study done in [2] on Mardia’s test. In [2], the authors studied 
Mardia’s test on the bimodal density when N = 100 in both two 
and five dimensions. In five dimensions, Mardia’s test yielded spu- 
rious rejections of true normal data with this sample size. Addi- 
tional results in [2] show that problem of spurious rejections is even 
worse as dimensionality increases. These problems do not occur 
with our proposed test. 

Comparing the two-dimensional results of both tests shows that 
Mardia’s test is able to detect small deviations from normality ( A  
of approximately 2.0)  more easily than the “normal” version of 
our proposed test. At A = 5.0, both tests are at a power of 0.60. 
Our test rejects all realizations of the bimodal density when A > 
8.0 but this level of performance is not achieved for Mardia’s test 
until A > 13.0, even allowing its spurious rejections of the null 
hypothesis. 

We can also compare our results to the theoretically derived re- 
sults of Fukunaga and Flick [ 5 ] .  Tables I and I1 in [5]  contain re- 
sults for our bimodal density. In our notation, their separation con- 
stant (Y is just A/2.  Fukunaga and Flick do not give any statistical 
information about their test and we must rely on the concept of a 
“minimal detectable” change in A from zero, which is not well 
defined in practice. Their results show that at a sample size of 100 
in two dimensions, the minimum detectable A should be 1.14. In 
this case, our “normal” test can detect deviation from normality 
when A > 2. With N = 100 in I O  dimensions, our test detects 
deviation from normality for A > 4.0. Fukunaga and Flick’s the- 
oretical results in 8 dimensions at the same N show that their test 
can reject the null hypothesis when A > 4.58. However, their re- 
sults assume that the mean vector and the covariance matrix of the 
Gaussian distribution for the null hypothesis is known. The behav- 
ior of their test when these parameters are to be estimated is not 
known. 

V. CONCLUSIONS 
We have performed a modest simulation study of the applica- 

bility of the Friedman-Rafsky test to determine the multivariate 
normality of sample data. The test data are combined with a mul- 
tivariate swarm of points following the normal distribution gener- 
ated with mean vector and covariance matrix estimated from the 
test data. The minimal spanning tree of this resultant ensemble of 
points is computed and the count of the interpopulation edges in 
the MST is used as a test statistic. The simulation studied both the 
null case of the test and one simple deviation from normality. 

Two conclusions can be made from this study. First, the test can 
be conservatively applied by using the asymptotic normality of the 
test statistic, even for small sample sizes. Second, the power of the 
test appears reasonable, especially in high dimensions. 
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Computing the Width of a Set 

MICHAEL E. HOULE AND GODFRIED T. TOUSSAINT 

Abstract-Given a set of points P = { p , ,  p 2 ,  . . . , p . }  in three di- 
mensions, the width of P, W ( P  ), is defined as the minimum distance 
between parallel planes of support of P. It is shown that W ( P )  can be 
computed in O ( n  log n + I )  time and O( n) space, where I is the num- 
ber of antipodal pairs of edges of the convex hull of P, and in the worst 
case I = Q ( n 2 ) .  For convex polyhedra, the time complexity becomes 
O ( n  + I ). If P is a set of points in the plane, the complexity can be 
reduced to O ( n  log n). Finally, for simple polygons linear time suffices. 

Index Terms-Algorithms, antipodal pairs, artificial intelligence, 
computational geometry, convex hull, geometric complexity, geomet- 
ric transforms, image processing, minimax approximating line, mini- 
max approximating plane, pattern recognition, rotating calipers, width. 

I. INTRODUCTION 
The width of a set of points P (or a simple polygon P) in two 

dimensions is the minimum distance between parallel lines of sup- 
port of P (or P). In three dimensions, it is the minimum distance 
between parallel planes of support. This notion of width is closely 
related to that of diameter (the maximum distance between parallel 
lines or planes of support), and the methods that will be presented 
reflect this. Computation of the width has applications in collision- 
avoidance problems [ 11, and in approximating polygonal curves 
[Ill-[13]. 

The two-dimensional width problem has received some attention 
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