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Abstract — Clustering algorithms have the annoying habit of finding clusters even when the data are

generated randomly. Verifying that potential clusterin

gs are real in some objective sense is receiving more

attention as the number of new clustering algorithms and their applications grow. We consider one aspect of
this question and study the stability of a hierarchical structure with a variation on a measure of stability

proposed in the literature.*-2

Our measure of stability is appropriate for proximity matrices whose entries are on an ordinal scale. We
randomly split the data set, clus;er the two halves, and compare the two hierarchical clusterings with the
clustering achieved on the entire data set, Two stability statistics, based on the Goodman~Kruskal rank

correlation coefficient, are

defined. The distributions of these statistics are estimated with Monte Carlo

techniques for two clustering methods (single-tink and complete-link) and under two conditions (randomly
selected proximity matrices and proximity matrices with good hierarchical structure). The stability measures

are applied to some real data sets.

Cluster stability
Random graph.

Hierarchical clustering

INTRODUCTION

Exploratory data analysis is for situations when little
prior information is available about a set of data and
one wants to ‘look’ at the data and study its ‘structure’.
Clustering,®~7 also called ‘unsupervised pattern re-
cognition’ and ‘classification’, is an important tool in
exploratory data analysis. Cluster validity® is con-
cerned with the objective interpretation of the results
of clustering algorithms and tries to separate ‘true’
structures from artifacts of clustering algorithms. This
paper is restricted to the stability of clustering struc-
tures generated by hierarchical clustering algorithms
operating on rank-order proximity matrices. Most of
the quantitative results in cluster validity have been
generated under these restrictions. 914

A proximity matrixisan N x N symmetrical matrix
in which each row and column represents a data item,
or pattern to be clustered, and whose entries, called
proximities, express the degree of similarity (e.g,,
correlation) or dissimilarity (e.g., Euclidean distance)
between data items, Furthermore, the original prox-
imities are replaced by their rank orders, with no ties.

A clustering method, in the form of a suitable
algorithm, is applied to the rank-order proximity
matrix and a sequence of N-1 nested partitions of the N
data items is formed. The two clustering methods
treated in this paper, single-link and complete-link,
1218 depend only on the rank order of the prox-
imitics, so the assumption of ordinal data is not
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restrictive. A dendrogram, or binary tree, records the
successive merging of clusters as the algorithm pro-
ceeds from the disjoint clustering (N data items in N
individual clusters) to the conjoint clustering (all data
items in a single cluster), assuming an agglomerative
algorithm is employed. The actual rank orders at
which the mergings occur are also recorded.

By way of example, a rank-order proximity matrix is
shown in Fig. 1 in which rank 1 means the closest pair.
This matrix was derived by selecting six points at
random from a unit square and ranking the Euclidean
distances between all pairs of points. The points
themselves, along with the single-link and complete-
link proximity dendrograms are shown in Fig. 1.

Four general problems immediately appear when
one ftries to evaluate the results of a hierarchical
clustering.*® The order in which these problems are
attacked depends on the strategy employed for va-
lidating the hierarchy.

(1) Clustering tendency. Do the entries in the
proximity matrix indicate a homogeneous structure or
does some sort of clustering exist among the data
items?

(2) Global fit of the hierarchy. Is the data set well
represented by the hierarchy ?

(3) Globalfit ofa partition. Are any of the partitions
achieved in the hierarchy good summaries of the data ?

{4) Validity of individual clusters. Lingt?:13 de.
scribes a ‘real’ cluster as one that, for its size, is born
early in the dendrogram and lasts a long time. Which, if
any, of the individual clusters are ‘real’?

Solutions to these problems depend on several
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Fig. 1. Example of clustering methods.

factors. The choice of clustering method will strongly
influence the details of the dendrogram. An exception
is when the proximity matrix is ultrametric,*%*7 in
which case the single-link and complete-link clustering
methods produce the same dendrogram and the
dendrogram generated matches the proximity matrix
exactly, in that the matrix can be exactly reconstructed
from the dendrogram. Real data seldom satisfy the
very tight constraints imposed by the ultrametric
inequality. Besides the clustering method, other factors
affecting the choice of cluster validity measures are:
the meaning of ‘no clustering’, the prior concept of an
ideal cluster, the size of the proximity matrix, and the
ultimate use of the results.‘®)

The concept of stability is not well defined, yet it has
application to each of the above four problems.?***
One possible interpretation of stability applies to (4)
above. When evaluating a cluster generated by some
clustering method, we can slightly change the charac-
teristics of the test data set, for instance by choosing
more patterns from the underlying population from
which the original patterns were chosen. If the new
proximity matrix is then clustered, one would in-
tuitively expect the membership of the cluster under
consideration to remain stable with, possibly, a few
new patterns added to the cluster. Similarly, for
evaluating an entire clustering [(3) above] one would
expect the cluster membership among all the original
clusters to remain the same, with no switches ocouring
among the original patterns. For stability of a hier-
archical structure, one would expect the old structure

to be reproduced, with the added patterns only
contributing new binary merges in the dendrogram.

Since choosing more patterns is, in many instances,
either impractical or impossible, we consider a slightly
different notion of stability using only the original
patterns in the proximity matrix. Strauss et al®-?
proposed two methods for testing the stability of a
clustering. The first idea is to randomly split the
sample of N data items and cluster each half inde-
pendently. Cluster memberships in the two halves
should be similar to memberships in the entire sample
if the clustering is stable. The second idea is to add or
delete some of the variables used to compute the
original proximity measure and compare cluster
memberships.

This paper studies a variation of Strauss’ first idea.
Although strategies could be devised to use thisideain
attacking any of the four basic problems, we choose to
concentrate on a measure of global fit. We reason that
a ‘stable’ hierarchical structure contains ‘real’ hie-
rarchical structure while an ‘unstable’ one shows little
global fit. We ask the question: When is a hierarchical
structure unusually stable?

The objective validation of clusterings is necessary
for the scientific application of clustering metho-
dology. Nevertheless, relatively little attention has
been paid to cluster validity in general,® and to the
concept of stability in particular. Jardine and Sibson
(7.»-119 consider the stability of clusters as a function
of the number of features and the sensitivity of
clustering methods to data errors and missing data.
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(7.2-86) However, they provide no statistical or empiri-
cal studies of stability measures. Mezzich,"!® as part of
a study comparing clustering algorithms, identified
‘clustering replicability’ by randomly halving the data
and assessing similarity between clusterings of the
halves. Mezzich computed a correlation coefficient
between corresponding entries of cross-classification
tables obtained on the two halves. Rand®? evaluated
two clustering methods by assessing similarity be-
tween clusterings ; his new data was conceived from the
old by drawing new individuals from the underlying
population. Baker,??) who is again interested in the
stability of a clustering method rather than the stabi-
lity of a particular data set, evaluates the effect of
removing a few objects from the data set on the
complete-link clustering structure. His results apply
only for 16 data items.

DEFINITION OF STATISTIC

Suppose the N data items have been partitioned into
two groups. How can the clustering structure of the
two groups be compared to the structure of the
original data to judge stability? We propose using the
Goodman—Kruskal gamma statistic,(*8-alsosecAppendix1)
Hubert!!? has used the gamma statistic previously for
a similar purpose. Stability measures based on gamma
statistics are defined below.

Let P denote the given N x N rank-order proximity
matrix. The entries are called proximity ranks. Let the
N data items be partitioned into two sets of size N, and
N, ,N =N, + N, . Let P, beformed from the N, rows
and columns of P corresponding to data items in the
first group. Similarly, let P, be formed from P, using
the N, data items from the second group.

Suppose a hierarchical clustering method is applied
to P. Let U be the resulting phenetic matrix whose
entries are called partition ranks and satisfy the
ultrametric inequality.®! 719 Define U, and U, from U
in the same way that P, and P, were formed from P.

Finally, let the same clustering method that was
applied to P be applied to P, and P,. Let W, and W,
be the corresponding phenetic matrices. Two gamma
statistics can now be defined. Let y, be the gamma
statistic for comparing the partition ranks from U,

and the partition ranks from W, and let v, be that for
U, and W,. The larger the values of these statistics, the
more stable the hierarchy. We propose using

Y = minyy,y,) and 7, = {y; + y,)/2

as measures of hierarchical stability. An example is
given below.

A rank-order proximity matrix Pisshown abovethe
diagonal and the phenetic matrix, UL, derived from
the complete-link method is shown below the dia-
gonal. The (i,j Yentry,i > jof Ut is kif data items i and
J first belong to the same cluster at level k by the
clustering method.

P.R. 12/3—¢

9 13 21 39 38 23 36

7 14 40 22 33 35 37
10 10 ~ 3 15 41 26 34 28 24
10 10 3 \ 16 42 25 27 31 45
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45 45 45 45 45 2 N 12 B 18
45 45 45 45 45 12 12 N 4 19
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For purposes of this example, let N; = N, = Sand
choose five odd numbered data items to form the first
subset and five even numbered are contained in the
second subset.

3 5 7 9 4 6 8 10
115 13 39 23 217 40 33 37
3 15 2 8 4 2.
Pr= 6 2 P, = 42 27 45
5 43 32 6 6 17
7 8 8 19

Applying the complete-link method produces the
phenetic matrices W, and W, shown above the
diagonal. These matrices are to be compared to the
corresponding submatrices of UL, shown below the
diagonal.

10N 15 43 43

WCL
Cx‘=5 16 16 N 43 43
Ui

7145 45 45 > 8
945 45 45 12 N\
2 4 6 & 10

10 N 45 45 45

8145 45 12 > 45
10145 45 20 20

We obtain:

=1

5L = 21/23.
Thus, the stability statistics are:

5L = 21/23, L = 22/23,
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Fix N, M, clustering method

for k « 1 through M

Generate an N x N ordinal
proximity matrix P

Form Py from the even-nurbered rows
and columns of P; form P2 from

remaining rows and columns

Computer Ty and Wy

Fig. 2. Monte Carlo procedure for property one.

Similarly, these statistics can be computed using the
single-link method which results in:

W= = ==L

In this example, we obtain high values of our
statistics for both the single-link and complete-tink
methods; y has a theoretical upper bound of one. Yet
we do not know if these high values are unusually high.
The distributions of y, and 7,, are not known under the
conditions of our study. Hubert"? has empirically
studied the distribution of y between a proximity
matrix and its corresponding phenetic matrix for both
single-link and complete-link, but these results are not
applicable here.

METHOD

If y, and y,, are to measure hierarchical stability,
several factors need to be understood. Two properties
studied in this paper are listed below.

Property one

The distributions of y, and y,, under a situation
involving no clusters must be known to test a ‘no-
clustering’ null hypothesis. We adopt Ling’s*2-*3 null
hypothesis, called the permutation hypothesis;

Hy: All {ordinal) proximity matrices are equally
likely.

There are (N(N — 1)/2)! ordinal proximity matrices.
The distributions of y, and y,, depend on several
items, including the sampled population, the number
of data items, the clustering method, and the sizes of
the two subsets of data items. We have not been able to
derive these distributions so we resorted to Monte
Carlo simulations. To generate an N x N (upper
triangular) ordinal proximity matrix, we chose N(N —
1)/2 uniformly distributed random numbers and re-
placed the numbers with their rank orders. Several
values of N between 16 and 48 and M = 200 Monte
Carlo trials were used. Hubert* V) indicates that the
distribution of y becomes unreliable for N < 16.
The procedure described earlier and given in Fig. 2
was applied to obtain F,(x) and F,(x), estimates-of the
cumulative distribution functions for 7, and y,, re-
spectively, under H,,. Since the entries of P are chosen
randomly, the even and odd numbered data items were

Table 1. Mean, variance and Weibull fit to the distribution of the gamma statistics using complete-fink
clustering: property one

Data items Mean Variance Alpha Beta Gamma Corr.

16
Avg: 0.3472 0.0491 0.2776 2.193 —0.1445 0.993
Min: 0.1738 0.0566 0.3136 2.741 —0.4092 0.985

20
Avg: 0.2887 0.0384 0.1947 2934 —~0.2239 0.985
Min: 0.1603 0.0408 0.1766 2.125 —0.2325 0.992

24
Avg: 0.2624 0.0294 0.1243 2515 —0.1263 0.986
Min: 0.1569 0.0290 0.1092 2174 —0.1667 0973

28
Avg: 0.2292 0.0230 0.1514 1.923 —~0.5778 0.996
Min: 0.1286 0.0182 0.0652 2.516 —-0.1715 0.971

32
Avg: 0.1849 0.0154 0.0619 2.384 ~0.0910 0.993
Min: 0.0978 0.0113 0.0449 2.218 —0.1208 0.993

36
Avg: 0.1828 0.0137 0.0627 2053 —0.0466 0.992
Min: 0.0981 0.0096 0.0435 2.060 -0.0950 0.996

40
Avg: 0.1493 0.0109 0.0503 2.035 —0.0541 0.993
Min: 0.0770 0.0077 0.0241 2458 ~0.1180 0.985

44
Avg: 0.1513 0.0109 0.0445 2.093 ~0.490 0.993
Min: 0.0741 0.0077 00218 2436 —0.1108 0.984

48
Avg: 0.1312 0.0079 0.0250 2.406 —0.0604 0.986
Min: 0.0740 0.0068 0.0233 2.166 —-0.0826 0.981




Stability of a hierarchical clustering 181

used toform P, and P,. Besides the mean and variance
of the empirical distributions for y, and 7y, three-
parameter Weibull distributions were fitted to these
distributions (Appendix 2) so that the shape of the
probability mass could be studied. Also computed is a
measure of the goodness-of-fit of the Weibull distri-
bution to the empirical distribution. Values above 0.95
for this fit show that the Weibull distribution is a good
summary of the data.?%

Tables 1 and 2 show the results of this set of Monte-
Carlo runs. Table 1 contains the results for the
complete-link method, while Table 2 contains the
analogous results for the single-link method. We notea
few significant facts that occur in these two tables.
First, the means and variance of each of the gammas
tend to decrease as the number of patterns increases, as
expected from the increase in the sample size. Also, for
a given number of data items, the statistics computed
for the single-link method tend to have larger values
than those for the complete-link method. This could
possibly be expressed by saying that the single-link
method finds more stability in the hierarchy, even
when it is not present in the data-set.

Property two

If a hierarchical structure does not match the
structure of a proximity matrix to a reasonable degree,
conclusions drawn from the hierarchy concerning
stability could be biased. To study the effect of global
fit, we repeated the simulations for the study of
property one, but rejected all proximity matrices P

which did not conform to 2 hierarchical structure. The
measure of global fit was y computed between Pand U.
The threshold for y was chosen as the 50th percentile of
the null distribution of y, as determined by Hubert.* 9

Tables 3 and 4 show the results of this set of
simulations. Again, the same trends occur as in Tables
1 and 2. Comparing these results with the previous
results, it can be seen that values of the statistics tend to
be slightly higher than the corresponding values for
property one, but as the number of data items
increases, it can be seen that global fit is less of a
determining factor.

APPLICATION

The stability test is now demonstrated on several
‘real’ data sets. We illustrate the procedure with data
sets from two applications and with a ‘random’ data
set. The application data shows how the test may be
used in practice when the number of patterns is the
same as one of the Monte Carlo runs in the paper and
also when this is not the case. The random’ data tests
the robustness of the test to a different ‘no stability’ null
hypothesis.

The stability test was applied to a data set from a
speaker recognition study known to have a good
clustering structure.?® Five samples of speech from
each of four speakers were recorded directly into a
microphone and, simultancously, over a telephone
line. Thus, a total of 40 speech samples were generated,
20 directly and 20 by telephone. Each set of 20 samples

Table 2. Mean, variance and Weibull fit to the distribution of the gamma statistics using single-link clustering:
property one

Data items Mean Variance Alpha Beta Gamma Corr.

16
Avg: 0.3991 0.0622 0.5989 3.246 —0.3653 0.994
Min: 0.2128 0.0764 0.4187 2312 -0.3947 0.9%0

20
Avg: 0.3866 0.0504 0.8570 4.421 —0.4941 0.994
Min: 0.2273 0.0641 0.3922 2.533 —0.3851 0.996

24
Avg: 0.3797 0.0316 0.4340 4.840 —-0.3919 0.996
Min: 0.2201 0.043¢ 0.2467 1.901 —-0.1914 0.987

28
Avg: 0.3500 0.0307 0.5904 5.486 —0.4888 0.987
Min: 0.2088 0.0403 0.2862 3.198 —-0.2960 0.990

32
Avg: 0.3651 0.0293 0.1990 3.786 -0.2250 0.996
Min: 0.2323 0.0402 0.3641 3.775 ~0.4590 0.997

36
Avg: 0.3324 0.0219 0.1052 3.830 - 0.1699 0.984
Min: 0.2272 0.0279 0.1380 3.021 —-0.2342 0.996

40
Avg: 0.3016 0.0214 0.0992 3.066 0.1186 0.996
Min: 0.1924 0.0289 0.1541 2906 —0.2756 0.994

44
Avg: 0.3237 0.0167 0.0639 3.05%6 —0.0394 0.994
Min: 0.2212 0.0239 0.1335 3.947 —0.3326 0.993

48
Avg: 0.3060 0.0149 0.0536 3.037 ~0.0388 0.994
Min: 0.2005 0.0207 0.1056 3.851 -0.3039 0.992
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Table 3. Mean, variance and Weibull fit to the distribution of the gamma statistics using complete-link
clustering : property two

Data items Mean Variance Alpha Beta Gamma Corr.

16
Avg: 0.3911 0.0504 0.3767 3,183 —0.2675 0.997
Min: 0.2213 0.0606 0.3305 2,683 —0.3677 0.982

20
Avg: 0.3264 0.0367 0.1870 2.184 —0.0833 0998
Min: 0.1796 0.0396 0.1886 2.463 —0.2709 0.992

24
Avg: 0.2963 0.0320 0.1561 2.160 —-0.0774 0.996
Min: 0.1663 0.0301 0.1268 2.178 -0.1772 0.991

28
Avg: 0.2521 0.0235 0.1060 3.155 —0.1873 0.990
Min: 0.1385 0.0204 0.0773 2.714 —0.2079 0.987

32
Avg: 0.2285 0.0199 0.0727 2.531 ~0.0869 0.984
Min: 0.1292 0.0188 0.0661 2.252 —0.1366 0.979

36
Avg: 0.1838 0.0139 0.0479 2484 -0.0776 0.986
Min: 0.1035 0.0124 0.0393 2479 -0.1374 0.974

40
Avg: 0.1838 00151 0.0632 2.090 —0.0536 0.990
Min: 0.0929 0.0110 0.0417 2.064 —0.0980 0982

44%
Avg: 0.1634 0.0107 00342 2.463 —0.0615 0.960
Min: 0.0870 0.0079 0.0374 1959 —0.0731 0.988

48*
Avg: 0.1351 0.0065 0.0245 2291 -0.396 0.972
Min: 0.0613 0.0055 0.0374 0.1959 —-0.0781 0.088

* Number of Monte Carlo runs = 50.

Table 4. Mean, variance and Weibull fit to the distribution of the gamma statistics using single-link clustering:
property two

Data items Mean Variance Alpha Beta Gamma Corr.
16
Avg: 0.4739 0.0578 1.544 4.747 ~0.5295 0.990
Min: 0.2852 0.0904 0.8350 3.030 —0.5561 0.996
20
Avg: 0.4428 0.0450 0.8109 4.627 —0.4310 0.995
Min: 0.2795 0.0703 0.6171 3.117 —0.4862 0.993
24
Avg: 04118 0.0380 0.2455 3.070 —~0.1533 0.996
Min: 0.2595 0.0548 0.3722 2.694 —-0.3598 0.990
28
Avg: 0.3898 0.0263 09152 6.518 —0.5298 0.981
Min: 0.2491 0.0398 0.2624 2935 -0.3203 0.995
32
Avg: 0.3622 0.0282 0.1803 3.764 —0.2107 0.991
Min: 0.2313 0.0405 0.3456 3.623 —0.4407 0.994
36
Avg: 0.3578 0.0262 0.2891 4.998 ~0.3586 0.990
Min: 0.2461 0.0322 0.2973 4214 —0.4401 0.994
40
Avg: 0.3489 0.0188 0.1019 4.545 —0.2037 0.993
Min: 0.2289 0.0260 0.1358 2953 —-0.2241 0.993
44*
Avg: 0.3093 0.0176 0.1017 4.295 —0.2251 0.976
Min: 0.2222 0.0229 0.2610 5018 —0.4807 0.968
48*
Avg: 0.3348 0.0154 0.0872 4.555 —0.1999 0.990
Min: 0.2056 0.0207 0.4653 5.840 -0.3201 0.970

* Number of Monte Carlo runs = 50.
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can be subdivided into 4 groups by speaker. Using a
procedure described elsewhere,?? a 40 x 40 dissimi-
larity matrix was obtained. A multidimensional scal-
ing solution indicated that the original 40 patterns
could be represented in a 4-dimensional space. An
eigenvalue projection in 2 dimensions of this 4-dimen-
sional data is shown in Fig. 3, and clearly indicates 2
clusters, shown with a dotted line. It also indicates
various subclusters of these so this data set should
provide a good test for a measure of hierarchical
stability.

Tables 5 and 6 show the y, and 7m values for
complete-link and single-link hierarchies, respectively,
along with the global y statistic proposed by Hubert.(!V
Ten separate values of the two gammas are shown,
each resulting from a different random division of the
40 x 40 dissimilarity matrix into two 20-node por-
tions. Using the approximation from® ! for the distri-
bution of 7, we have: P[> < 0.230] = 0.995 and Py
< 0.166] = 0.995. Thus the hierarchies produced by
both single-link and complete-link methods are un-
usually well structured when compared to hierarchies
fror1 randomly chosen proximity matrices.

Using the Weibull parameters fit to the distributions
for y, and 7, for 40 data items, we obtain P ¢ <
0.433] = 0.995 and P[»S" < 0.291] = 0.995. In the list
of ten numbers for both of these test statistics, none fall
below the 99.5 percentile (0.433 and 0.291) of their
empirical distributions. This is evidence that the
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hierarchy is stable and the complete-link dendrogram
summarizes the data well.

The Weibull distributions for the single-link method
show that P[y;l <0.656] = 0.995and P[5! < 0.613]
= 0.995. Again, no values fall below these 99.5
percéntiles of their empirical distributions. However,
we can make the intuitive judgement that the single-
link hierarchy appears more stable than that for
complete-link due to the consistently high values for
72" Note however that the percentiles for the single-
link method are larger than the corresponding values
for the complete-link method. This gives weak evid-
ence that the single-link hicrarchy is a more stabie
representation of the data than the one produced by
the complete-link method.

Although the global (y) gamma value for single-link
is below that for complete-link, this conclusion ap-
pears to be justified for this data set when pattern class
information is considered. The single-link hierarchy
separates the patterns into two clusters based on direct
recording or telephone recording, while the complete-
link hierarchy’s clustering with two clusters mixes
patterns from the two modes of recording. Also, the
internal structure of the two main clusters in the single-
link hierarchy consists of sub-clusters representing
patterns from the same speaker, with one exception,
Several individual speakers occur in different clusters
in the complete-link hierarchy.

A more conservative test can now be applied to both
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Fig. 3. Eigenvalue projection of the speech data.
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Table 5. Complete-link gammas for speech data

STEPHEN P. SMITH and RiCHARD DUBES

Table 7. Complete-link gammas for 80X data

Global gamma: 0.75553

Global gamima: 0.60263

Partition Gamma average Gamma minimum Partition Gamma average Gamma minimum
1 0.6801 0.6404 1 0.5540 0.2888
2 0.7879 0.6406 2 0.6245 04199
3 0.8636 0.7701 3 0.4817 0.3745
4 0.7990 0.6178 4 0.7857 0.7810
5 0.9567 0.9348 5 0.6199 0.5786
6 0.8445 0.7066 6 0.6848 0.6434
7 0.9732 0.9499 7 0.4386 04181
8 0.8420 0.6924 8 0.6260 0.5644
9 0.8842 0.7921 9 0.6205 0.5531

10 0.9075 0.8545 10 0.6335 0.6211

Table 6. Single-link gammas for speech data

Table 8. Single-link gammas for 80X data

Global gamma: 0.73435

Global gamma: 0.63842

Partition Gamma average Gamma minimum Partition Gamma average Gamma minimum
1 0.8158 0.8027 1 0.8686 0.8310
2 0.9311 09217 2 0.8533 0.7793
3 0.9248 0.8677 3 0.6894 0.4821
4 0.9421 09129 4 0.8735 0.8567
5 0.9522 09194 5 0.8688 0.8014
6 09129 09110 6 0.8875 0.8001
7 0.8385 0.7348 7 0.6944 0.5203
8 0.8319 0.7013 8 0.8122 0.7307
9 0.8360 0.7162 9 0.8325 0.7612

10 0.9431 09381 10 0.6918 0.5676

hierarchies by using the distributions found for pro-
perty two. This again yields no values below the 99.5
percentiles and supports the conclusion that the
hierarchies are stable.

The next application involves the 80X data set, in
which each pattern represents a character from the
Munson handprinted FORTRAN character set. A
pattern consists of eight features measured on one of
the alpha-numeric characters ‘8’ ‘0" and ‘X", A total of
15 patterns is compiled from each of these character
classes. Thus we have a 45 pattern data set which
produces a 45 x 45 dissimilarity matrix based on
Euclidian distance. We apply the stability test by
randomly splitting this into two proximity matrices,
one with 22 patterns, the other with 23 patterns and
use the empirical distributions found for 44 patterns to
define the percentiles.

Tables 7 and 8 show the results of 10 random
division of the 80X data set under complete-link and
single-link, respectively. As before, we compute the
99.5 percentiles for the distributions of the global ys
using Hubert’s approximations. Both global gamma
values are greater than this percentile. Next, we
compute the 99.5 percentiles of the empirical distri-
butions of the stability statistics using the Weibull fits.
Under property 1, no values of y5% or yS$* fall below
these percentiles for complete-link while two values are
below the percentile for y5L. Under the more con-
servative property two distributions, one value of y5&
and one more value of y5F are below the percentiles.

These results indicate that neither hierarchy is a stable
description of the data, although if one were forced to
choose between the two hierarchies, the complete-link
hierarchy would be the choice. These results tally with
pattern class information. The single-link hierarchy
suffers from chaining, and clusters containing patterns
from only one class are rare. The complete-link
method finds reasonable clusters for most ‘0’s and ‘8’s,
but mixes “X’s with some 8’s.

The last data set investigated in this paper is an
artificial data set generated under hypothesis of ‘no
stability’ other than that used previously. We gene-
rated 50 points at random in a unit sphere. This is the
‘Random Position” nuil hypothesis mentioned by
Dubes and Jain® and it has been shown that this null
hypothesis produces different distributions for statis-
tics for cluster validity from the previous ‘Random
Graph’ null hypothesis.?® Given that we want ‘real’
structure in the hierarchy representing any data, there
should be no stable hierarchy representing random
points.

Tables 9 and 10 show the results of applying the
stability procedure 10 times. We now approximate the
distribution of the stability statistics for 50 patterns by
those found empirically for 48 patterns. At the 0.005
level, both values of the global gamma are significant
using Hubert’s approximation. However, applying the
percentiles for the stability statistics at the 0.005 level
using property one, we find one value of y$* and two
values of ySF are below their percentiles, while eight
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Tape 9. Complete-link gammas for sphere data

Global gamma: 0.52870

Partition Gamma average Gamma minimum
L 0.6754 0.5588
2 0.3438 0.2632
3 0.6013 0.4340
4 0.5011 0.4396
5 0.5261 0.2837
6 0.4971 04512
7 0.5375 0.4846
8 0.6722 0.5858
9 0.5880 04733

10 0.5587 0.3630

Table 10. Single-link gammas for sphere data

Global gamma: 042618

Partition Gamma average Gamma minimum
1 0.4733 02229
2 0.6715 0.5964
3 0.5568 0.4204
4 0.5877 0.5632
5 0.3874 0.2848
6 0.5827 0.5400
7 0.4149 0.3438
8 0.6108 0.4500
9 0.7258 0.7153

10 0.5497 0.4656

values of y5* and six values of ¥3L are below their
percentiles. We conclude that the hierarchies produced
by the two clustering methods are not stable, as would
be expected from random data. This gives evidence
that the stability statistics give more information
about the data set than can be obtained from the
global gamma alone.

CONCLUSIONS

In this paper we have presented a method for testing
the stability of the hierarchical clustering structure of a
data-set. It is assumed that a stable structure indicates
the hierarchy provides a good summary of the data.
The procedure involves randomly halving the data-set,
reclustering each half, and computing two measures of
stability, y, and y,. Large values of both of these
measures show that little change has taken place
between the structure of the original hierarchy and
that of each half, and this leads us to conclude that the
hierarchy is stable.

To apply this procedure to a test data-sct, the prac-
titioner must know what constitute large values of y,
and y,. This paper studies this question by using a
Monte Carlo technique to assess the values of 7, and
V= for random proximity matrices. This study was
done for both the single-link and complete-link me-
thods and for various numbers of patterns. Finally, the
paper concludes with an example of using these
measures in practice. It is shown that the stability
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statistics provide more information on the global fit a
hierarchy than does Hubert’s y.

Additional work needs to be done in the general area
of stability as a technique for cluster validity studies
and on properties of the two measures y, and 7, The
biggest weakness in using the test in practice is for
data-sets with more than fifty patterns, since no
distributional information is known for this size data
set. We are currently working on fitting a possible
distribution to these cases, given the information
available from this study. Next, if possible, the power
of the test defined in this paper should be studied. Also,
a study of the distributions of the two gamma values
determined from a single matrix divided a number of
times should be undertaken. Possibly a different
approach to partitioning should be studied, such as a
leave-one-out approach. This would bypass the prob-
lem of obtaining various gamma values depending
upon the specific partition of the test data-set.

SUMMARY

Stability is an intrinsic characteristic of individual
clusters, clusterings and hierarchical structures. We
have defined a measure of stability for a hierarchical
structure, based on Strauss*™'? suggestion, and stu-
died its distribution under several circumstances.
These distributions permit a quantitative evaluation of
the stability of a hierarchical clustering under certain
conditions.

The stability statistic measures the agreement be-
tween two phenetic matrices, one derived from a
clustering imposed on half the data and the other
obtained from clustering the entire data set, Randomly
halving the data produces two rank correlation
coefficients, y, and y,. The average, y,, and the
minimum, y,, of these coefficients are the stability
statistics. Our estimates of the distributions of y, and
7m depend on the clustering methods, the null hy-
pothesis, the manner in which the data are split, and
the sample size. The more stable the hierarchy, the
better the hierarchical structure fits the data.

The hierarchical structure imposed by the single-
link and complete-link clustering methods depends
only on the order of the entries in the N x N proximity
matrix. We limited our study to these two clustering
methods and used the Random Graph Hypothesis,
which states that all [N(N-1)/2]! proximity matrices
are equally likely, as the null hypothesis. We also
restricted the proximity matrices to those having a
reasonable hierarchical structure to ascertain the effect
of global fit. Sample sizes (N) from 16 to 48 in steps of 4
were used. The means and variances of y, and y,, were
tabulated along with Weibull parameters describing
the distributions of these statistics. The means and
variances decreased, as expected, and global fit became
less of a factor as N increased.

The stability statistics were computed for ten dicho-
tomies of each of three data sets, which verified the
uscfulness of studying stability. Several areas for
further investigation were also noted.
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APPENDIX 1

This appendix defines the basic Goodman-Krustal
gamma statistic,*® as used in this paper. In general terms, the
gamma statistic, y, measures the rank correlation between
proximity ranks and partition ranks. That is, it measures the
consistency of the rankings. To define y, given a rank-order
proximity matrix P and phonetic matrix U corresponding to
some clustering method, we first realize that the entries in P
areintegers from 1 to N (N-1)/2 with no ties. The entries of U
are a subset of these integers. A list of all n sets of two ranks is
then formed. Each set of two ranks contains one rank from P
and one from U, taken from corresponding positions. The
gamma statistic is defined as:

7=[8(+) = S(=)/S(+) + 5(-)]

where S(+)is the number of ‘condordant’ pairs, or consistent
pairs, while $(—) is the number of ‘discordant’, or incon-
sistent, pairs. A ‘pair’ consists of two items from the list
formed above. For example, the pairs (3,8) and (5, 12) are
concordant because 3 < 5 and 8 < 12. However, (3,8) and
(6,7) are discordant because 3 < 6 but 8 > 7. Ties are not
counted so the pair (3,5), (3,7) is neither discordant nor
concordant. Writing

¥ = {S(+H)[S(+) + (=1} — {S(=)[S(+) + S(—)]}

leads to interpreting y as the probability of a consistent
ranking minus the probability of an inconsistent ranking.

The number of pairs that must be examined to compute ¥
is:

n0t—1)/2 = (N + NN — 1)(N — 2)/8.

APPENDIX 2

The Weibull distribution function as used in this paper is

defined as:
Fla)=1~exp[(—1/a){a —pY] fa>p
=0 fa<p.
If W is a Weibull random variate, then
P[W <a]=099=10-001
implies that
a=[—amn0)]'” + p.

The parameters are named as follows: o is the scale para-
meter, B is the shape parameter, and p is the location
parameter.
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