
An Efficient Method to Maintain Resource
Availability Information for Scheduling

Applications

Stephen P. Smith
Automation Sciences Laboratory

Northrop Research & Technology Center
1 Research Park

Palos Verdes Peninsula, CA 90274

September 9, 1991

Abstract

It is vital for a scheduler to efficiently determine when a resource is
unassigned to some previously scheduled operation. Efficient algorithms are
needed for calculating, querying, and updating this information. This pa-
per presents an approach for using height-balanced trees for storing resource
availablity information. We show that availibility queries are then efficient
and that updates can be done in time logarithmic in the size of the availability
information. Further, we present an algorithm for calculating the availabil-
ity of sets of resources which is linear in the number of previously scheduled
operations and show that this is optimal.

Index Terms: Scheduling, Resource Allocation, Balanced Binary Trees

Submitted to IEEE Robotics and Automation Conference, 1992.

1 Introduction

Scheduling is an important function in any manufacturing operation. Good sched-
ules are required to ensure: smooth functioning of the shop, efficient use of resources,
and satisfaction of customer requirements.

One of the key components of any scheduler is resource allocation. Resource alloca-
tion deals with assigning the appropriate resource instances to perform an operation
for some period of time. A common assumption is that resouces instances may per-
form only one operation at a time and thus it is vital for a scheduler to efficiently
determine when a resource is unassigned to some previously scheduled operation.

For example, a machining operation, which takes a known fixed amount of time t to
complete, may require both an instance of the general resource class of machinists
and an instance of the resource class of milling machines. The resource allocation
problem for this operation is to find a time period longer than t which ends before
the required completion time for this machining operation and for which both a
machinist and a milling machine are available for work and unassigned to any other
work.

Clearly a key component of a resource allocation algorithm is the querying and
updating of the availability information of resource instances. It is vital that that
queries such as “Is resource R available between times t1 and t2?” and “What
operation holds resource R at time t?” be answered in an efficient manner. Further,
as the scheduler proceeds, it is vital that the resource availibility information be
updated efficiently.

This paper presents an approach for using height-balanced trees for storing resource
availablity information. We show that availibility queries and updates can be done
in time logarithmic in the size of the availability information. Further, we show that
calculating the availability of sets of resources is linear in the number of previously
scheduled operations.

Section 2 provides an overview of past work on this class of problems. Section 3
contains some mathematical preliminaries. Section 4 defines the availablity of a
resource instance while Section 5 defines updating algorithms for this availablity
information. Section 6 analyzes these algorithms when height-balanced trees are
used to represent availablity. Section 7 shows that this leads to an algorithm linear in
the number of scheduled operations for computing resource availability over multiple
resources instances. An Appendix contains a useful theorem about time interval set
differences.

2

2 Previous Work

Resource allocation, and scheduling in general, is such an important problem that
the literature addressing it is immense. The books [1, 2, 4] provide some impor-
tant overviews. Most of the resource allocation literature looks at issues related
to optimality. For instance, operation research approaches optimize some (simple)
criterion function [5], normally the total time of the schedule, i.e., its makespan.

Artificial Intelligence (AI) and heuristic approaches [3, 8] attempt to do resource
allocation in a quick and robust manner, without trying to achieve an optimal
solution. The representation of availablity presented in this paper arose out of such
work [7].

3 Mathematical Preliminaries

Let {Oi| i = 1, . . . , N} denote a set of operations and let {rj| j = 1, . . . , M} be a
set of resources.

Associated with each operation, Oi, is an non-negative integer Res(Oi) which de-
notes the number of resources required to perform the operation1 and a positive
real number Time(Oi) which represents the predicted duration of time for the op-
eration.

We define a time interval (s, e) as an interval on the real line with e > s. Define
the time interval set difference as

(s, e)− (s′, e′) =

{(s, e)} if (s, e) ∩ (s′, e′) = ∅
{(s, s′)} if s ≤ s′ ≤ e ≤ e′

{(e′, e)} if s′ ≤ s ≤ e′ ≤ e
{(s, s′), (e′, e)} if s ≤ s′ ≤ e′ ≤ e
∅ if s′ ≤ s ≤ e ≤ e′

Recursively define the time interval set difference for a collection of time intervals
as

(s, e)− {(si, ei)}m
i=1 =

⋃

(s′′,e′′)∈(s,e)−(sm,em)

[

(s′′, e′′)− {(si, ei)}m−1
i=1

]

(1)

Associated with each resource instance, r, is a set of non-overlapping time intervals
Up(r), when the resource is up and available for assignment to an operation. We

1The extension of this work to operations which require multiple resource types is trivial.

3

say a resource instance is up during some arbitrary time interval (s, e) if and only
if there exists an interval (s′, e′) ∈ Up(r) such that (s, e) ⊆ (s′, e′).

A scheduling algorithm solves the resource allocation problem by building and main-
taining the assignment of resources to operations over time. We say operation Oi

reserves resource instance r during (s, e). Alternatively, we say r is assigned to
Oi during (s, e). An operation Oi is scheduled when the scheduler reserves all the
needed Res(Oi) resources for some valid time interval.

For each resource instance, we can define the relations:

Reservations(r) = {〈Oi, (s, e)〉 | for all operations Oi which reserve r over the time
interval (s, e) such that e− s = Time(Oi)}

and
RTimes(r) = {(s, e)| ∃〈Oi, (s, e)〉 ∈ Reservations(r)}

To satisfy the constraint on the meaning of Up(r), for all (s, e) ∈ RTimes(r), there
must exist an (s′, e′) ∈ Up(r) such that

(s, e) ⊆ (s′, e′) (2)

For a given resource instance r, its Reservations relation must follow the additional
constraint that for all unequal pairs of entries, say 〈Oi, (si, ei)〉 and 〈Ok, (sk, ek)〉,

(si, ei) ∩ (sk, ek) = ∅ (3)

We denote the cardinality of set X as |X|.

4 Resource Availability

For the scheduler to assign an operation to a set of resources, it must be able to
compute, for each resource, when that resource is available.

We say a resource instance is available over some time interval if and only if (a)
that resource is up during that interval and (b) it is not already reserved by any
other operation.

We now define, for each resource instance r, the set of time intervals Avail(r) by
using the following algorithm:

4

Up(r)
RTimes(r)
Avail(r)

time

Figure 1: Graphical depiction of Avail(r)

Algorithm Avail:
Let Avail = ∅.
∀(s, e) ∈ Up(r)

Avail = Avail ∪ [(s, e)− RTimes(r)]
Return Avail.

Figure 1 shows a depiction of the relationships between Avail(r), RTimes(r), and
Up(r).

Theorem 1 For each resource instance r, Avail(r) contains the set of maximal
intervals over which r is available for assignment to an operation.

Proof for Theorem 1: Let (s′′, e′′) ⊆ (s′, e′) ∈ Avail(r). We need to show that adding
an operation and time interval pair with the time interval (s′′, e′′) to Reservations(r)
does not violate the resource availability constraints (2) and (3).

Constraint (2), that is, ∃(s, e) ∈ Up(r) such that (s, e) ⊇ (s′′, e′′), holds, since, by
the definition of Avail(r) and Theorem 12(a), ∃(s, e) ⊇ (s′, e′) which implies the
desired result.

Constraint (3), that is, ∀(s, e) ∈ RTimes(r), (s, e) ∩ (s′′, e′′) = ∅, also holds, since,
by the definition of Avail(r) and Theorem 12(b), (s, e) ∩ (s′, e′) = ∅, for all (s, e) ∈
RTimes(r), which implies the desired result.

We now must prove that Avail(r) contains only maximal intervals. Again let (s′, e′) ∈
Avail(r). By Theorem 12(c), either s′ is the starting time of some interval in Up(r)
or there exists in RTimes(r) some interval whose ending time is s′. In either case
it is impossible for there to exist an interval in Avail(r) containing (s′, e′) with a
start time less than s′. By the analogous argument, there cannot exist an interval
in Avail(r) containing (s′, e′) whose end time is greater than e′. Thus (s′, e′) is
maximal. 2

5

Theorem 2 Algorithm Avail’s complexity for computing the intervals in Avail(r)
is O(|Up(r)| |Reservations(r)|).

Proof for Theorem 2: This is easy to see, as the algorithm calls for looping over
the |Up(r)| and, for each of these, looping over the |RTimes(r)| = |Reservations(r)|
intervals. 2

We will need the following theorem about the size of Avail(r) in subsequent proofs.

Theorem 3 Avail(r) can contain at most |Up(r)|+ |Reservations(r)| distinct inter-
vals.

Proof for Theorem 3: From the fact that intervals in Up(r) are non-intersecting, and
the constraint that intervals in RTimes(r) must be contained in at least one interval
in Up(r), we conclude that they must be contained in one and only one such interval.
Subtracting a non-intersecting interval from another yields the beginning interval.
Thus, any interval in Up(r) which does not intersect an interval in RTimes(r) yields
one resultant interval (itself) in Avail(r). From the definition of set difference for two
intervals, we note that the maximal number of intervals generated is at most two,
when the subtracted interval is strictly contained within the other. Since RTimes(r)
contains non-overlapping intervals, for any interval in Up(r) which does intersect
one or more intervals in RTimes(r), each intersection results in at most one more
than the number of intersecting intervals. Thus the number of resulting intervals is
as desired. 2

5 Updating of Avail(r)

We now proceed to show that a more efficient method than Algorithm Avail exists
for updating Avail(r) as new resource assignments are made.

To achieve efficiency, we desire to maintain an Avail(r) data structure rather than
recomputing it as needed. To do so, we must update Avail(r) to account for newly
reserved time intervals. Let (s, e) be the time interval over which operation Oi is to
reserve resource r. To update Avail(r), we must

Algorithm Add:
Find the interval (s′, e′) ∈ Avail(r) such that (s′, e′) ⊇ (s, e). If there is

no such interval, then the scheduler has requested an invalid resource

6

Up(r)
RTimes(r)
Avail(r)

time

Figure 2: Graphical depiction of adding a reservation

assignment. Otherwise we must delete (s′, e′) from Avail(r) and add
back the intervals (s′, e′)− (s, e).

Figure 2 shows a graphical depiction of adding a reservation interval to RTimes(r)
and its effect on Avail(r) to the situation shown in Figure 1; Newly added intervals
are shown unshaded.

Theorem 4 The adding scheme of Algorithm Add properly maintains Avail(r).

Proof for Theorem 4: The change made for a new resource assignment is the ad-
dition of the time interval (s, e) ∈ RTimes(r). Since (s, e) is a valid assignment
interval, ∃(s′, e′) ∈ Up(r) such that (s′, e′) ⊇ (s, e). Since intervals in Up(r) are
non-intersecting, using the definition of Avail(r), the only interval which is changed
is (s′, e′). But, this change is precisely the set difference added back into Avail(r)
by Algorithm Add. 2

Likewise, let (s, e) be the time interval over which operation Oi reserves resource r
and we wish to unreserve it. To update Avail(r), we must:

Algorithm Delete:
Find the two intervals in Avail, one with end time equal to s and the

other with start time equal to e, if they exist. Let the first interval
be (s′, s) and the second be (e, e′). If neither exist, then add (s, e) to
Avail, else if (s′, s) exists by not (e, e′), delete (s′, s) from Avail(r) and
add the interval (s′, e), else if (e, e′) exists but (s′, s) doesn’t, then
delete (e, e′) from Avail(r) and add (s, e′), else delete both intervals
and add the interval (s′, e′) to Avail(r).

Figure 3 shows a graphical depiction of deleting a reservation interval from RTimes(r)
and its effect on Avail(r) to the situation shown in Figure 1; Changed and deleted
intervals are shown unshaded.

7

Up(r)
RTimes(r)
Avail(r)

time

Figure 3: Graphical depiction of deleting a reservation

Theorem 5 The deleting scheme of Algorithm Delete properly maintains Avail(r).

Proof for Theorem 5: The change made is the removal of the time interval (s, e) ∈
RTimes(r). By Theorem 12(c) and the definition of Avail(r), there may exists inter-
vals in (s′, e′) ∈ Avail(r) with either s′ = e or e′ = s. There are at most one of each
such interval, since intervals in both Up(r) and RTimes(r) are non-overlapping.

In any of the existence cases, after deleting the retrieved intervals, the proper inter-
val to add to Avail(r) is the interval formed by performing the set union of (s, e) with
the two (or less) retrieved intervals (filling the zero length “holes” of end points)
since this is precisely what (s, e) was subtracted out of in forming Avail(r). For
instance, if neither interval exists, then (s, e) totally covers some interval in Up(r).
In all cases, Algorithm Delete returns the proper interval to Avail(r). 2

6 Computational Efficient Maintenance of Avail(r)

Naive implementations of the above modification algorithms might represent Avail(r)
as a list of unordered time intervals. However, since Avail(r) contains non-intersecting
intervals, it may be totally ordered and a height-balanced tree [6] used to implement
it.

We then have the following theorems:

Theorem 6 The time complexity to find the maximal available time interval less
than some time t (greater than some time t, contained in some other interval) is
proportional to O(log n), where n = |Up(r)| + |Reservations(r)| when Avail(r) is
represented as a height-balanced tree.

8

Proof for Theorem 6: It is well known that finding the required node in a height-
balanced tree is O(log n) for an n node tree. In our case, n = |Up(r)|+|Reservations(r)|,
by Theorem 3. 2

Theorem 7 Algorithm Add has time complexity O(log n), where n = |Up(r)| +
|Reservations(r)| when Avail(r) is represented as a height-balanced tree.

Proof for Theorem 7: It is well known that adding and deleting nodes from a height-
balanced tree is O(log n) for an n node tree. Also, the containment query operation
is O(log n) by the above theorem. 2

Theorem 8 Algorithm Delete has time complexity O(log n), where n = |Up(r)| +
|Reservations(r)| when Avail(r) is represented as a height-balanced tree.

Proof for Theorem 8: As above, the only operations on Avail required by Algorithm
Delete are adding, deleting, and finding the nodes based on the sort key. Thus by
Theorem 3, the result holds. 2

We now state and prove the main Theorem on maintaining Avail(r):

Theorem 9 Avail(r) may be maintained in O(n) space and updated in O(log n),
where n = |Up(r)| + |Reservations(r)| when Avail(r) is represented as a height-
balanced tree.

Proof for Theorem 9: The space result is an immediate consequence of Theorem 3.
The time result is an immediate consequence of Theorems 7 and 8. 2

7 Using Multiple Resources

In general, an operation, O, may require reserving more than one resource, i.e.,
Res(O) > 1. Thus, it is imperative that a scheduler be able to quickly compute the
availablity of sets of resources. In this section, we show how the height-balanced
tree representation of Avail(r) leads to an efficient algorithm for this computation.

First, we define in the obvious fashion the intersection of two sets of time intervals
A and B as:

{(s, e)| ∃(si, ei) ∈ A and ∃(sj, ej) ∈ B s.t. (s, e) = (si, ei) ∩ (sj, ej)}

The following theorem contains our main result:

9

Avail(r1)
Avail(r2)

time

Figure 4: “Weave” pattern producing maximum number of intersections

Theorem 10 For K resource instances r1, . . . , rK,
⋂K

i=1 Avail(ri) is of O(
∑K

i=1 ni)
cardinality and may be computed in O(

∑K
i=1 ni) time, where ni = |Avail(ri)|.

Proof for Theorem 10:

We first prove the size result, which we will do in detail for the case K = 2, with the
result for general K obvious by extension. We will show that the maximum number
of intervals in the intersection of Avail(r1) and Avail(r2) is O(n1 + n2). For any
(s, e) ∈ Avail(r1), the possible ways by which any (s′, e′) ∈ Avail(r2) may generate
an interval in the intersection set are:

(a) (s, e) ⊆ (s′, e′). Thus (s, e) is in the intersection.

(b) (s′, e′) ⊆ (s, e). Thus, (s′, e′) is in the intersection.

(c) The two intervals partially overlap and either (s′, e) or (s, e′) is in the inter-
section set, but not both.

Thus every interval in the intersection set must have as its start time a start time
from some interval in Avail(r1) or from Avail(r2). Since there are n1 + n2 such start
times, the order of the cardinality of the intersection set is no greater than that
value.

Figure 4 demonstrates the the largest intersection set arises when two sets are
related in the “weave” pattern shown. If n1 ≤ n2, there can exist at most (n1 − 1)
such weaves. Each such weave produces two intervals in the intersection set. The
remaining (n2 − (n1 − 1)) intervals in Avail(r2) can produce at most a single entry
in the intersection set. Thus the maximum size of the intersection set is n1 +n2−1.

We now prove the time bound by exhibiting an algorithm with the proper time
complexity. The basic idea of the algorithm is to run a sweep through the (sorted)
merge of the sorted time intervals, adding an intersection interval to the result only
when appropriate. We will sketch the algorithm next.

10

Since each of the Avails is represented as a height-balanced tree, we may view these
as a priority queue and find the minimum intervals in

∑

log ni time. We start with
a count variable equal to one and a sweep variable equal to the minimum start time.
We then loop, performing the following tasks until we have been through all the
intervals in all of the Avails. First, we update sweep to be the next time2 (from
the start or end of one of the n minimum intervals) greater than sweep. If sweep
is an end time, we decrement count by one and replace the interval we just passed
over with the next one in its corresponding Avail. On the other hand, if sweep is
a start time, we increment count by one. If count = K, we have the start of an
intersection interval among the K Avails. Thus we find the next time among the
intervals greater than sweep (it must be an end time), add this start and end pair
to our result, and perform the above described tasks on finding an end time.

Finding the minimum times in each iteration step is an O(K) operation, while
finding the next items in the priority queues is a constant time operation, since
we maintain our place in the height-balanced trees. Since there are O(

∑

ni) total
intervals to loop through, we have the desired result. 2

We now state and prove our main result on computing the availablity of multiple
resource instances:

Theorem 11 For K resource instances r1, . . . , rK,
⋂K

i=1 Avail(ri) may be computed
in time linear in the number of scheduled operations. This is optimal.

Proof for Theorem 11: Note that, after n operations have been scheduled, we have

M
∑

j
|Reservations(rj)| =

n
∑

i
Res(Oi) < Cn

for some constant C. Thus from Theorem 10 we know that the cardinality of
intersection is O(n) and that this may be computed in O(n) time. Since we must
process each intersection interval at least once, this is optimal. 2

8 Summary

This paper has given a mathematical description of resource availablity. We defined
a naive algorithm for computing availablity and then described methods to maintain

2Ties among times from intervals are always resolved by first considering all those arising from
being the end of an interval before those arising from being the start of an interval.

11

availability information as new reservations/assignments are made. By using a
height-balanced tree to represent availablity information, we have shown log time
query, add, and delete operations. These lead to an algorithm for computing the
availability of multiple resources in time proportional to the number of scheduled
operations. This algorithm is optimal.

9 Appendix

We use the following simple lemma about time interval set differences in a number
of places.

Theorem 12 Let (s′, e′) ∈ (s, e) − {(si, ei)}m
i=1. Then, (a) (s′, e′) ⊆ (s, e) and (b)

∀i, (s′, e′)∩ (si, ei) = ∅ and (c) ether s′ = s or s′ = ei, for some i (and the analogous
result holds for e′).

Proof for Theorem 12: Induction will be used to prove each clause. Examination
of the set difference of two time intervals revels that (a), (b), and (c) hold for the
m = 1 case.

For the m + 1 general case, (s′, e′) must be contained in one of the disjoint union
making up the set difference definition, say (s′′, e′′)− {(si, ei)}m

i=1, where (s′′, e′′) ∈
(s, e)− (s(m+1), e(m+1)).

By the inductive hypothesis, (s′, e′) ⊆ (s′′, e′′) ⊆ (s, e), thus proving case (a).

To prove case (b), by the inductive hypotheis, ∀i = 1, . . . , m, (s′, e′) ∩ (si, ei) = ∅.
Using case (a), (s′, e′) ⊆ (s′′, e′′), while from the definition of the set difference of two
time intervals, (s′′, e′′)∩(s(m+1), e(m+1)) = ∅, which implies (s′, e′)∩(s(m+1), e(m+1)) =
∅.

By the inductive hypothesis, either there exists an i such that s′ = ei or s′ = s′′. In
the former case, we are done. In the later, from the definition of the set difference
of two time intervals, either s′′ = s or s′′ = e(m+1). This proves case (c). 2

References

[1] K. R. Baker. Introduction to Sequencing and Scheduling. John Wiley & Sons,
1974.

12

[2] E.G. Coffman and P.J. Denning. Operating Systems Theory. Prentice-Hall,
Englewoo Cliffs, New Jersey, 1973.

[3] B.R. Fox and K.G. Kempf. Reasoning about opportunistic schedules. In
Proceedings 1987 IEEE Interational Conference on Robotics and Automation,
pages 1876–1882, 1987.

[4] S. French. Sequencing and Scheduling: An Introduction to the Mathematics of
the Job-Shop. Ellis Horwood Limited, West Sussex, England, 1982.

[5] T. Ibarkai and N. Katoh. Resource Allocation Problems: Algorithmic Ap-
proaches. The MIT Press, Cambridge, Massachusetts, 1988.

[6] D.E. Knuth. The Art of Computer Programming: Sorting and Searching, vol-
ume 3. Addison-Wesley, Reading, Mass., 1973.

[7] S.P. Smith. Scheduling using schedule modification operators. In Work-
ing Notes for the Workshop on Manufacturing Production Scheduling. AAAI–
SIGMAN, August 1989.

[8] R.J. Stokey. AI factory scheduling: Multiple problem formulations. SIGART
Newsletter, 1(110):27–30, October 1989.

13

