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a complete, weighted graph. The weight on the edge between two 
nodes X and I‘ is derived from near neighbor information of x’ and 
y. Specifically, if 17 is the nth nearest neighbor of x and x is the 

The MNCA operates by taking a specified integer edge weight 
threshold, say d ,  and producing a threshold graph Gd from the 
original graph. A threshold graph is a subset of the original complete 
graph with the same nodes but with all edges whose weight is greater 
than the threshold deleted. For the MNCA, clusters are defined as 
connected components of the Gd, that is, points X and k’ are in the 
Same cluster if and only if there is a path from node X to node in 
Gd. Thus, if a Gd of a data set is connected, then the MNCA with 
a d threshold will produce one cluster for the data. 

For computation reasons, in actual implementations of the MNCA, 

sequence,” in Pro,-, 3rd Int. Conf, Comput, Vision (Osaka), 1990, pp, mth  nearest neighbor Of y, then the weight On edge I’) is Snl. 

Threshold Validity for Mutual Neighborhood Clustering 

Stephen P. Smith 

Abstract- Clustering algorithms have the annoying habit of finding 
clusters in random data. This note presents a theoretical analysis of the 
threshold of the mutual neighborhood clustering algorithm (MNCA) [l] 
under the hypothesis of random data. This yields a theoretical minimum 
value of this threshold below which even unclustered data is broken into 
separate clusters. To derive the threshold, a theorem about mutual near 
neighbors in a Poisson process is stated and proved. Simple experiments 
demonstrate the usefulness of the theoretical thresholds. 

Index Terms-Clustering, Possion point processes, random graphs. 

I. INTRODUCTION 

Clustering algorithms have the annoying habit of finding clusters 
in random data [2]. The mutual neighborhood cluster algorithm 
(MNCA) [l], [3] is no exception. It employs a user-specified threshold 
to determine the clusters. Small values of this threshold yield a large 
number of clusters, whereas large values yield a small number of 
clusters. The purpose of this correspondence is to outline a theoretical 
method to determine a reasonable lower bound for this threshold. 

11. APPROACH 

We define random data as data from a uniform distribution over 
some compact convex subset of li-dimensional space [5]. If a 
clustering algorithm is applied to random data, it should, with high 
probability, yield only a single cluster containing all the points. This 
is because a random data set should have no meaningful subsets that 
are clusters. 

Thus, if we were able to determine the MNCA threshold at which 
(1 - a )  of all random data sets were formed into one cluster by 
the MNCA, we would, with probability (1 - a ) ,  be assured that 
the MNCA, when employed with a larger threshold, would find no 
clusters in random data. 

In this correspondence, we make certain simplifying assumptions 
that allow us to derive an estimate of the needed threshold. 

large weights in the complete graph are estimated and not computed 
[3]. Only the Lth nearest neighbors of each point are actually used, 
where L<*V. The weight of an edge between two nodes, such that at 
least one of them is not in the set of the other’s Lth nearest neighbors, 
is set to an arbitrary large value greater than 2L. 

IV. ASSUMPTIONS 

We would like to find the probability that Gd is connected for 
random data. This is very difficult to derive. We make the following 
simplifying assumptions: 

A1 We only consider the probability that a point that is the nth 
nearest neighbor of point X has point -X as its mth nearest 
neighbor. 

A2 This conditional distribution of mutual near neighbors for 
random data can be approximated by the corresponding distri- 
bution of mutual near neighbors from a Poisson point process 
[ 2 ] .  A Poisson point process is a stationary, isotropic process 
that scatters points such that the number of points in any finite 
Bore1 subset of Zi-dimensional space is a random variable 
following the Poisson distribution. Further, the points are 
independent of one another, and the number of points in 
disjoint subsets of space are independent. 

A3 The probability that a threshold graph with I.’ edges generated 
from random data is connected is approximately the same as 
the probability that a random graph with 1‘ edges is connected 
[4]. A random graph is a graph chosen at random from the set 
of all undirected graphs with S (labeled) nodes and V edges. 

Assumption A1 ignores the metric structure of mutual near- 
neighbor distance, i.e., the dependence of mutual near-neighbor 
distances among points in a set. Assumption A2 ignores edge effects, 
which increase with increasing li. Assumption A3 ignores the metric 
structure of Euclidean space, which gives quite severe constraints due 
to the triangle inequality in two dimensions, although these lessen 
for large li. 
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(1 - a )  
0 8  0 9 5  0 9 9  

8 11 13 1 

TABLE I 
THRESHOLD VALUE FOR d ABOVE WHICH loo(  1 - 0) PERCENT 

OF ALL SIZE .\- RANDOM DATA SETS IN DIMENSIONS 
A R E  CLUSTERED INTO ONE CLUSTER BY THE MNCA 

8 
8 

100 13 16 19 1 
180 15 18 2 1 1  

1 Point i is at least the ( d  - n)th nearest neighbor of the 
point which is point i ' s  nth nearest neighbor 

where I [ . ]  is the indicator function. Taking the expected value of 
both sides yields 

min( l . .d )  .y &n 

q e d l  = (1 /2)  
n = l  ,=1 ,,,=I 

1 Point i is the nz th nearest neighbor of the point 4 which is point i ' s  itth nearest neighbor 

Let X and E' be arbitrary points in a Poisson point process, and let 
P,, ( m  ) be the conditional probability that point S is the ni th nearest 
neighbor of point E' given that point E' is the nth nearest neighbor 
of point .X. Using assumptions A1 and A2, we obtain 

min(I, ,d) d-rt 

E [ C d ]  = r / 2  c PrL(nl ) .  (1) 
n = l  m=l 

Theorem 1, which is stated and proved in the next section, gives 
the formula for Pn(m) .  Substituting this result into (1) and using 
assumption A3, we can numerically solve for the minimum d such 
that E [ c ~ ]  2 r/, since the results of [4] give Vn such that 

P [ A  random graph with S nodes and I,  edges is connected] 

= 1 - c1. 

Thus, given a value of (I, we can determine a threshold value for d 
above which the MNCA is expected to cluster random data sets into a 
single cluster about 100( 1 - n ) %  of the time. Table I shows numerical 
values of d for various values of Ti, S, and U when L = S - 1. 
Note that these values turn out to be insensitive to changes in IC. 

VI. MUTUAL NEAR NEIGHBORS IN A POISSON PROCESS 

The following theorem states mutual near neighbor probabilities 
for Poisson point processes. 

Theorem 1: Let X and E' be arbitrary points in a Poisson point 
process of intensity X in I<-dimensional space. Let Pn(tti) be the 
conditional probability that point X is the mth nearest neighbor of 
point Er given that point Y is the nth nearest neighbor of point X.  
Then 

where M = n + m, and DI< 
incomplete beta ratio 

I a [ V ,  i] is a value of the 

Let S(X. r )  denote a hypersphere of radius r centered on point 
X ,  let / I ( . )  denote Ii-dimensional Lebesgue measure, and let SI; E 
p ( S ( X .  1)) denote the volume of the unit hypersphere in I< dimen- 
sions. 

We proceed to find P, (ni ) by conditioning on the distance from 
X to E-.  Let r,, be the random distance from a point to its nth nearest 
neighbor. From the definition of a Poisson process, the spherical 
volume j i ( S ( X .  r,, ) )  has a gamma distribution with parameters 1 / X  
and n .  Therefore, the density function for r ,  is 

Let Pn(tt~1r) be the conditional probability that X is the mth 
nearest neighbor of Y given that the distance from X to its nth Y is 
in the interval ( T .  T + d r ) .  By the definition of conditional probability 

x 

P,,(rn) = 1 f' , , (7nlr) . fr , (r)d~.  (2) 

Given that the distance from X to Y is in the interval ( r ,  ~ + d r ) ,  then 
-1- is the rnth nearest neighbor of E' if and only if IS(Y, r)l = m - 1, 
where IAl is the number of points from the Poisson process in set A .  

Let B = S ( S .  r )  n S(I: r )  and C = S(E', r )  - B.  Since Y is 
the nth nearest neighbor of X 

PT, (n l r )  = P[  IS(E'. r ) l  = ni - 1 ] 
= P [  JB U CI = 712 - 1 ] 

= 
7 7 - 1  

P [  I B I  = 2 1 P [  ICI = m - t - 1 I. 
1=0 

Since points are distributed according to a Poisson point process 
with intensity A, IC' has the Poisson distribution p(zIXp(C)). Now, 
IS(X.  r)I = ii - 1 and B c S ( X .  r ) ;  therefore, IBI has the binomial 
distribution b ( i l n  - 1. p ( B ) / v ( S ( X . r ) ) ) .  Therefore 

Substituting into this equation, the required p.d.f's and 

M ii ill + 7z 

I i+ l  1 
4 2 2  

=I.[-. -1 

yields 
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4 
4 

91 

180 11 (11,ll) 13 (13,13) 15 (15,16) 
20 9 ( 8 ,  9) 10 (10, l l )  13 (12,13) 
50 10 (10,lO) 13 (12,13) 15 (14,16) 

TABLE I1 
THRESHOLD VALUE FOR d ABOVE WHICH 100( 1 - a) PERCENT OF ALL 530 SIZE 
N RANDOM DATA SETS GENERATED IN A UNIT HYPERSOUARE IN K DIMENSIONS 

WERE CLUSTERED INTO ONE CLUSTER BY THE MNCA. (The numbers in 
parentheses show the 90% confidence interval for these quantiles.) 

(1 - a) 

9 ( 9,lO) 11 (11,ll) 13 (13,16) 
50 10 (10,lO) 12 (12,13) 15 (14,17) 

2 100 11 (10, l l )  13 (12,13) 14 (14,19) 

4 100 11 (10, l l )  13 (13,14) 17 (17,19) 
4 180 11 (11, l l )  14 (14,15) 18 (18,22) 

8 ( 8, 9) 11 (10, l l )  12 (12,14) 
50 11 (11,ll) 14 (14,15) 18 (17,22) 

8 100 13 (13,14) 18 (17,19) 22 (20,28) 
8 180 15 (15,16) 20 (19,22) 24 (23,29) 

Substituting this into (2) ,  interchanging the order of integration and 
summation, and noting that 

we obtain 
m-1 

""' r=o \ 

VII. EXPERIMENTS 
Given the number and severity of assumptions made in deriving 

this note's main result, it is prudent to verify the usefulness of that 
result. 

A. Monte Carlo Validation 
Table I1 presents the order statistics on the mutual near-neighbor 

threshold d needed to connect a Monte Carlo sample of random data 
into one cluster using the MNCA. For each Monte Carlo sample, -Y 
points were generated uniformly in a Zi-dimension unit hypersquare, 
and the MNCA was applied. This process was repeated 500 times 
and the observed order statistics tabulated. 

Comparing Table I with Table I1 shows that our theoretical analysis 
holds fairly well in the Z i  = 8 case. For k=2 and 4, Table I 
significantly overestimates the true quantiles for S 2 100 and thus 
presents conservative minimums. This implies that our assumption A3 
is the most suspect, as increasing dimension appears to be required 
to reduce triangle inequality constraints. However, this could also be 
due to assumption A2 as our estimates might overshoot their true 
mark until edge effects compensate. 

B. Example: Well-Separated Clusters 
Fig. 1 gives an illustation of a sample 2-D data set. It contains two 

well-separated clusters, where each is composed of 90 points and 
distributed uniformly in a square. For this data, when 9 5 d < 20, 
Gd is composed of two connected components, where each represents 
one of the clusters. Table I implies that with significance between 0.95 

Fig. 

It threshold 9. 

I 
1. Example 2-D data set with two well-separated clusters, 

each containing 90 uniformly distributed points 

1 1 

41: 1 

1 
1 1  1 .  

t threshold 11. 

Fig. 2. Example 2-D data set with a unit radius circle containing 40 
uniformly distributed points inside a annulus of unit width containing 140 
uniformly distributed points. The inner radius of the annulus is 1.75 units, 
and the number of points is chosen so that the point density in each cluster 
is constant. 

and 0.99, these two clusters are not an artifact of applying MNCA 
to random data. Setting the MNCA threshold lower that 9 and, thus, 
having the MNCA break these two cluster further is not justified by 
our results. 

Other similarly distributed data sets, with a larger geometric 
separation between clusters than that shown in Fig. 1, have a larger d 
threshold needed to connect them. Our results show that it is justified 
to consider these data sets to be composed of the two apriori clusters. 

C. Example: Concentric Clusters 
Fig. 2 shows another type of data set that is particularly appropriate 

for the MNCA since it has the cluster topology of a circle inside an 
annulus. When 11 5 d < 35,  Gd for this 180-point data set is 
composed of two connected components, where each represents one 
of the clusters. Table I implies that with significance greater than 
0.99, these two clusters are not an artifact of applying MCNA to 
random data. Having the MNCA break these two clusters further by 
lowering d below 11 cannot be justified by our results. 

Fifteen trials on data sets identically distributed to that in Fig. 2 
shows that the threshold of d suggested by Table I is appropriate. The 
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Fig. 3. Example 2-D data set similar to that of Fig. 2 but with the 
inner radius of the annulus of 1.4 units. Note the incorrect cluster labelings. 

minimum value for the 15 trials of the smallest value of d at which 
Gd was connected was 24. For the 15 trials, the maximum value of 
d at which Gd was composed of more than two clusters was 13. In 
all cases, the two clusters found by the MNCA correspond to the two 
a priori clusters. Table I suggests that these two cluster partitions are 
unusual in random data and that further partitioning is not justfied. 

Only when the distance between the inner radius of the annulus 
and the radius of the circle was reduced to less than 0.5 units did 
the value of d below which Gd was disconnected fall below the 
significance thresholds of Table I. 

For instance, in 15 trails with 180 points and a separation distance 
of 0.4 units, Gd became disconnected in the range 10 5 d 5 19. 
In eight of these cases, the disconnected Gd produced the correct a 
priori clustering; in the other seven cases, the MNCA would produce 
an incorrect clustering. If we set a threshold on d of 13 as suggested 
by the liberal reading of Table I, we reject six of the seven incorrect 
clusterings while rejecting only three of the eight correct clusterings. 
Fig. 3 shows the incorrect clustering on an example data set from 
this experiment when 10 5 d < 11. 

D. Example: The 80X data 

As a final test of the suggested threshold values of Table I, we 
examined the 8UX data [2]. This data consists of 45 points in eight 
dimensions. Each point corresponds to eight features measured on 

a handprinted character. The data contains 15 examples of each the 
characters “8,” “0,” and “X.” It is well known that the structure of 
this data is such that, except for a few outlier points, most of the “X’ 
points separate out from a main mixture of the “8” and “0” points. 

For the 80X data, Gd becomes disconnected at d = 25 into 
two components, where one consists of an outlier “0” point, and 
the second is composed of all the other points. Similarly, two “8”s 
separate from the other points at d = 22 and d = 19. Gd does not 
change between 12 < d < 19. At d = 12, the large component of Gd 
is broken into two subcomponents, where one is composed of all 15 
“X’ points, and the other contains the remaining “8” and “ 0  points. 
Table 1 suggests that this clustering has some modest significance 
but that lowering the threshold any further is not justified. Thus, our 
results show that there is strong evidence of three outlier points in the 
8OX data and modest evidence of a separate cluster of “ X  points. 

VIII. CONCLUSIONS 
This correspondence has presented a theoretical analysis of the 

threshold of the mutual neighborhood clustering algorithm under the 
hypothesis of random data. In order to derive an estimate of this 
threshold, a general theorem about the distribution of mutual near 
neighbors in a Poisson process was stated and proved. 

Our analysis yielded a theoretical minimum value of the clustering 
threshold below which even unclustered data is broken into separate 
clusters. A simple Monte Carlo experiment validated the thresholds 
produced, and examples showing the use of these thresholds were 
given. 

Clustering algorithms have the annoying habit of finding clusters 
in random data. This note provides a small step at alleviating this 
problem for the mutual neighborhood clustering algorithm. 
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