
Table of Contents I

Answer Set Programming
ASP Solvers
Example: Hamiltonian Cycles
Choice Rules
Solving Puzzles

Yulia Kahl College of Charleston

Artificial Intelligence 1



Reading

I Read Chapter 6, Answer-Set Programming Paradigm, in the
KRR book.

Yulia Kahl College of Charleston

Artificial Intelligence 2



The Answer-Set Programming Paradigm

I Let’s go beyond answering queries.

I ASP Paradigm — use ASP to solve computational problems
by reducing them to finding answer sets of ASP programs.

I In principle, any NP-complete problem can be solved this way
using ASP without disjunction.

I With disjunction, we can solve more-complex problems.

Yulia Kahl College of Charleston

Artificial Intelligence 3



Some Popular ASP Solvers

I Clingo at http://potassco.sourceforge.net/

I DLV at http://www.dlvsystem.com/

I These two groups agreed on a standardization of ASP called
ASP-Core-2. Still waiting on choice rules in DLV. Not sure
where the Clingo folks are on weak constraints.

I DLV is the system that SPARC interfaces with and runs
behind the scenes of the online SPARC webpage. SPARC can
interface with Clingo as well, but in its current state, is not
written to allow CR-rules in this mode. (Stay tuned.)

I Both systems have their advantages.

Yulia Kahl College of Charleston

Artificial Intelligence 4

http://potassco.sourceforge.net/
http://www.dlvsystem.com/


Examples: Finding Hamiltonian Cycles

I What: Given a directed graph G and an initial vertex v0, find
a path from v0 to v0 that enters each vertex exactly once.

I Why: Applications to numerous problems including processor
allocation and delivery scheduling.

I How: Construct an ASP program whose answer sets
correspond to Hamiltonian cycles of graphs G.

Yulia Kahl College of Charleston

Artificial Intelligence 5



Representation

I graph: vertices and edges as we’ve seen before.

I cycle: collection of statements of the form

in(v0, v1), . . . , in(vk , v0)

in(V1,V2) states that “the edge from vertex V1 to vertex V2

is in a given Hamiltonian cycle.”

I If we can describe when in(V1,V2) is true, we will have a
program that computes Hamiltonian cycles.

Yulia Kahl College of Charleston

Artificial Intelligence 6



Defining the Cycle

There are three conditions which make a set of atoms of the from
in(V1,V2) a Hamiltonian cycle; the collection of atoms:

1. leaves each vertex at most once;

2. enters each vertex at most once;

3. enters every vertex of the graph.

Yulia Kahl College of Charleston

Artificial Intelligence 7



Conditions 1 and 2

% Only one way out of a node:

-in(V, V2) :- in(V, V1),

V1 != V2.

% Only one way into a node:

-in(V2, V) :- in(V1, V),

V1 != V2.

Yulia Kahl College of Charleston

Artificial Intelligence 8



Condition 3

To define that the path must enter every vertex of the graph, we
define relation reached(V ), which holds if the path enters vertex V
on its way from the initial vertex:

reached(V2) :- init(V1),

in(V1,V2).

reached(V2) :- reached(V1),

in(V1,V2).

-reached(V) :- not reached(V).

% It is impossible that a vertex is not reached:

:- -reached(V).

Yulia Kahl College of Charleston

Artificial Intelligence 9



Generation

Now that we have defined a set of atoms that constitutes a
Hamiltonian cycle, we must generate candidate paths which our
rules will test:

in(V1,V2) | -in(V1,V2) :- edge(V1,V2).

states that every given edge is either in the path or is not.
See http://pages.suddenlink.net/ykahl/s_hamgraph.txt

for program.

Yulia Kahl College of Charleston

Artificial Intelligence 10

http://pages.suddenlink.net/ykahl/s_hamgraph.txt


A New Way of Solving Problems

I You’ve just seen a new way to look at an old problem.

I Focuses is on finding an appropriate encoding of the definition
of the problem vs. data structure and algorithm.

I In this case, the declarative solution is:
I shorter
I easier to implement
I more transparent
I more reliable

I Open question: What are the limits of applicability of the
declarative method?

Yulia Kahl College of Charleston

Artificial Intelligence 11



Choice Rules: Syntactic Sugar That’s Hard to Live
Without

A useful extension of ASP syntax, the choice rule allows us to
generate answer sets of various cardinalities, based on previously
defined predicates.

A choice rule has two forms:

n1 OP1 {p(X):q(X)} OP2 n2 :- body.

n1 OP1 {p(c1);...;p(ck)} OP2 n2 :- body.

where the OPs are relations <, >, !=, <=, or >=. We won’t
worry about what mixtures of these operators mean and just
consider the standard <= which is the operator Clingo assumes you
mean if you omit the OPs.

Yulia Kahl College of Charleston

Artificial Intelligence 12



Choice Rules: Examples

I Program

q(a).

0 {p(X):q(X)} 1

has answer sets {q(a)} and {q(a),p(a)}.

I Program

q(b).

0 {p(a);p(b)} 1

has answer sets {q(b)}, {q(b),p(a)}, {q(b),p(b)}.

I Replacing the 1 by a 2 above gives the three answer sets plus
{q(b),p(a),p(b)}.

Yulia Kahl College of Charleston

Artificial Intelligence 13



Generation with Choice Rules

{in(V1,V2): edge(V1,V2)}.

This rule is enough to find solutions. If we wanted to add negative
information for some reason, we could add

-in(V1,V2) :- not in(V1,V2).

Yulia Kahl College of Charleston

Artificial Intelligence 14



A Mystery Puzzle

Vinny has been murdered, and Andy, Ben, and Cole are
suspects. Andy says he did not do it. He says that Ben
was the victim’s friend but that Cole hated the victim.
Ben says he was out of town the day of the murder, and
besides he didn’t even know the guy. Cole says he is
innocent and he saw Andy and Ben with the victim just
before the murder. Assuming that everyone — except
possibly for the murderer — is telling the truth, use ASP
to solve the case.

See http://pages.suddenlink.net/ykahl/s_mystery.txt for
program.

Yulia Kahl College of Charleston

Artificial Intelligence 15

http://pages.suddenlink.net/ykahl/s_mystery.txt

	Answer Set Programming
	ASP Solvers
	Example: Hamiltonian Cycles
	Choice Rules
	Solving Puzzles


