Table of Contents |

Representing Defaults
A General Strategy for Representing Defaults
Knowledge Bases with Null Values
Simple Priorities between Defaults
Inheritance Hierarchies with Defaults
Indirect Exceptions to Defaults

Yulia Kahl College of Charleston

Artificial Intelligence 1

Reading

> Read Chapter 5, Representing Defaults, in KRR book.

Yulia Kahl College of Charleston

Artificial Intelligence 2

What Is a Default?

» default — a statement of natural language containing words
such as “normally,” “typically,” or “as a rule.”

» Example: “Normally, birds can fly.”
» We use them all the time. Well, we normally use them.

» The fact that something is a default implies that there are
exceptions.

» Therefore, any conclusions based on the default are tentative.

Yulia Kahl College of Charleston

Artificial Intelligence 3

Example: Uncaring John

> Let's consider our family story where John and Alice are Sam
and Bill's parents.
» You are Sam'’s teacher and he is doing poorly in class.
» You tell John that Sam needs some extra help to pass.
> You're thinking:
1. John is Sam'’s parent.
2. Normally, parents care about their children.
3. Therefore, John cares about Sam and will help him study.
» How do we represent the default?

Yulia Kahl College of Charleston

Artificial Intelligence 4

Why Can’t We Just Use a Strict Rule?

» If we add a strict rule
cares(X,Y) :- parent(X,Y).

and later find out that John doesn't care about his kids:

-cares(john,X) :- child(X,john).

then we get a contradiction!

Yulia Kahl College of Charleston

Artificial Intelligence 5

A General Way of Representing Defaults

In ASP a default, d, stated as “Normally elements of class C have
property P,” is often represented by a rule:

p(X) « cX),
not ab(d(X)),
not —p(X).

» ab(d(X)) is read “X is abnormal with respect to d” or
“a default d is not applicable to X"

» not —p(X) is read “p(X) may be true.”
» This works regardless of the arity of p.

Yulia Kahl College of Charleston

Artificial Intelligence 6

Example: Normally parents care about their children.

cares(X,Y) :- parent(X,Y),
not ab(d_cares(X,Y)),
not -cares(X,Y).

Note that we have no problem when we add
-cares(john,C) :- parent(john,C).

The new program is consistent and entails —cares(john, sam) and
cares(alice, sam).

Yulia Kahl College of Charleston

Artificial Intelligence 7

Two Types of Exceptions

» Weak exceptions make the default inapplicable. They keep
the agent from jumping to a conclusion.

» Strong exceptions allow the agent to derive the opposite of
what the default would have them believe.

Yulia Kahl College of Charleston

Artificial Intelligence 8

General Implementation of Exceptions

» When encoding a weak exception, add the cancellation
axiom:
ab(d(X)) < not —e(X).

which says that d is not applicable to X if X may be a weak
exception to d.

» When encoding a strong exception, add the cancellation
axiom and the rule that defeats the default's conclusion.

—p(X) e(X)

Yulia Kahl College of Charleston

Artificial Intelligence 9

Example: Weak Exception

» Suppose our agent doesn’t want to assume too much about
folks caring about their children if they haven't ever been seen
at school.

» Notice that doesn't mean that the agent assumes the worst
— only that it doesn’'t know and wants to be cautious.

» So, it doesn’'t want to apply the cares(P,C) default to
anyone that is “absent.”

» What should it assume about Alice caring for Sam if it knows:

» that Alice has been seen at school (—absent(alice))?
» that Alice has never been seen at school (absent(alice))?
» nothing about Alice’'s absence?

Yulia Kahl College of Charleston

Artificial Intelligence 10

Example: Adding a Cancellation Axiom

Following our general method for defaults, we'll add the
cancellation axiom

ab(d(X)) < not —e(X).
for default d_cares as follows:

ab(d_cares(P,C)) :- not -absent(P).

“A person P is abnormal w.r.t. the default about caring for child C
if P may be absent.”

Yulia Kahl College of Charleston

Artificial Intelligence

11

Example: What does the agent know about Alice?

Let's put the default together with the cancellation axiom:

cares(X,Y) :- parent(X,Y),

not ab(d_cares(X,Y)),
not -cares(X,Y).

ab(d_cares(P,C)) :- not -absent(P).

What does the agent conclude given

>

>

>

Yulia Kahl

-absent (alice)?
absent (alice)?
no information about Alice’s absence?
What if it knew cares(alice,sam)?

How about -cares(alice,sam)?

College of Charleston

Artificial Intelligence

12

Example: Strong Exception — General Methodology
We already represented uncaring John in our program as follows:
-cares(john,C) :- parent(john,C).

How would we implement the strong exception of uncaring John
using the general methodology?
It says to add two rules:

—p(X) + e(X).
ab(d(X)) < not —e(X).
In our case,
» p(X) is cares(john, C),
» e(X) is parent(john, C), and
» d(X) is d_cares(john, C).
Thus, our two rules are

-cares(john,C) :- parent(john,C).
ab(d_cares(john,C)) :- not -parent(john,C).

Yulia Kahl College of Charleston

Artificial Intelligence 13

Example: General Methodology

Sometimes, we can do better than the general methodology.
It's a one-size-fits-all, and we can make it tailor made.
Here is the default plus the two rules again:

cares(X,Y) :- parent(X,Y),
not ab(d_cares(X,Y)),
not -cares(X,Y).

-cares(john,C) :- parent(john,C). Y%rule 1

ab(d_cares(john,C)) :- not -parent(john,C). %rule 2

Check that we don't need rule 2 in this case.

Yulia Kahl College of Charleston

Artificial Intelligence 14

Example: Sometimes We Need Rule 2 (The Cancellation
Axiom)

> Let's consider another strong exception to d_cares.

» Suppose the is a mythical country, called u, whose inhabitants
don't care about their children.

» Suppose our knowledge base contains information about the
national origin of most but not all recorded people.

» Pit and Kathy are Jim's parents. Kathy was born in Moldova,
but we don't know there Pit is from. He could have been born
in u.

» Let's assume that both parents have been seen at school, so
the absence thing doesn't come into play.

Yulia Kahl College of Charleston

Artificial Intelligence 15

Representing the Strong Exception

Assume we have all necessary sorts and predicates. Does Kathy
care about Jim? Does Pit? What if the last rule were missing?

father(pit,jim).
mother (kathy, jim) .
born_in(kathy,moldova) .
%% A person can only be born in one country
-born_in(P,C1) :- born_in(P,C2),
C1 '= C2.
%% The original default
cares(X,Y) :- parent(X,Y),
not ab(d_cares(X,Y)),
not -cares(X,Y).
%% Representing the strong exception
-cares(P,C) :- parent(P,C),
born_in(P,u).
ab(d_cares(P,C)) :- not -born_in(P,u).

Yulia Kahl College of Charleston

Artificial Intelligence 16

Example: Cowardly Students

1. Normally, students are afraid of math.

2. Mary is not.

3. Students in the math department are not.
4. Those in CS may or may not be afraid.

The first statement corresponds to a default. The next two can be
viewed as strong exceptions to it. The fourth is a weak exception.

Let's look at the implementation in s_cowardly.sp on the book
webpage: http://pages.suddenlink.net/ykahl.

Yulia Kahl College of Charleston

Artificial Intelligence 17

http://pages.suddenlink.net/ykahl

What does the program assume?

» 7 afraid(john,math)
» 7 afraid(mary,math)
> 7 afraid(pat,math)
» 7 afraid(bob,math)

> Let's add a new person, Jake, whose department is unknown.
What does the agent assume?

Yulia Kahl College of Charleston

Artificial Intelligence 18

Defaults with Known Information

» Let d be a default “Elements of class C normally have
property P" and e be a set of exceptions to this default.

» If our information about membership in e is complete, then its
representation can be substantially simplified.

> If e is a weak exception to d then the Cancellation Axiom can

be written as
ab(d(X)) « e(X).

» If e is a strong exception then the cancellation axiom can be
omitted altogether.

Yulia Kahl College of Charleston

Artificial Intelligence 19

Example: Defaults with Known Information

» Suppose we had a complete list of students in the CS and
math departments.

» The cancellation axiom for CS students could be simplified to
ab(d(X)) :- in(S,cs).

» The one for the math students could simply be dropped.
Remember, we still have

-afraid(S,math) :- in(S,math_dept).

Yulia Kahl College of Charleston

Artificial Intelligence 20

Knowledge Bases with Null Values

Consider a database table representing a tentative summer
schedule of a Computer Science department.

] Professor | Course

mike pascal
john C
staff prolog

Here “staff” is a null value.

Yulia Kahl College of Charleston

Artificial Intelligence 21

Course Catalog Implementation

oo 1o oo oo To o 1o o foTo o o o ToTo o o o ToTo o o o ToTo o o o Jo To o o o ToTo o o o o

sorts

#prof = {mike, john}.

#prof_values = #prof + {staff}.
#course = {pascal, c, prologl.
#default = d(#prof_values, #course).

Toloo oo oo oo oo o o o T T o o o o o To T T o To T To T oo oo oo oo oo

predicates

teaches (#prof_values, #course).
ab(#default).

Yulia Kahl College of Charleston

Artificial Intelligence 22

Course Catalog Implementation, cont.

Voo oo oo oo oo o T o T o T T T T To T T o To T T oo oo o o o o

rules

teaches(mike,pascal).
teaches(john,c).
teaches(staff,prolog).

-teaches(P,C) :- not ab(d(P,C)),
not teaches(P,C).

ab(d(P,C)) :- teaches(staff,C).

How does the agent answer queries:
» 7 teaches(mike,c)
» 7 teaches(mike,prolog)

Yulia Kahl College of Charleston

Artificial Intelligence 23

Another Type of Incompleteness

] Professor \ Course ‘
mike pascal
john C
{mike, john} | prolog

In this case, we simply add:

teaches(mike,prolog) | teaches(john,prolog).

Yulia Kahl College of Charleston

Artificial Intelligence 24

Another Type of Incompleteness

Here are the rules of the program:

teaches(mike,pascal) .
teaches(john,c).
teaches(mike, prolog) | teaches(john, prolog).

-teaches(P,C) :- not teaches(P,C).

How does the agent answer queries:
» 7 teaches(mike, c)
» ? teaches(mike, prolog)
» 7 teaches(mike, prolog) N teaches(john, prolog)

Yulia Kahl College of Charleston

Artificial Intelligence 25

Simple Priorities between Defaults

> Recall our orphans story.

» Remove the assumption that we have info about every child’s
parents. (Note that this is more realistic.)
» Add information about some regulations:

1. Orphans are entitled to assistance from government program 1.
2. All children are entitled to program O.

3. Program 1 is preferable to program 0.

4. No one can receive assistance from more than one program.

Yulia Kahl College of Charleston

Artificial Intelligence 26

Orphans Example: Representing the Defaults

%% Default dl: An orphan is entitled to program 1:
entitled(X,1) :- record_for(X),

orphan(X),

not ab(d1(X)),

not -entitled(X,1).

%% Default d2: A child is entitled to program O:
entitled(X,0) :- record_for(X),

child(X),

not ab(d2(X)),

not -entitled(X,0).

%% A person is not entitled to more than one program:
-entitled(X,P2) :- record_for(X),

entitled(X,P1),

P1 != P2.

Yulia Kahl College of Charleston

Artificial Intelligence 27

Orphans Example: Expressing Preference for Program 1

» Treat orphans as strong exception to the second default.
» (We can use weak exceptions to express preference, t0o.)

» Recall: We don't have complete info about who is an orphan
because we don't have complete info about status of parents.

%% An orphan is not entitled to program O:
-entitled(X,0) :- record_for(X),
orphan(X) .

%% Default d2 cannot be applied if a person
%% may be an orphan:
ab(d2(X)) :- record_for(X),

not -orphan(X).

Yulia Kahl College of Charleston

Artificial Intelligence 28

Orphans Example: We Have Other Strong Exceptions

%% X is not entitled to any program if X is dead:
-entitled(X,N) :- record_for(X),
dead (X) .

%% X is not entitled to any program if he is not a child:
-entitled(X,N) :- record_for(X),
-child(X).

Information about dead and child is complete, so we don't need
the cancellation axioms.

Yulia Kahl College of Charleston

Artificial Intelligence 29

Orphans Example: Verifying Joe

Let's look at the entitlement rules together and check whether all

is well.
See s_orphans2.sp on the book webpage:
http://pages.suddenlink.net/ykahl.

What kind of assistance will living child Joe get if
> he is an orphan?
> he is a child but not an orphan?

» we don't know whether he is an orphan?

Yulia Kahl College of Charleston

Artificial Intelligence 30

http://pages.suddenlink.net/ykahl

Orphans Example: Working with Unknowns

We can detect when we don't know something about a person in
our KB.

check_status(X) :- record_for(X),
not -orphan(X),
not orphan(X).

A query on check_status(X) will list everyone that we don't
have orphan information about.

Yulia Kahl College of Charleston

Artificial Intelligence 31

Orphans Example: Some Sample Records

record_for (bob) .
father(rich,bob).
mother (patty,bob) .
child(bob) .

record_for(rich).
father(charles,rich).
mother (susan,rich).
dead(rich).

record_for(patty) .
dead(patty) .

record_for (mary) .
child(mary).
mother (patty,mary) .

Yulia Kahl College of Charleston

Artificial Intelligence 32

Orphans Example: CWA's

We know who is a child and who is dead:

-dead(P) :- record_for(P),
not dead(P).

-child(X) :- record_for(X),
not child(X).

Only apply to people in the database because we are only asking
questions about people with records.

Yulia Kahl College of Charleston

Artificial Intelligence 33

Orphans Example: Defining Orphans Given Incompleteness

» The positive part doesn't change, but CWA not valid for the
negative part.

» Use a weaker statement.

orphan(P) :- child(P),
parents_dead(P) .

-orphan(P) :- record_for(P),
not may_be_orphan(P) .

may_be_orphan(P) :- record_for(P),

child(P),
not -parents_dead(P).

Yulia Kahl College of Charleston

Artificial Intelligence 34

Orphans Example: Support Predicates

This time, we have to define when parents are not dead.

parent (X,P) :- father(X,P).
parent (X,P) :- mother(X,P).

parents_dead(P) :- father(X,P),
dead (X),
mother(Y,P),
dead(Y).

% -parents_dead(P) is true if we can find a parent
% that is not dead.
-parents_dead(P) :- parent(X,P),

-dead (X) .

Yulia Kahl College of Charleston

Artificial Intelligence 35

Orphans Example: Adding New Knowledge

Suppose our administrator did her research and found that Mary
has a father, Mike, who is alive. She knows that he is not a child
and not dead, so she can add a record for him.

father (mike,mary) .
record_for(mike) .

Now Mary is entitled to program 0 but not 1.

Yulia Kahl College of Charleston

Artificial Intelligence 36

Absence of Information vs. Falsity

Why don’t we enter records for Charles and Susan (Bob's
grandparents)?

In the end we know:
» who is entitled to which program;
» who is not entitled;

» who we don't have enough information about even though
they are in our KB and when that's a problem and when it's
not.

Yulia Kahl College of Charleston

Artificial Intelligence 37

Orphans Example: Adding Defaults to SPARC

sorts
#person = {mary, bob, rich, patty, charles, susan}.

#defaultl = d1(#person).
#default2 = d2(#person).
#default = #defaultl + #default2.

predicates
ab(#default).

Yulia Kahl College of Charleston

Artificial Intelligence 38

Submarines Revisited

Change “all submarines are black”
has_color(X,black) :- member (X,sub).
to “normally, submarines are black.”

has_color(X,black) :- member (X,sub),
not ab(dc(X)),
not -has_color (X,black).

Consider

is_a(blue_deep,sub).

has_color(blue_deep,blue).

-has_color(X,C2) :- has_color(X,C1),
C1 !'= C2.

Yulia Kahl College of Charleston

Artificial Intelligence 39

Membership Revisited

Now we can allow exceptions to an object not belonging to two
sibling classes at the same time.

member (X,C) :- is_a(X,C).
member (X,C) :- is_a(X,CO0),
subclass(CO,C).
siblings(C1,C2) :- is_subclass(C1,C),
is_subclass(C2,C),
Cl '= C2.
-member (X,C2) :- member(X,C1),
siblings(C1,C2),
Cl1 !'= C2,
not member(X,C2). % <-- add this

So, there is no contradiction with

is_a(darling, car). % is both a car and a sub
is_a(darling, sub).

is_a(narwhal, sub). % still just a sub and not a car
Yulia Kahl College of Charleston
Artificial Intelligence 40

The Specificity Principle

Here is a classic story that came from the study of inheritance
hierarchies.

“Eagles and penguins are types of birds. Birds are a type
of animal. Sam is an eagle, and Tweety is a penguin.

Tabby is a cat. Animals normally do not fly, birds
normally fly, penguins normally don't fly.”

Can Sam fly? How do you know?

Yulia Kahl College of Charleston

Artificial Intelligence 41

The Specificity Principle as Prioritized Defaults

» QOur common sense tells us that he can because more specific
information overrides less specific information.

» David Touretsky first formalized this idea known as the
specificity principle.

» Thus, when encoding defaults of classes, we assume that
The default “normally elements of class C; have property P
is preferred to the default “normally elements of class C, have
property =P" if (7 is a subclass of G,.

Yulia Kahl College of Charleston

Artificial Intelligence

42

Hierarchy with Defaults

See s_tweety.sp at http://pages.suddenlink.net/ykahl.

Yulia Kahl College of Charleston

Artificial Intelligence 43

http://pages.suddenlink.net/ykahl

Indirect Exceptions to Defaults

» These are rare exceptions that come into play only as a last
resort, to restore the consistency of an agent’s world view
when all else fails.

» Probably can't be done with straight ASP.
» Can be done with CR-Prolog, an extension of ASP.

Yulia Kahl College of Charleston

Artificial Intelligence 44

The Contingency Axiom

» The contingency axiom for default d(X) which says that
“"Any element of class ¢ can be an exception to the default
d(X) above, but such a possibility is very rare and, whenever
possible, should be ignored.”

» This can be expressed by adding rules to ASP which fire only
when there is a contradiction which can be resolved by their
consequences.

» (CR-Prolog allows us to define preferences between these
rules, but we will not cover that now.)

Yulia Kahl College of Charleston

Artificial Intelligence 45

Example: Restoring Consistency

The regular part of this program is inconsistent. However, the
third rule allows for the resolution of the conflict and the
program’s answer set is {q(a), ~p(a)}.

Yulia Kahl College of Charleston

Artificial Intelligence 46

Abductive Support and Answer Sets of CR-Prolog

» Let 1" denote the regular rules of program TI1.
> Let a(R) be the set of regular rules obtained from

consistency-restoring rules by replacing & with .

Definition

(Abductive Support)

A minimal (with respect to the preference relation of the program)
collection R of cr-rules of I such that 1" U a(R) is consistent (i.e.
has an answer set) is called an abductive support of I1.

Definition

(Answer Sets of CR-Prolog)

A set A is called an answer set of I if it is an answer set of a
regular program " U a(R) for some abductive support R of I1.

Yulia Kahl College of Charleston

Artificial Intelligence 47

Example: Broken Car
Default: People normally keep their cars in working condition:

—broken(X) < car(X),
not ab(d(X)),
not broken(X).

broken(X) < car(X).
Turning the ignition key starts the car's engine:

starts(X) <« turn_key(X),
—broken(X).

—starts(X) < turn_key(X),
broken(X).

car(c).
turn_key(c).

Regular rules conclude: —broken(c) and starts(c).
What if —starts(c)?

Yulia Kahl College of Charleston

Artificial Intelligence 48

What Is It For?

> planning
» diagnostics

> reasoning about an agent’s intentions

Yulia Kahl College of Charleston

A Intelligence 49

How Do | Run It?

» CRModels is a solver for CR-Prolog which includes
preferences, etc.

» For our use, we can run simple programs in SPARC using
.+ instead of <.

Yulia Kahl College of Charleston

Artificial Intelligence 50

	Representing Defaults
	A General Strategy for Representing Defaults
	Knowledge Bases with Null Values
	Simple Priorities between Defaults
	Inheritance Hierarchies with Defaults
	Indirect Exceptions to Defaults

