Table of Contents |

Intro to the Logic-Based Approach to Al
Language Choice
Simple Knowledge Base Example
History: A Part of the Big Picture

Motivation for ASP

Syntax and Semantics of ASP
Syntax
Informal Semantics
Formal Semantics
Translating from Natural Language
Properties of ASP Programs

Yulia Kahl

Artificial Intelligence

College of Charleston
1

Reading

» Read Chapter 1 and Chapter 2 in Knowledge Representation,
Reasoning and the Design of Intelligent Agents by Gelfond
and Kahl. (Section 2.4 is optional.)

Yulia Kahl College of Charleston

Artificial Intelligence 2

Logic-Based Approach to Al: Language Choice

» algorithmic — describe sequences of actions for a computer to
perform

> declarative — describe properties of objects and relations
between them

> |ogic-based approach to Al proposes to:

> use a declarative language to describe the domain
» express various tasks (like planning or explanations of
unexpected observations) as queries to the resulting program

» use an inference engine (a collection of reasoning algorithms)
to answer these queries

Yulia Kahl College of Charleston

5]

Artificial Intelligence

What Does a Declarative Program Look Like?

father(john, sam).
mother(alice, sam).
gender(john, male).
gender(sam, male).
gender(alice, female).

parent(X,Y) < father(X,Y).
parent(X,Y) < mother(X,Y).
child(X,Y) < parent(Y, X).

This program is written in a variant of Answer Set Prolog.
Replace < by :- and you have an executable program.

Yulia Kahl College of Charleston

Artificial Intelligence 4

What Does the Program Know?

Feed the program to an inference engine and ask it questions
(queries): Is Sam the child of John? Who are Sam’s parents?

? child(sam, john).
? parent(X, sam).

Note: This is similar to how we check to see what a human knows.

Does it know that Sam is John's son?

Yulia Kahl College of Charleston

Artificial Intelligence 5

Typical Features of Logic-Based Programming

Knowledge is represented in precise mathematical language.

v

Search problems are expressed as queries.

v

An inference engine is used to answer queries.

v

>

Yulia Kahl College of Charleston

The program is elaboration tolerant.

Artificial Intelligence 6

Elaboration Tolerance

v

A program is elaboration tolerant if small changes in
specifications do not cause global program changes.

» We added knowledge to accommodate the concepts of parent
and child without having to change any of the original code.

» Let's add padre(jose, maria) and teach our program that
padre means father.

» Note that we do not have to change the original program.

Yulia Kahl College of Charleston

Artificial Intelligence 7

Looking Back to Whence We Came

Yulia Kahl

Euclid in his Elements derives a huge body of geometric
knowledge from five basic axioms.

Early 20th century mathematicians develop the notion of a
formal language and apply it to axiomatize set theory.

Number, function, and shape are defined in terms of sets and
their membership relations.

(Almost) all of the mathematical knowledge of the early 20th
century could be viewed as logical consequences of a
collection of axioms that could fit on a medium-sized
blackboard. This achievement demonstrated the high degree
of development of logic.

Also from logic — the notion of correct mathematical
argument, proof.

College of Charleston

Artificial Intelligence

8

The Leibniz Dream

» Gottfried Leibniz tried to apply this axiomatic method to the
science of reasoning.

» Now known as the Leibniz Dream, the idea that we could
axiomatize more than mathematics has inspired many
computer scientist, including Edsger Dijkstra and John
McCarthy.

Yulia Kahl College of Charleston

Artificial Intelligence 9

Two Notions of Mathematics

In “Under the Spell of Leibniz's Dream,” Edsger Dijkstra wrote
that his view of mathematics changed from the dictionary
definition of

“the science of space, number and quantity”

to its different understanding as noticed by mathematicians such
as Leibniz, Boole, and DeMorgan

“the art and science of effective reasoning.”

Yulia Kahl College of Charleston

Artificial Intelligence 10

Programming as Mathematics

He explained that

This was refreshing because the methodological flavour
gave it a much wider applicability. Take a sophisticated
piece of basic software such as a programming language
implementation or an operating system; we cannot see
them as products engendered by the abstract science of
space, number and quantity, but as artefacts they are
logically so subtle that the art & science of effective
reasoning has certainly something to do with their
creation: in this more flexible conception of what
mathematics is about, programming is of necessity a
mathematical activity.

Yulia Kahl College of Charleston

Artificial Intelligence 11

Axiomatizing Artificial Intelligence

> In the 1950s, John McCarthy applied the axiomatic method to
Artificial Intelligence and the idea of the logic-based approach
to Al was born.
» Original idea: express knowledge in mathematical logic and
use an inference engine that applies logical deduction.
» Prolog (1970s, Kowalski, Colmerauer, Roussel)
> supply knowledge in the form of definite causes

P—aqiANGA---NQn

» prove that objects in the domain have given properties
» SLD resolution devised to compute these inferences
» Turing complete, but not fully declarative
» Datalog is a subset of Prolog that is fully declarative. It is
used in deductive databases and significantly expands the
more traditional query-answering languages of relational
databases.

Yulia Kahl College of Charleston

Artificial Intelligence 12

Is FOL Enough?

This issue is still being debated, but many researchers agree with
the Stanford Encyclopedia of Philosophy in its statement that

One of the most significant developments both in logic
and artificial intelligence is the emergence of a number of
non-monotonic formalisms, which were devised expressly
for the purpose of capturing defeasible reasoning in a
mathematically precise manner.

So, what is defeasible reasoning?

Yulia Kahl College of Charleston

Artificial Intelligence 13

Defeasible Reasoning

Again from the Stanford Encyclopedia of Philosophy:

Reasoning is defeasible when the corresponding argument
is rationally compelling but not deductively valid. The
truth of the premises of a good defeasible argument
provide support for the conclusion, even though it is
possible for the premises to be true and the conclusion
false. In other words, the relationship of support between
premises and conclusion is a tentative one, potentially
defeated by additional information.

In other words, it is reasoning whose conclusions are based on
statements such as

“Normally, X is true.”

Yulia Kahl College of Charleston

Artificial Intelligence 14

Defeasible Reasoning and Common Sense

» Common Sense:
» good sense and sound judgement in practical matters (Google)
» the ability to think and behave in a reasonable way and to
make good decisions (Merriam Webster)
» what -I- think people should know (Urban Dictionary)
» Claim: Much of common sense is based on being able to
make smart generalizations while, at the same time,
remembering that there are exceptions.

» Therefore, being able to encode the notion of “normally X is
true” is vital to imparting a machine with common sense.

Yulia Kahl College of Charleston

Artificial Intelligence

15

The Birth of Nonmonotonic Logic

v

John McCarthy developed circumscription

v

Drew McDermott and Jon Doyle developed nonmonotonic
logics

v

Ray Reiter developed default logic

v

Robert Moore developed autoepistemic logic which served as
a starting point for the development of ASP.

Yulia Kahl College of Charleston

Artificial Intelligence 16

Answer-Set Programming

ASP is one particular manifestation the logic-based approach. I'd
like to follow the development of more and more complex agents,
from knowledge representation to reasoning such as planning and
diagnostics, and show how some traditional problems of Al were

solved with this approach.

Yulia Kahl College of Charleston

Artificial Intelligence 17

Why Answer-Set Programming?

The ASP approach to Al

>

Yulia Kahl

separates knowledge representation and algorithm, allowing
the same knowledge base to be used for a variety of reasoning
tasks;

is state-of-the-art and is explored by a lively community of
researchers around the world;

has applications in diverse domains;
is elegant;

is what | know the most about.

College of Charleston

Artificial Intelligence

18

Areas of Al that Include Applications of ASP

From “Applications of Answer Set Programming” by Esra Erdem,
Michael Gelfond, Nicola Leone, published in Al Magazine, Fall
2016.

> planning

> probabilistice reasoning

» data integration and query answering

» multiagent systems

» natural language processing and understanding
> learning

» theory update/revision

» preferences

» diagnostics

> semantic web

» and more

Yulia Kahl College of Charleston

Artificial Intelligence 19

Other Areas that Include Applications of ASP

From “Applications of Answer Set Programming” by Esra Erdem,
Michael Gelfond, Nicola Leone, published in Al Magazine, Fall
2016.

> bioinformatics

> automatic music composition
> assisted living

» software engineering

» robotics

Yulia Kahl College of Charleston

Artificial Intelligence 20

Industry Applications of ASP

From “Applications of Answer Set Programming” by Esra Erdem,
Michael Gelfond, Nicola Leone, published in Al Magazine, Fall
2016.

» decision support systems
» automated product configuration
> intelligent call routing

» configuration and reconfiguratin of railway safety systems

Yulia Kahl College of Charleston

Artificial Intelligence 21

Answer-Set Prolog (ASP)

» An ASP program is a collection of statements describing
objects of a domain and relations between them.

» Its semantics defines the notion of an answer set — a
possible set of beliefs of an agent associated with the program.

» The valid consequences of the program are the statements
that are true in all such sets of beliefs.

» Represent objects and their relations nicely, and you can solve
a lot of practical problems (and perhaps learn about the
human mind in the process.)

Yulia Kahl College of Charleston

Artificial Intelligence 22

Syntax Overview: ASP Building Blocks

Signature + Sorts Connectives

[} = | classical negation
Terms not | default negation
(2 — if
Atoms or disjunctive or

Atoms plus connectives allow us to construct rules.

Yulia Kahl College of Charleston

Artificial Intelligence 23

Syntax: The Signature

» The building blocks of ASP programs are
> objects
» functions
» predicates (i.e., relations)
» variables

» This is know as the program signature (X).
» Functions and predicates have an arity associated with them.

» arity — a non-negative integer indicating the number of
parameters.

» Whenever necessary, we assume that our signatures contain
standard names for non-negative integers, functions, and
relations of arithmetic (e.g., +, *, <).

Yulia Kahl College of Charleston

Artificial Intelligence 24

What Is the Signature of this Program?

father(john, sam).
mother(alice, sam).
gender(john, male).
gender(sam, male).
gender(alice, female).

parent(X,Y) « father(X,Y).
parent(X,Y) <— mother(X,Y).

child(X, Y) < parent(Y, X).

Yulia Kahl College of Charleston

Artificial Intelligence 25

Signature

Y ={0O,F,P,V} where

O = {john, sam, alice, male, female}

F=0
P = {father, mother, parent, child, gender}
V= {Xv Y}

Yulia Kahl College of Charleston

Artificial Intelligence 26

Adding Sorts

» The notion of a sort in ASP is relatively new and is not a part
of some implementations; however, in my experience, it
improves the readability of the code and is pretty intuitive.

» Sorts are normally used to restrict the parameters of
predicates, as well as parameters and values of functions.
(Like types in procedural languages.)

» We can make gender a sort (male and female) and add a
person sort (john, sam, and alice) to our original program.
Then we would define relations with sorts like
father(person, person). We'll talk implementations later.

Yulia Kahl College of Charleston

Artificial Intelligence 27

Syntax: Terms

> term:
» Variables and object constants are terms.
» If t1,...,t, are terms and f is a function symbol of arity n
then f(ty,...,t,) is a term.
» Ground terms are terms containing no symbols for arithmetic
functions and no variables.
» Examples from our program:
» john, sam, and alice are ground terms;
» X and Y are terms that are variables;
» father(X,Y) is not a term.
> If a program contains natural numbers and arithmetic
functions, then both 2 + 3 and 5 are terms; 5 is a ground term
while 2 4 3 is not.

Yulia Kahl College of Charleston

Artificial Intelligence

A Bit of Nonsense

» Suppose we had in our program signature the function symbol
car:

O = {john, sam, alice, male, female}

F = {car}
P = {father, mother, parent, child, gender}
V={X,Y}

» We could make ground terms car(john), car(sam), and
car(alice) and non-ground terms car(X) and car(Y).

» We could also make ground terms such as car(car(sam)).

Yulia Kahl College of Charleston

Artificial Intelligence 29

Restricting Terms to a Sorted Signature

» We can restrict our signature by dividing our object constants
into sorts.

» Our new signature, X, would have sorts

gender = {male, female}
person = {john, sam, alice}
thing = {car(X) : person(X)}

» Predicates father, mother, parent, and child would be
restricted to sort person.

» The first parameter of gender would be restricted over person
and the second, over gender.

Yulia Kahl College of Charleston

Artificial Intelligence 30

Syntax: Atoms and Literals

» An atom is an expression of the form p(ti,...,t,) where p is
a predicate symbol of arity n and ti,...,t, are terms.

v

If the signature is sorted, these terms should correspond to
the sorts assigned to the parameters of p.

v

If p has arity O then parentheses are omitted.
Examples

v

» father(john,sam) is an atom of signatures ¥ and X,
» father(john, X) is an atom of signature X and X,
» father(john, car(sam)) is an atom over ¥ but not X

v

A literal is an atom or its negation.

Yulia Kahl College of Charleston

Artificial Intelligence 31

Syntax: Rules and Programs

A program [1 of ASP consists of a signature ¥ and a collection of
rules of the form:

lbor ...orli<« lit1,...,lm, not lpi1,..., notl,
where [s are literals of X.

Symbol not is a new logical connective called default negation;
not | is often read as “it is not believed that | is true.”

The disjunction or is also a new connective, sometimes called
epistemic disjunction. The statement /; or / is often read as "/
is believed to be true or | is believed to be true."

Yulia Kahl College of Charleston

Artificial Intelligence 32

Facts and Constraints

» The left-hand side of an ASP rule is called the head and the
right-hand side is called the body.

> A rule with an empty head is often referred to as a constraint
and written as

— /,'_‘_17 voisdmy, not Imyq, ..., not .

> A rule with an empty body is often referred to as a fact and
written as
IO or ... OI’I,'.

Yulia Kahl College of Charleston

Artificial Intelligence 33

Rules with Variables

> A rule r with variables is viewed as the set of its ground
instantiations — rules obtained from r by replacing r's
variables by ground terms of ¥ and by evaluating arithmetic
terms (e.g. replacing 2 + 3 by 5).

> The set of ground instantiations of rules of I is called the
grounding of [1.

» Program [1 with variables can be viewed simply as a
shorthand for its grounding.

Yulia Kahl College of Charleston

Artificial Intelligence 34

Example of Grounding

Given program [y with signature ¥ where

O = {a, b}
F=10
P ={p,q}
V ={X}
and rule
p(X) < q(X).

The grounding of Iy is simply two ground rules:
p(a) < q(a).

p(b) < q(b).

College of Charleston
35

Yulia Kahl

Artificial Intelligence

Satisfiability

When does a set of ground literals satisfy a rule?

bor ...orli<+ lit1,...,lm, notlpni1,..., notl,

A set S of ground literals satisfies:

1.

Yulia Kahl

lif I € S;

2. not |if 1 ¢S,
3.
4. a set of ground extended literals if S satisfies every element of

hor...orl,ifforsomel<i<n, €S,

this set;
rule r if, whenever S satisfies r's body, it satisfies r's head.

College of Charleston

Artificial Intelligence

36

Satisfiability Examples

Let r be the rule

p(a) or p(b) < q(b), ~t(c), not t(b).

Do any of these sets satisfy r?
> {-p(a),q(b),~t(c)} no
> {a(b).~t(c)} no
» (0 yes
> {p(a)} ves
> {p(b), q(b), —t(c)} yes

Yulia Kahl College of Charleston

Artificial Intelligence 37

Informal Semantics: Guiding Principles

» Program I1 can be viewed as a specification for answer sets —
sets of beliefs that could be held by a rational reasoner
associated with T1.

» We form these sets of ground literals by following these
principles:

1. Satisfy the rules of 1. In other words, believe in the head of a
rule if you believe in its body.

2. Do not believe in contradictions.

3. Adhere to the “Rationality Principle” which says: “Believe
nothing you are not forced to believe.”

Yulia Kahl College of Charleston

Artificial Intelligence

38

Basic Example

p(b) < g(a). “Believe p(b) if you believe g(a).”
q(a). “Believe g(a).”

Follow the guiding principles to compute the answer set.

Note that not every set that satisfies the rules is an answer set.

Yulia Kahl College of Charleston

Artificial Intelligence 39

Example: Classical Negation

—p(b) < —g(a). “Believe that p(b) is false if
you believe that g(a) is false.”

—q(a). “Believe that g(a) is false.”

There is no difference in reasoning about negative literals.

Yulia Kahl College of Charleston

Artificial Intelligence 40

Example: Epistemic Disjunction

p(a) or p(b). “Believe p(a) or believe p(b).”

There are two answer sets of this program.

The Rationality Principle eliminates the third possibility.

Yulia Kahl College of Charleston

Artificial Intelligence 41

Example: Reasoning by Cases

p(a) or p(b).
q(a) < p(a).
q(a) < p(b).

Ar = {p(a), q(a)} and A; = {p(b), q(a)}

Yulia Kahl College of Charleston

Artificial Intelligence 42

Example: Epistemic Disjunction Is Not XOR

A ={p(a), p(b)} is not contradictory.

To get exclusive or, we say
p(a) or p(b).

~p(a) or =p(b).

Ar = {p(a), ~p(b)} and Az = {~p(a), p(b)}.

Yulia Kahl

Artificial Intelligence

College of Charleston
43

Example: Constraints

p(a) or p(b). “Believe p(a) or believe p(b).”
— p(a). “It is impossible to believe p(a).”

The only answer set is {p(b)}.

A constraint limits the sets of beliefs an agent can have, but does
not serve to derive any new information.

Yulia Kahl College of Charleston

Artificial Intelligence 44

Example: Default Negation

Agents can make conclusions based on the absence of information.

p(a) « not g(a). “If g(a) does not belong to your set of beliefs,
then p(a) must.”

We cannot prove g(a), so we believe p(a).

Yulia Kahl College of Charleston

Artificial Intelligence 45

Example 2: Default Negation

p(a) < not g(a). “If g(a) does not belong to your set of beliefs,
then p(a) must.”

p(b) < not q(b). “If g(b) does not belong to your set of beliefs,
then p(b) must.”

q(a). “Believe g(a).”

The only answer set is {q(a),p(b)}.

Yulia Kahl College of Charleston

Artificial Intelligence 46

ASP Entailment

A program [1 entails a literal / (M |= /) if | belongs to all answer
sets of I1.

Unlike the entailment relation of classical logic, ASP’s entailment
relation is nonmonotonic. This means that addition of new
knowledge can invalidate the program’s original conclusions.

Yulia Kahl College of Charleston

Artificial Intelligence 47

Example: Nonmonotonicity

A program consisting only of rule
p(a) < not q(a)
entails p(a).

If we add fact g(a) to it, the agent has to stop believing in p(a).

Yulia Kahl College of Charleston

Artificial Intelligence 48

Answering Queries

v

A query is a conjunction or disjunction of literals.

v

The answer to a ground conjunctive query, 1 A -+ A I,, where
n>1,is

» vesif M= {h,..., I}, B
» no if there is i such that I =/,
» unknown otherwise.

v

The answer to a ground disjunctive query, l; or ... or I,
where n > 1, is

> yes if there is i such that 1 =3
» noif M={h,.... I}
» unknown otherwise.
» An answer to a query q(Xi,...,X,), where Xi,..., X, is the
list of variables occurring in g, is a sequence of ground terms
t1,...,t, such that M = q(t1, ..., ty).

Yulia Kahl College of Charleston

Artificial Intelligence

49

Example: Answer to a Query

p(a) < not g(a).

This program has answer set {p(a)}.
What does it answer to the following queries?

1. p(a)
2. q(a)
3. p(a) A q(a)
4. p(a) or q(a)
5. p(X)

Yulia Kahl College of Charleston

Artificial Intelligence 50

Example 2: Answer to a Query

» Let's make a new program by adding a rule to the previous
one:

p(a) < not q(a).
—q(X) < not q(X). “If g(X) is not believed to be true,
believe that it is false.”

» This rule is known as the Closed World Assumption because
we assume that if we do not know anything about g(X), then
it is false.

» This program has answer set {p(a), ~q(a)}.

» What does it answer to the following queries now?

p(a)

q(a)

p(a) A q(a)

p(a) or g(a)

P(X)

Yulia Kahl College of Charleston

ARl A

Artificial Intelligence 51

Formal Semantics: Answer Sets — A Two Part Definition

» The definition of answer sets has two parts.

» The first defines answer sets of programs without default
negation.

» The second explains how to remove default negation so that
we can apply the first part.

Yulia Kahl College of Charleston

Artificial Intelligence

2

Consistency

Pairs of literals of the form p(t1,...,t,) and —p(ti,...,t,) are
called contrary. A set S of ground literals is called consistent if it
contains no contrary literals.

Yulia Kahl College of Charleston

Artificial Intelligence 53

Answer Sets, Part |

Let 1 be a program not containing default negation.
An answer set of [1 is a consistent set S of ground literals such
that:

» S satisfies the rules of 1; and

» S is minimal; i.e., there is no proper subset of S which
satisfies the rules of I1.

Yulia Kahl College of Charleston

Artificial Intelligence 54

Example: Basic Application of Formal Definition

Let's apply the formal definition to our first example and check
that {qg(a), p(b)} is indeed the answer set of the following program:

p(b) + q(a).
q(a).
What about entailment and answers to queries?
> 7 q(a)
> 7 —q(a)
> 7 p(b)
> ? =p(b)

Yulia Kahl College of Charleston

Artificial Intelligence 55

Example 2

p(a) < p(b).
—p(a).
What does the program believe? Compute the answer set and use
entailment to answer queries:
> ? p(a)
> 7 =p(a)
> 7 p(b)
> ? =p(b)

Note that this example demonstrates that < is not classical
implication.

Yulia Kahl College of Charleston

Artificial Intelligence 56

Example: Empty Answer Set

p(b) < —p(a).

Does the program have an answer set?

What do we believe about —p(a)? How about p(b)?

Yulia Kahl College of Charleston

Artificial Intelligence 57

Example: Epistemic Disjunction

p(a) or p(b).

has two answer sets, {p(a)} and {p(b)}.
Does it entail p(a)?

What does the following program entail?

p(a) or p(b).
q(a) + p(a).
q(a) < p(b).

Yulia Kahl College of Charleston

Artificial Intelligence 58

Example: p(a) or —p(a) Is Not a Tautology

p(b) < —p(a).

p(b) < p(a).

p(a) or —p(a).
The addition of the last rule forces the agent to make a decision
one way or the other, instead of remaining undecided. Instead of
an empty set, we have two answer sets: {p(a), p(b)} and
{=p(a), p(b)}. What does this program entail?

Yulia Kahl College of Charleston

Artificial Intelligence 59

Example: Constraints, Revisited

p(a) or p(b).

— p(a).
We have two answer sets from the first rule, but the second rule
makes us exclude the possibility of {p(a)} because it is impossible
to satisfy an empty head if the body is satisfied.

Yulia Kahl College of Charleston

Artificial Intelligence 60

Definition of Answer Sets, Part |l

Let I be an arbitrary program and S be a set of ground literals.
By M° we denote the program obtained from I by

1. removing all rules containing not | such that / € S;
2. removing all other premises containing not.

S is an Answer Set of 1 if S is an answer set of 1°.

We refer to M° as the reduct of M with respect to S.

Yulia Kahl College of Charleston

Artificial Intelligence 61

Default Negation, Revisited
Creating a Reduct

a) < not q(a).
b) < not q(b).

p(b)
(a)-

p(
q

Find the reduct of this program w.r.t. S = {q(a), p(b)}.

Is S an answer set of the program?

Yulia Kahl College of Charleston

Artificial Intelligence 62

A Proposition for Our Intuition

Let S be an answer set of a ground ASP program T1.
(a) S satisfies every rule r € .

(b) If literal / € S then there is a rule r from [1 such that the body
of r is satisfied by S and / is the only literal in the head of r
satisfied by S. (It is often said that rule r supports literal /.)

The first part of the proposition guarantees that answer sets of a
program satisfy its rules; the second guarantees that every element
of an answer set of a program is supported by at least one of its
rules.

Yulia Kahl College of Charleston

Artificial Intelligence 63

Example: No Answer Set

p(a) « not p(a).

It is silly to ask an agent to believe in something simply because it
does not believe it.

Consider the possible sets that we can create from the signature of
the program. They are S; = {}, S2 = {p(a)}, S3 = {—p(a)}, and
Ss = {p(a),—p(a)}. None of these are answer sets.

Note that, thanks to our proposition, we do not really even need to
consider S3 because —p(a) is not found in the head of any rule;
thus, we know that there is no support for it. We can also ignore
S4 because it is inconsistent. The other two sets are tested by
finding the reduct of the program w.r.t. those sets.

Yulia Kahl College of Charleston

Artificial Intelligence 64

Example 2: No Answer Set

Other inconsistent programs (programs that have no answer sets)

include
p(a).
—p(a).
and
p(a).
« p(a).

Yulia Kahl College of Charleston

Artificial Intelligence 65

Exercise 1

p(a) < not p(a).
p(a).

v

What are the possible, consistent sets that we can create from
the signature of this program?

v

Find the reduct w.r.t. to each of these sets.

v

What is the answer set of this program?

v

Can we be smarter about our search for the answer set?

Yulia Kahl College of Charleston

Artificial Intelligence 66

Exercise 2

p(a) < not p(b).
p(b) < not p(a).

Find the answer set(s), if they exist.
Hint: Use the proposition to reduce the number of candidate sets.
Then find the reduct w.r.t. those candidates.

Yulia Kahl College of Charleston

Artificial Intelligence 67

Exercise 3

p(a) < not p(b).
p(b) < not p(a).
« p(b).

Find the answer set(s), if they exist.

Yulia Kahl College of Charleston

Artificial Intelligence 68

Exercise 4

Find the answer set(s), if they exist.

Yulia Kahl College of Charleston

Artificial Intelligence 69

Exercise 5

Find the answer set(s), if they exist.

Yulia Kahl College of Charleston

Artificial Intelligence 70

Exercise 6

Find the answer set(s), if they exist.

Yulia Kahl College of Charleston

Artificial Intelligence 71

Example: Using the Notion of Support to Find the Answer
Sets

s(b).

r(a).

p(a) or p(b).

q(X) < p(X), r(X), not s(X).

After grounding the program has the form

s(b).
r(a).

p(a) or p(b).

a(a) p(a), r(a), not s(a).
a(b) « p(b), r(b), not s(b).

Find the answer sets and check that they are correct using the
definition.

Yulia Kahl College of Charleston

Artificial Intelligence 72

“Word Problems”

compae Comes | WEWOLETTER

Any time we go from a natural
language specification to a -
s 2N
formal language, we face e s | & e e
challenges. We are all familiar
with this picture or at least
this effect. ~

Yulia Kahl College of Charleston

Artificial Intelligence 18

It Seems Easy

Let's translate the following statement into ASP:
“All professors are adults.”

adult(X) < prof (X).

If we add a list of professors, this program would be able to figure
out that they are adults.
What should it conclude if we tell it that Alice is not an adult?

Yulia Kahl College of Charleston

Artificial Intelligence 74

We Have Choices

Here are two ways in which we might teach the program what we
want.

adult(X) < prof (X).
adult(X) or —adult(X).
prof (X) or —prof (X).

adult(X) < prof (X).
—prof (X) < —adult(X).

If we add prof (john) and —adult(alice), both programs have the
same answer set:

{prof (john), adult(john), —~prof (alice), —adult(alice)}.

What are the answer sets of the programs without the facts?

Yulia Kahl College of Charleston

Artificial Intelligence 75

Representation is an Art

» Throughout the book, we'll try to point out qualities that we
think a good program should have under particular sets of
circumstances.

» Develop your taste.

» Pay attention to elegance.

» Ask yourself what the program knows at any given point.

> Are its replies intuitive?
> Is the code elaboration tolerant?

Yulia Kahl College of Charleston

Artificial Intelligence 76

Properties of ASP Programs

We won't go into the details, but note these two things.

1. There is a property of ASP programs called local
stratification. If we can show that a program is locally
stratified, we can learn useful things about it.

2. There is a simple algorithm for removing classical negation
and constraints from a program, so answer set solving
algorithms can be devised for programs without negation and
constraints and works just fine.

Yulia Kahl College of Charleston

Artificial Intelligence s

	Intro to the Logic-Based Approach to AI
	Language Choice
	Simple Knowledge Base Example
	History: A Part of the Big Picture

	Motivation for ASP
	Syntax and Semantics of ASP
	Syntax
	Informal Semantics
	Formal Semantics
	Translating from Natural Language
	Properties of ASP Programs

