
Table of Contents I

Modeling Dynamic Domains
Blocks World: An Example of a Dynamic World
A General Solution

AL Syntax
AL Semantics

Examples
The Briefcase Domain
The Blocks World Revisited

Concurrency
Temporal Projection

Yulia Kahl College of Charleston

Artificial Intelligence 1

Reading

I Read Chapter 8, Modeling Dynamic Domains, in the KRR
book.

Yulia Kahl College of Charleston

Artificial Intelligence 2

Things Change with Time

I We want our agents to hold their own in a changing
environment.

I To do this, they need to be able to predict the effects of
complex actions.

I And for that, they need to know about actions and their
effects.

Yulia Kahl College of Charleston

Artificial Intelligence 3

Overview

I Let’s start by looking at a simple example of an agent trying
to act in a changing environment.

I The plan is to flush out some of the issues that exist in
designing such an agent.

I Next, we’ll look at a formal theory of actions and change.

I The theory views the world as a dynamic system whose states
are changed by actions.

I Language AL describes these systems.

I AL has a direct translation into ASP.

Yulia Kahl College of Charleston

Artificial Intelligence 4

Early Research
This is Shakey the robot built by SRI International (currently the
Stanford Research Institute). It builds with blocks.

Yulia Kahl College of Charleston

Artificial Intelligence 5

Blocks World: An Example of a Dynamic World

I Building Shakey, and getting it to plan its actions based on a
goal given it by humans brought to light many challenges
involved in building and programming such a machine.

I Hardware challenges:
I creating a robotic arm
I creating a robotic eye
I (We now know that much of those challenges are software

challenges too.)

I Software challenges:
I How do we represent knowledge?
I How do we teach a robot to use this knowledge to make plans?
I How do we teach a robot to evaluate if its execution of a plan

was successful?
I How should the robot re-plan if there are changes?

Yulia Kahl College of Charleston

Artificial Intelligence 6

Blocks World: An Example of a Dynamic World

I Building Shakey, and getting it to plan its actions based on a
goal given it by humans brought to light many challenges
involved in building and programming such a machine.

I Hardware challenges:
I creating a robotic arm
I creating a robotic eye
I (We now know that much of those challenges are software

challenges too.)

I Software challenges:
I How do we represent knowledge?
I How do we teach a robot to use this knowledge to make plans?
I How do we teach a robot to evaluate if its execution of a plan

was successful?
I How should the robot re-plan if there are changes?

Yulia Kahl College of Charleston

Artificial Intelligence 6

Blocks World: An Example of a Dynamic World

I Building Shakey, and getting it to plan its actions based on a
goal given it by humans brought to light many challenges
involved in building and programming such a machine.

I Hardware challenges:
I creating a robotic arm
I creating a robotic eye
I (We now know that much of those challenges are software

challenges too.)

I Software challenges:
I How do we represent knowledge?
I How do we teach a robot to use this knowledge to make plans?
I How do we teach a robot to evaluate if its execution of a plan

was successful?
I How should the robot re-plan if there are changes?

Yulia Kahl College of Charleston

Artificial Intelligence 6

Shakey Only Reasoned about Blocks

I Shakey used LISP and a theorem-proving planner called
STRIPS.

I Its planning was domain-specific.

I This was the case for many planners that followed.

I We’ve learned a lot since then (thanks, in part, to Shakey).

I Recently, I saw the Atlas robot stacking boxes.
https://www.youtube.com/watch?v=rVlhMGQgDkY

Yulia Kahl College of Charleston

Artificial Intelligence 7

https://www.youtube.com/watch?v=rVlhMGQgDkY

The Action Language Approach

I The theory of actions is developed independent of the domain
the agent will function in.

I Teach the reasoner about the laws of the world is separate
from teaching it the various tasks it will perform in the world.

I This does not mean that we can’t use domain-specific
knowledge to help it plan, etc.

Yulia Kahl College of Charleston

Artificial Intelligence 8

Blocks World in ASP

Let’s create a domain-specific blocks world representation in ASP
with an eye on a general solution.

While we do this, let’s

I consider the types of knowledge we need to represent,

I develop a vocabulary for talking about dynamic domains, and

I get motivated for the rigorous formalism.

Yulia Kahl College of Charleston

Artificial Intelligence 9

Defining a Version of the Problem

I We have a robotic arm that can manipulate configurations of
same-sized cubic blocks on a table.

I It can move unoccupied blocks, one at a time, onto other
unoccupied blocks or onto the table.

I At any given step, a block can be in at most one location.

I Towers can be as big as we want.

I The table is large enough to fit all blocks, even if they are not
stacked.

I We do not take into account spacial relationships of towers,
just which blocks are on top of each other and which blocks
are on the table.

Yulia Kahl College of Charleston

Artificial Intelligence 10

Agent Specifications

Example: Given info that describes this:

2

3

0

4

1

7

6

5

t

and actions that occur (put 2 on the table, put 7 on 2), know that
this is what the configuration looks like now:

3

0

4

1

6

5
t

7

2

Yulia Kahl College of Charleston

Artificial Intelligence 11

Objects and Relations

I What are the objects that the agent will be reasoning about?

I What are the relations between them?

Yulia Kahl College of Charleston

Artificial Intelligence 12

Changing Configurations

We can think of the initial configuration as a collection of terms
that describe positions of blocks:

σ0 = {on(b0, t), on(b3, b0), on(b2, b3), on(b1, t), on(b4, b1),

on(b5, t), on(b6, b5), on(b7, b6)}.

Then, after action put(b2, t) is performed, the configuration
changes to

σ1 = {on(b0, t), on(b3, b0), on(b1, t), on(b4, b1), on(b2, t),

on(b5, t), on(b6, b5), on(b7, b6)}.

Yulia Kahl College of Charleston

Artificial Intelligence 13

The Complete Trajectory

Once action put(b7, b2) is performed, we get the next
configuration:

σ2 = {on(b0, t), on(b3, b0), on(b1, t), on(b4, b1), on(b2, t),

on(b5, t), on(b6, b5), on(b7, b2)}.

The execution of a sequence of actions of type put(B, L) in
configuration σ0 determines the system’s trajectory

〈σ0, put(b2, t), σ1, put(b7, b2), σ2〉

which describes its behavior.

Yulia Kahl College of Charleston

Artificial Intelligence 14

A Generic Trajectory

In general, by a trajectory of a dynamic system we mean a
sequence

〈σ0, a0, σ1, . . . , σn−1, an−1, σn〉

where
〈σi , ai , σi+1〉

is a state-action-state transition of the system.
(picture)

Yulia Kahl College of Charleston

Artificial Intelligence 15

Describing our System’s Trajectory — Vocabulary

I Use integers from 0 to a finite n to denote the steps of the
corresponding trajectories.

I Distinguish between
I fluents — properties that can be changed by actions
I statics — properties that cannot

In our example, we chose to view the property of a block being
on top of a location as a fluent and the state of something
being a block as a static. (In SPARC, statics are often sorts.)

Yulia Kahl College of Charleston

Artificial Intelligence 16

Describing our System’s Trajectory — Relations

I holds(#fluent,#step) describes what fluents are true at a
given step.

I occurs(#action,#step) describes what action occurred at
a given step.

I In our example, we define
I holds(on(B, L), I)

“block B is on location L at step I ;”
I occurs(put(B, L), I),

“block B was put on location L at step I .”

I Note that we have reified actions and fluents.

Yulia Kahl College of Charleston

Artificial Intelligence 17

Declarations

#const n = 2.

sorts

#block = [b][0..7].

#location = #block + {t}.

#fluent = on(#block(X),#location(Y)):X!=Y.

#action = put(#block(X),#location(Y)):X!=Y.

#step = 0..n.

predicates

holds(#fluent,#step).

occurs(#action,#step).

Yulia Kahl College of Charleston

Artificial Intelligence 18

Initial Configuration

%% holds(on(B,L),I): a block B is on location L at step I.

%% This is a particular intial configuration.

%% It can be changed at will:

holds(on(b0,t),0).

holds(on(b3,b0),0).

holds(on(b2,b3),0).

holds(on(b1,t),0).

holds(on(b4,b1),0).

holds(on(b5,t),0).

holds(on(b6,b5),0).

holds(on(b7,b6),0).

%% If block B is not known to be on location L at step 0,

%% then we assume it is not.

-holds(on(B,L),0) :- not holds(on(B,L),0).

Yulia Kahl College of Charleston

Artificial Intelligence 19

Defining BW Laws: Direct Effect of Action put(B , L)

Effect of action put(B, L):

% Putting block B on location L at step I

% causes B to be on L at setp I + 1.

holds(on(B,L),I+1) :- occurs(put(B,L),I).

Yulia Kahl College of Charleston

Artificial Intelligence 20

Defining BW Laws: Indirect Effect of Action put(B , L)

Indirect effects can often be expressed as relationships between
fluents.

%% A block cannot be in two locations at once:

-holds(on(B,L2),I) :- holds(on(B,L1),I),

L1 != L2.

%% Only one block can be set directly on top of another:

-holds(on(B2,B),I) :- #block(B), % not the table

holds(on(B1,B),I),

B1 != B2.

Yulia Kahl College of Charleston

Artificial Intelligence 21

Testing Laws

Given the declarations, initial configuration, and three laws plus
occurs(put(b2,t),0).

what does our program know?

I Query holds(on(b2,t),1) returns yes. So far so good.

I Query hold(on(b0,t),1) returns unknown, even though we
expect it to still be true.

I Why do we expect it to be true?

Yulia Kahl College of Charleston

Artificial Intelligence 22

The Inertia Axiom

Normally things stay as they are.

% Inertia:

holds(F,I+1) :- holds(F,I),

not -holds(F,I+1).

-holds(F,I+1) :- -holds(F,I),

not holds(F,I+1).

This is a typical representation of defaults. Note that our states
are complete and the rule has no weak exceptions, so we don’t
need ab.

Yulia Kahl College of Charleston

Artificial Intelligence 23

Are We Done?

I Let’s tell the agent that something impossible happened.
occurs(put(b6),t),0).

I Since b6 was occupied, that action was not allowed.

I Our program thinks that b6 is now on the table and that b7 is
still on top.

I We didn’t assume that our robot was that good!

I Let’s teach the agent which actions are not allowed.

Yulia Kahl College of Charleston

Artificial Intelligence 24

Defining BW Laws: Impossible Actions

%% It is impossible to move an occupied block:

-occurs(put(B,L),I) :- holds(on(B1,B),I).

%% It is impossible to move a block onto

%% an occupied block:

-occurs(put(B1,B),I) :- #block(B),

holds(on(B2,B),I).

Yulia Kahl College of Charleston

Artificial Intelligence 25

Now our program computes what we want. It knows

I The direct effects of actions put(B, L).

I Indirect effects of actions put(B, L).

I The Inertia Axiom: normally things stay as they are.

I Which actions should not be allowed.

Let’s add a new fluent that is described in terms of the fluents we
have already.

Yulia Kahl College of Charleston

Artificial Intelligence 26

Defining above(B , L)

We add the new fluent to our fluent sort:

#fluent = on(#block(X),#location(Y)):X!=Y +

above(#block(X),#location(Y)):X!=Y.

and add the following rules to define it:

% Block B is located above location L:

holds(above(B,L),I) :- holds(on(B,L),I).

holds(above(B,L),I) :- holds(on(B,B1),I),

holds(above(B1,L),I).

%% CWA for above:

-holds(above(B,L),I) :- not holds(above(B,L),I).

Yulia Kahl College of Charleston

Artificial Intelligence 27

Not a No-brainer

If we add these rules to our program and also add

:- -holds(above(b2,b0),1).

Since we put b2 on the table, our program should have no answer
set. Instead, it has two!

In one, holds(above(b2, b0), 1) is true because of Inertia, and in
the other ¬holds(above(b2, b0), 1) holds because of CWA!

Yulia Kahl College of Charleston

Artificial Intelligence 28

Two Types of Fluents

Note that above(B, L) is completely defined in terms of on(B, L)
and so should not be made subject to Inertia. As on changes, so
does above.

We solve our problem by splitting fluent into two types: inertial
and defined and having Inertia apply only to inertial fluents.

Yulia Kahl College of Charleston

Artificial Intelligence 29

Updated Declarations

#inertial_fluent = on(#block(X),#location(Y)):X!=Y.

#defined_fluent = above(#block(X),#location(Y)):X!=Y.

#fluent = #inertial_fluent + #defined_fluent.

Yulia Kahl College of Charleston

Artificial Intelligence 30

Updated Inertia

% Inertia:

holds(F,I+1) :- #inertial_fluent(F),

holds(F,I),

not -holds(F,I+1).

-holds(F,I+1) :- #inertial_fluent(F),

-holds(F,I),

not holds(F,I+1).

Yulia Kahl College of Charleston

Artificial Intelligence 31

A General Solution

I Let’s step back and try to see the laws of the blocks world in
more general terms.

I One possible way to model a dynamic system is by a
transition diagram — a directed graph whose

I nodes correspond to physically possible states of the domain
I arcs are labeled by actions.

I Such models are called Markovian.

Yulia Kahl College of Charleston

Artificial Intelligence 32

Transitions

A transition 〈σ0, {a1, . . . , ak}, σ1〉 of the diagram, where
{a1, . . . , ak} is a set of actions executable in state σ0, indicates
that σ1 may be a result of simultaneous execution of these actions
in σ0.

Our representation guarantees that the effect of an action depends
only on the state in which that action was executed. The way in
which this state was reached is irrelevant.

Yulia Kahl College of Charleston

Artificial Intelligence 33

Transition Diagrams

I A path 〈σ0, a0, σ1, . . . , an−1, σn〉 of the diagram represents a
possible trajectory of the system with initial state σ0 and final
state σn.

I The transition diagram for a system contains all possible
trajectories of that system.

I These diagrams get complicated quickly.

I Finding a concise and mathematically accurate description of
the diagrams has been a subject of research for over 30 years.

I Things get even more complicated because of the need to
specify what is not changed by actions.

Yulia Kahl College of Charleston

Artificial Intelligence 34

The Frame Problem

As described by John McCarthy, the Frame Problem is the
problem of finding a concise and accurate representation in a
formal language of what is not changed by actions.

Notice that in our blocks world problem, we showed a solution to
the Frame Problem. We simply reduced it to finding a
representation of the Inertia Axiom — a default that states that
things normally stay as they are.

Yulia Kahl College of Charleston

Artificial Intelligence 35

Causal Laws

Causal effects of actions can be defined by causal laws of the form:

a causes f if p0, . . . , pm.

The law says that action a, executed in a state satisfying conditions
p0, . . . , pm, causes fluent f to become true in the resulting state.

We saw the use of such laws in our blocks-world example when we
defined the effect of action
put(Block, Location).

Yulia Kahl College of Charleston

Artificial Intelligence 36

Example: Transition Diagram for a Causal Law

F = {f, g} A = {a}
a causes ¬f if f

!0 !1

f
g

¬f
 ga a

!2 !3

 f
¬g

¬f
¬ga a

Yulia Kahl College of Charleston

Artificial Intelligence 37

State Constraints

Indirect effects of actions can be defined by state constraints of the
form:

f if p0, . . . , pm

which say that every state satisfying conditions p0, . . . , pm must
also satisfy f .

Finding concise ways for defining these effects is called the
Ramification Problem.

Together with the Frame Problem discussed above, the
Ramification Problem caused substantial difficulties for researchers
in their attempts to precisely define transitions of discrete dynamic
systems.

Yulia Kahl College of Charleston

Artificial Intelligence 38

Example: Transition Diagram Including a State Constraint

F = {f, g, h} A = {a}
a causes ¬f if f

¬h if ¬f

!0

!1

f
g
h

¬f
 g
¬h

a

a
!2

 f
 g
¬h

a

!3

!5

 f
¬g
 h

¬f
¬g
¬h

a

a
!4

 f
¬g
¬h

a

Yulia Kahl College of Charleston

Artificial Intelligence 39

Executability Conditions

Executability conditions are represented by laws of the form

impossible a1 . . . ak if p0, . . . , pm

which say that it is impossible to execute actions a1 . . . ak
simultaneously in a state satisfying conditions p0, . . . , pm.

As an example, let’s add rule

impossible a if ¬f

which says that it is impossible to perform action a in any state
which contains fluent ¬f .

Yulia Kahl College of Charleston

Artificial Intelligence 40

Example: Transition Diagram Including an Executability
Condition

F = {f, g, h} A = {a}
a causes ¬f if f

¬h if ¬f
impossible a if ¬f

!0

!1

f
g
h

¬f
 g
¬h

a

!2

 f
 g
¬h

a

!3

!5

 f
¬g
 h

¬f
¬g
¬h

a

!4

 f
¬g
¬h

a

Yulia Kahl College of Charleston

Artificial Intelligence 41

Action Languages

Action languages are formal models of parts of natural language
used for describing the behavior of dynamic systems.

Looking at it another way, they are tools for describing transition
diagrams.

Yulia Kahl College of Charleston

Artificial Intelligence 42

AL Syntax – definitions

I Action language AL is parametrized by a sorted signature
containing three special sorts:

I statics,
I fluents and
I actions.

I The fluents are partitioned into two sorts: inertial and defined.

I domain properties — statics and fluents

I domain literal — domain property or its negation. (We can
have fluent literals and static literals.)

Yulia Kahl College of Charleston

Artificial Intelligence 43

AL Syntax – Complete and Consistent

I A set S of domain literals is called complete if for any
domain property p either p or ¬p is in S .

I S is called consistent if there is no p such that p ∈ S and
¬p ∈ S .

Yulia Kahl College of Charleston

Artificial Intelligence 44

Statements of AL

Language AL allows the following types of statements:

1. Causal Laws:
a causes lin if p0, . . . , pm

2. State Constraints:
l if p0, . . . , pm

3. Executability Conditions:

impossible a0, . . . , ak if p0, . . . , pm

where a is an action, l is an arbitrary domain literal, lin is a literal
formed by an inertial fluent, p0, . . . , pm are domain literals, k ≥ 0,
and m ≥ −1. Moreover, no negation of a defined fluent can occur
in the heads of state constraints.

Yulia Kahl College of Charleston

Artificial Intelligence 45

System Description

A system description of AL is a collection of statements of AL.

Yulia Kahl College of Charleston

Artificial Intelligence 46

AL Semantics

I A system description serves as a specification of a transition
diagram of a dynamic system.

I It describes all possible trajectories of the system.

I So, to define the meaning of AL statements, we need to
define the states and legal transitions of the diagram.

Yulia Kahl College of Charleston

Artificial Intelligence 47

Defining States

I If we didn’t have to worry about defined fluents, we could
define states as

a complete and consistent set of domain literals
satisfying the system’s state constraints

I Unfortunately, this is not good enough to give defined fluents
their intended meaning.

Yulia Kahl College of Charleston

Artificial Intelligence 48

Example: The Problem with Defined Fluents

Suppose we have two state constraints:

h if f

h if ¬g

where h is a defined fluent and f and g are inertial.

Let’s consider the possible sets as candidate states.
(See board.)
Notice that set {¬f , g , h} doesn’t seem to satisfy the definition of
h since the truth of h doesn’t follow from any of its defining rules.
However, it is complete and consistent.

Yulia Kahl College of Charleston

Artificial Intelligence 49

The Solution

I To capture the intended meaning of defined fluents, we turn
to ASP.

I To see whether a candidate set is a state, we create an ASP
program by:

1. Taking all the state constraints and replacing the if in them
by a ←. (And adding a period.)

2. Adding the CWA for each defined fluent.
3. Adding all the statics and inertial fluents from the candidate

set to the program as facts.

I A complete and consistent set of domain literals is a state of
the transition diagram defined by a system description if it is
the unique answer set of the program thus created.

(back to example)

Yulia Kahl College of Charleston

Artificial Intelligence 50

Transitions

I The definition of the transition relation of a diagram is also
based on the notion of the answer set of a logic program.

I To describe a transition 〈σ0, a, σ1〉 we construct a program
Π(SD, σ0, a) consisting of

1. logic programming encodings of system description SD,
2. initial state σ0, and
3. set of actions a,

such that answer sets of this program determine the states the
system can move into after the execution of a in σ0.

Yulia Kahl College of Charleston

Artificial Intelligence 51

Definition of the Encoding of a System Description

I To define the encoding of a given system description, we
define the encoding of its signature and its statements.

I Let’s look at this step by step.
(Definition 8.4.5 — in detail on board)

Yulia Kahl College of Charleston

Artificial Intelligence 52

Encoding the Initial State and the Occurrence of Actions

To continue with our definition of transition 〈σ0, a, σ1〉 we describe
the two remaining parts of program Π(SD, σ0, a) — the encoding
h(σ0, 0) of initial state σ0 and the encoding occurs(a, 0) of
action(s) a:

h(σ0, 0) =def {h(l , 0) : l ∈ σ0}

and
occurs(a, 0) =def {occurs(ai , 0) : ai ∈ a}.

(example on board)

Yulia Kahl College of Charleston

Artificial Intelligence 53

Definition of Transition

Let a be a nonempty collection of actions and σ0 and σ1 be states
of the transition diagram T (SD) defined by a system description
SD. A state-action-state triple 〈σ0, a, σ1〉 is a transition of
T (SD) iff Π(SD, σ0, a) has an answer set A such that
σ1 = {l : h(l , 1) ∈ A}.

We now have a program that can predict what the state of the
world will be once an action is performed in the initial state.

Yulia Kahl College of Charleston

Artificial Intelligence 54

Applying the Theory

To model a dynamic domain, we need to describe what actions
cause what effects under what conditions. Thus, we need to
identify:

1. the objects, properties, and actions of the domain;

2. the relationships between the properties;

3. the executability conditions and causal effects of actions.

In other words, we must come up with an AL system description
for our domain.

Yulia Kahl College of Charleston

Artificial Intelligence 55

The Briefcase Domain: Story

Consider a briefcase with two clasps. We have an action, toggle,
which moves a given clasp into the up position if the clasp is down,
and vice versa. If both clasps are in the up position, the briefcase
is open; otherwise, it is closed. Create a (simple) model of this
domain.

Yulia Kahl College of Charleston

Artificial Intelligence 56

Briefcase Domain: Diagram

¬up(1)
 up(2)
¬open

up(1)
up(2)
open

¬up(1)
¬up(2)
¬open

 up(1)
¬up(2)
¬open

toggle(2)toggle(1)

toggle(1)toggle(2)

toggle(1), toggle(2)

toggle(1), toggle(2)

Yulia Kahl College of Charleston

Artificial Intelligence 57

Briefcase Domain: Signature

I sort clasp = {1, 2}
I inertial fluent up(C) which holds iff clasp C is up

I defined fluent open which holds iff both clasps are up

I action toggle(C) which toggles clasp C .

Yulia Kahl College of Charleston

Artificial Intelligence 58

Briefcase Domain: System Description

I The system description Dbc of our domain consists of axioms:

toggle(C) causes up(C) if ¬up(C)
toggle(C) causes ¬up(C) if up(C)
open if up(1), up(2)

where C ranges over the sort clasp.

I First two contain variables, so are not actual laws, but
schemas.

I Individual laws can be obtained from schemas by grounding
the variables, so we actually have five laws.

Yulia Kahl College of Charleston

Artificial Intelligence 59

Briefcase: States

I To check which combinations of literals constitute states, we
look at the possible complete and consistent sets that comply
with our requirement that they be unique answer sets of a
program constructed from rules for defined fluents and facts
for inertial fluents and statics.

I Our only defined fluent is open so the rules are:

open← up(1), up(2).

¬open← not open.

I Is {¬up(1), up(2),¬open} a state?

I Is {¬up(1), up(2), open}?

Yulia Kahl College of Charleston

Artificial Intelligence 60

Briefcase: Transitions

I To define transitions, we construct a program using the
definition of the encoding of Π(SD).

I We’ll call our system description Dbc , so our program will be
called Π(Dbc).

I Since we’ll be using SPARC, our domain signature will look a
little different, but it is actually more conducive to
representing sorts so, hopefully, it will be straightforward.

(ASP printout for direct translation.)

Yulia Kahl College of Charleston

Artificial Intelligence 61

Briefcase: Declarations

#const n = 1.

sorts

#clasp = {1,2}.

#inertial_fluent = up(#clasp).

#defined_fluent = {open}.

#fluent = #inertial_fluent + #defined_fluent.

#action = toggle(#clasp).

#step = 0..n.

predicates

holds(#fluent,#step).

occurs(#action,#step).

Yulia Kahl College of Charleston

Artificial Intelligence 62

Briefcase: Causal Laws

rules

%% toggle(C) causes up(C) if -up(C)

holds(up(C), I+1) :- occurs(toggle(C),I),

-holds(up(C), I).

%% toggle(C) causes -up(C) if up(C)

-holds(up(C), I+1) :- occurs(toggle(C),I),

holds(up(C), I).

Yulia Kahl College of Charleston

Artificial Intelligence 63

Briefcase: State Constraint

%% open if up(1), up(2).

holds(open, I) :- holds(up(1),I),

holds(up(2),I).

There are no executability conditions, so we’re done with the part
of the encoding which is unique to this system description.

Yulia Kahl College of Charleston

Artificial Intelligence 64

Briefcase: Rules for All Domains

%% CWA for Defined Fluents

-holds(F,I) :- #defined_fluent(F),

not holds(F,I).

%% General Inertia Axiom

holds(F,I+1) :- #inertial_fluent(F),

holds(F,I),

not -holds(F,I+1).

-holds(F,I+1) :- #inertial_fluent(F),

-holds(F,I),

not holds(F,I+1).

%% CWA for Actions

-occurs(A,I) :- not occurs(A,I).

Yulia Kahl College of Charleston

Artificial Intelligence 65

Comparing Program and Diagram

I Now that we’ve seen our program, let’s compare it to the
transition diagram for the briefcase domain.

I To see if

〈{¬up(1), up(2),¬open}, toggle(1), {up(1), up(2), open}〉

is a valid transition, we add the description of the initial state
and the occurs statement for the action to our program, and
see whether it produces the correct answer set.

I Testing two parallel actions simply requires two occurs
statements.

I Note that we do not need to list defined fluents to describe
our initial state because their values will be computed
automatically.

Yulia Kahl College of Charleston

Artificial Intelligence 66

BW: Signature

The signature of Dbw consists of:

I sort block = {b0 . . . b7},
I sort location = {t} ∪ block,

I inertial fluent on(block, location),

I defined fluent above(block, location) and

I action put(block, location).
We assume that put(B, L) is an action only if B 6= L.

Yulia Kahl College of Charleston

Artificial Intelligence 67

BW: System Description

The laws of the blocks world are

1. put(B, L) causes on(B, L)

2. ¬on(B, L2) if on(B, L1), L1 6= L2

3. ¬on(B2,B) if on(B1,B),B1 6= B2

4. above(B, L) if on(B, L)

5. above(B, L) if on(B,B1), above(B1, L)

6. impossible put(B, L) if on(B1,B)

7. impossible put(B1,B) if on(B2,B)

where (possibly indexed) Bs and Ls stand for blocks and locations,
respectively.

Let’s translate. (Class exercise.)

Yulia Kahl College of Charleston

Artificial Intelligence 68

Concurrent Actions

I The idea of concurrency is built into the language, so no extra
effort is needed on that front.

I However, when working with concurrent actions, we need to
be careful to consider side-effects and additional restrictions.

Yulia Kahl College of Charleston

Artificial Intelligence 69

Two-Arm Domain

I Suppose we have two robotic arms capable of avoiding
collisions.

I This means that two blocks can be moved simultaneously.

I What would happen if both arms moved the same block to
two separate locations? e.g. occurs(put(b2, t), 0) and
occurs(put(b2, b4), 0)

I What about occurs(put(b2, t), 0) and occurs(put(b7, b2), 0)?

Yulia Kahl College of Charleston

Artificial Intelligence 70

Two-Arm Domain — Preventing Simultaneous Actions

Let’s teach the system that actions which put B1 on B2 and
simultaneously move B2 are impossible:

impossible put(B1, L), put(B2,B1).

Translating into SPARC we get

-occurs(put(B1,L),I) | -occurs(put(B2,B1),I).

Yulia Kahl College of Charleston

Artificial Intelligence 71

Temporal Projection

I Temporal Projection is the task of predicting the values of
fluents after the execution of a sequence of actions.

I Because we have an ASP program that can compute the
resulting states for us, we can already do temporal projection.

I We simply add the sequence of actions that we want to know
the results of to the program, and let it compute the answer
set.

occurs(a0, 0).
...

occurs(an−1, n − 1).

I Fluents (and statics) that hold at step n describe the resulting
state.

Yulia Kahl College of Charleston

Artificial Intelligence 72

	Modeling Dynamic Domains
	Blocks World: An Example of a Dynamic World
	A General Solution
	Examples
	Concurrency
	Temporal Projection

