
Table of Contents I

Creating a Knowledge Base
Basic Family Relationships
Defining Orphans
Defining Ancestors
Reasoning about Electrical Circuits
Hierarchical Information and Inheritance

Yulia Kahl College of Charleston

Artificial Intelligence 1

Reading

I Read Chapter 4 in Knowledge Representation, Reasoning and
the Design of Intelligent Agents by Gelfond and Kahl.

Yulia Kahl College of Charleston

Artificial Intelligence 2

Creating a Knowledge Base

The collection of statements about the world we choose to give the
agent is called the knowledge base.
When creating a knowledge base, it’s important to

I model the domain with relations that ensure a high degree of
elaboration tolerance;

I know the difference between knowledge representation of
closed vs. open domains;

I Can we assume our information about a relation is complete?
I If we can’t, what kinds of assumptions can we make?

I represent commonsense knowledge along with expert
knowledge;

I exploit recursion and hierarchical structure.

Yulia Kahl College of Charleston

Artificial Intelligence 3

Back to the Family Example

Let’s implement the family example from Chapter 1 in SPARC:

sorts

#person = {john, sam, alice}.

#gender = {male, female}.

predicates

father(#person,#person).

mother(#person,#person).

gender_of(#person,#gender).

parent(#person,#person).

child(#person,#person).

Yulia Kahl College of Charleston

Artificial Intelligence 4

Back to the Family Example, cont.

rules

father(john,sam).

mother(alice,sam).

gender_of(john,male).

gender_of(alice,female).

gender_of(sam,male).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

child(X,Y) :- parent(Y,X).

Yulia Kahl College of Charleston

Artificial Intelligence 5

New Knowledge

Suppose John and Alice had a baby boy named Bill.
Let’s add Bill to our list of persons, and add facts about his
mother and father.

sorts

#person = {john, alice, sam, bill}.

predicates

...

rules

...

father(john,bill).

mother(alice,bill).

gender_of(bill,male).

Let’s add relation brother(X ,Y).

Yulia Kahl College of Charleston

Artificial Intelligence 6

What’s wrong with this?

Let’s add brother(#person,#person) to our list of predicates
and then add

brother(X,Y) :- gender_of(X,male),

father(F,X),

father(F,Y),

mother(M,X),

mother(M,Y).

Our agent thinks that you can be your own brother.

Let’s add X!=Y to our premises.

Yulia Kahl College of Charleston

Artificial Intelligence 7

Hidden Knowledge

A very large part of our knowledge is so deeply engrained in us
that we do not normally think about it.

Yulia Kahl College of Charleston

Artificial Intelligence 8

Representing Negative Information

If we ask whether Alice is Bill’s father or if Sam is Bill’s father, we
would want our agent to answer “no”, but we haven’t taught it to
do so yet.
Let’s tell our agent that females can’t father children and that a
person can have only one father.

-father(X,Y) :- gender_of(X,female).

-father(X,Y) :- father(Z,Y),

X != Z.

Yulia Kahl College of Charleston

Artificial Intelligence 9

Safety

If we were using straight ASP (without sorts), we would have run
into a problem here. Our solver would have complained about the
second rule being unsafe.

Broadly, a rule is unsafe if it contains an unsafe variable. An
unsafe variable is one that does not occur in a literal in the body
that is neither built-in nor preceded by default negation.

To make variables safe, we normally add sort information into the
rule, so we end up having to add a sort such as person whether we
use SPARC or not, and we have to add it to every rule that might
be unsafe.

Yulia Kahl College of Charleston

Artificial Intelligence 10

The New Guy

I Let’s add a new person to our program named Bob.

I What can we assume about John being Bob’s father?

I What does our agent assume?

Yulia Kahl College of Charleston

Artificial Intelligence 11

Adding the CWA for father

If we wanted our agent to assume that if we did not tell it that
John was Bob’s dad, it should assume that he is not, we can add
the closed world assumption for father .

-father(X,Y) :- not father(X,Y).

Yulia Kahl College of Charleston

Artificial Intelligence 12

Orphans Example

What do we know?

I We have a list of people.

I We have a complete list of children.

I For each child, we have the names of their parents.

I We have a complete record of deaths of people in our KB.

Yulia Kahl College of Charleston

Artificial Intelligence 13

What Is an Orphan?

How can we teach our program the notion of orphan?

There are two definitions in the dictionary. Let’s pick the one that
says that for someone to be considered an orphan, both their
mother and their father have to be dead.

The program is at
http://pages.suddenlink.net/ykahl/s_orphans.txt

Yulia Kahl College of Charleston

Artificial Intelligence 14

http://pages.suddenlink.net/ykahl/s_orphans.txt

Some Notes on the Program

I Note that we are not defining -parents_dead(P). This
predicate was defined for readability of the code, and is not
meant to be used beyond its limited purpose.

I If we add information that violates the notions of completeness
that we outlined, the program may not answer intelligently.
For example, what can we conclude given a new child, Perry,
whose mother is Patty? What does the program conclude?

Yulia Kahl College of Charleston

Artificial Intelligence 15

Defining Ancestors
Given a complete family tree starting at some given ancestors,
define the notion of ancestor.

Bill

Mary Bob

Kathy Mike PattyRich

Sam Susan

Yulia Kahl College of Charleston

Artificial Intelligence 16

Exploiting Recursion

I Define the base case.

I Define the rest.

I Define when someone is not an ancestor. Is the CWA justified
in this domain?

The program is at
http://pages.suddenlink.net/ykahl/s_ancestors.txt

Yulia Kahl College of Charleston

Artificial Intelligence 17

http://pages.suddenlink.net/ykahl/s_ancestors.txt

How Do We Describe an Electrical Circuit?

 G0
G1

G2

w0 w1

w2
w3

w5

w4

What are the objects and relations that we are trying to represent?

Yulia Kahl College of Charleston

Artificial Intelligence 18

Choosing a Representation

Choice 1: Gate+Inputs+Output makes a unit
Problem:

I Gates can have different numbers of inputs.

I Output wires of one gate can be input wires of another, but if
we store the wire with the gate, we can’t specify this
relationship easily.

Choice 2: The objects are gates and wires. The connections
between them are the relations.
http://pages.suddenlink.net/ykahl/s_ec.txt

Yulia Kahl College of Charleston

Artificial Intelligence 19

http://pages.suddenlink.net/ykahl/s_ec.txt

Predicting the Output Values of Gates

I Add another sort called signal to denote the value of the
current on a particular wire.

I Define relation val that gives the value of the signal for a
given wire.

I val can be used to record facts about inputs, as well as to
compute the output of a gate given the inputs.

I Define val for each type of gate.

I Add the CWA for val so that we know when a wire does not
have a given value.

I Bonus rule: Check for inconsistency of input that assigns 0
and 1 to the same wire.

(See program.)

Yulia Kahl College of Charleston

Artificial Intelligence 20

Evaluating Our Representation

I Is it readable?

I Is it easy to add new gates and connections?

I Can we add commonsense knowledge?

Yulia Kahl College of Charleston

Artificial Intelligence 21

Example: Adding Commonsense Knowledge

I Assume the system has a sensor that tells it the actual value
of the output wire of a gate by setting the value of predicate
sensor_val for that wire. Then, if the sensor value does not
match the predicted value, the gate must be defective.

I Let’s define predicates defective(#gate) and
needs_replacing(#gate).

Yulia Kahl College of Charleston

Artificial Intelligence 22

Example: Describing a Graph

(See program connected.sp.)

Yulia Kahl College of Charleston

Artificial Intelligence 23

Hierarchical Information and Inheritance

Consider how we could represent the following information:

I The Narwhal is a submarine.

I A submarine is a vehicle.

I Submarines are black.

I The Narwhal is a part of the U.S. Navy.

Note that there is a lot that is implicit in this specification.

Yulia Kahl College of Charleston

Artificial Intelligence 24

A Possible Solution

sorts

#submarine = {narwhal}.

#branch = {us_navy}.

predicates

sub(#submarine).

vehicle(#submarine).

black(#submarine).

part_of(#submarine, #branch).

rules

sub(narwhal).

vehicle(X) :- sub(X).

black(X) :- sub(X).

part_of(narwhal,us_navy).

I Is the Narwhal a car?

I Is it red?

I Even if we didn’t have to
worry about sorts, every
time we wanted to add a
new vehicle or color, we
would have to add a
couple lines to express
negative information such
as

-car(X) :- sub(X).

-sub(X) :- car(X).

-red(X) :- black(X).

-black(X) :- red(X).

I We can do better.

Yulia Kahl College of Charleston

Artificial Intelligence 25

Representing Hierarchical Information

I Humans are good at organizing the world into tree-like
structures of classes and subclasses.

I For example, we recognize “submarine” as a class of things,
members of which have some common properties.

I Because “submarine” is a subclass of ”vehicle”, objects that
are submarines will inherit properties of vehicles.

I An inheritance hierarchy is a collection of classes organized
in a tree formed by the subclass relation.

Yulia Kahl College of Charleston

Artificial Intelligence 26

Subclasses in the Expanded Submarine Story

vehicle

submarinecar

These are the classes in our expanded story.
In our representation, we will not exclude the possibility of there
being other subclasses that we haven’t mentioned. Therefore, we
cannot conclude that a vehicle is either a car or a submarine; it
could belong to some other class we haven’t mentioned.

Yulia Kahl College of Charleston

Artificial Intelligence 27

Representing Hierarchical Information: Reification

I Identify the implicit classes relevant to our story and make
them objects of our domain.

I reification — the process of taking an implicit concept and
making it an explicit object that we can reason about. I think
of it as a jump to higher-order reasoning.

I Instead of just talking about a submarine called the Narwhal,
we speak of a whole class of objects.

Yulia Kahl College of Charleston

Artificial Intelligence 28

Representing Hierarchical Information: Classes and
Subclasses

I Introduce a new sort — class.

I Introduce relation is subclass(C1,C2) corresponding to the
subclass links in the hierarchy.

I Define the subclass relation as transitive closure of
is subclass.

(See program s hierarchy.sp at
http://pages.suddenlink.net/ykahl.)

Yulia Kahl College of Charleston

Artificial Intelligence 29

http://pages.suddenlink.net/ykahl

Representing Hierarchical Information: Adding Objects

vehicle

car submarine

Narwhal

I Adding objects implies adding a new sort and a new type of
link.

I The link is represented by the is a(X ,C) relation, where X is
an object and C is a class.

Yulia Kahl College of Charleston

Artificial Intelligence 30

Representing Hierarchical Information: Defining
Membership

I An object is a member of a class via an is a link.

I It is also a member of all classes that its direct class is a
subclass of.

is_a(narwhal,sub).

member(X,C) :- is_a(X,C).

member(X,C) :- is_a(X,C0),

subclass(C0,C).

Yulia Kahl College of Charleston

Artificial Intelligence 31

Representing Hierarchical Information: Adding an
Assumption

vehicle

Mystery

car submarine

Narwhal

I Do we know which classes an object is not a member of?

I Often it is reasonable to assume that children of a class in a
hierarchy are disjoint; e.g., cars are not submarines and vice
versa.

Yulia Kahl College of Charleston

Artificial Intelligence 32

Representing Hierarchical Information: Sibling Classes are
Disjoint

If sibling classes are disjoint, then we know that if an object is a
member of one sibling class, it is not a member of the other.

siblings(C1,C2) :- is_subclass(C1,C),

is_subclass(C2,C),

C1 != C2.

-member(X,C2) :- member(X,C1),

siblings(C1,C2),

C1 != C2.

Yulia Kahl College of Charleston

Artificial Intelligence 33

What about colors?

I Add a sort called color .

I We can say that members of the submarine class are black.

I And we can add a rule stating that things of one color are not
of another color.

I This negative information can now be computed for all
members of the class.

Yulia Kahl College of Charleston

Artificial Intelligence 34

Expanding the Knowledge Base

I How can we add a new color?

I How about a new class?

I A new property?

Yulia Kahl College of Charleston

Artificial Intelligence 35

Comparing the Programs

I The first program started out much shorter, but with the
expansion of the story, it soon lost this advantage.

I The second is much more general and elaboration tolerant.

I The challenge, as usual, is predicting how much the program
might change and balancing compactness with elaboration
tolerance.

Yulia Kahl College of Charleston

Artificial Intelligence 36

	Creating a Knowledge Base
	Basic Family Relationships
	Defining Orphans
	Defining Ancestors
	Reasoning about Electrical Circuits
	Hierarchical Information and Inheritance

