
Table of Contents I

Planning Agents
Classical Planning with a Given Horizon
Adding Planning to the Blocks World
Multiple Goal States
Complex Goals
Example: Igniting the Burner
Missionaries and Cannibals
Heuristics
Concurrent Planning
Finding Minimal Plans

Yulia Kahl College of Charleston

Artificial Intelligence 1



Reading

I Read Chapter 9, Planning Agents, in the KRR book.

Yulia Kahl College of Charleston

Artificial Intelligence 2



Back to Agents

Now that we have a way of representing knowledge about the
world and how actions affect it, we want our agent to use that
knowledge to plan its actions.

Recall from the intro that the agent:

1. observes the world, checks that its observations are consistent
with its expectations, and updates its knowledge base;

2. selects an appropriate goal G;

3. searches for a plan (a sequence of actions) to achieve G;

4. executes some initial part of the plan, updates the knowledge
base, and goes back to step (1).

Yulia Kahl College of Charleston

Artificial Intelligence 3



The Classical Planning Problem

I A goal is a set of fluent literals which the agent wants to
become true.

I A plan for achieving a goal is a sequence of agent actions
which takes the system from the current state to one which
satisfies this goal.

I Problem: Given a description of a deterministic dynamic
system, its current state, and a goal, find a plan to achieve
this goal.

A sequence α of actions is called a solution to a classical planning
problem if the problem’s goal becomes true at the end of the
execution of α.

Yulia Kahl College of Charleston

Artificial Intelligence 4



A Declarative Approach to Planning

1. Use AL to represent information about an agent and its
domain.

2. Translate to ASP.

3. Add the initial state to the program.

4. Add the goal to the program.

5. Add the simple planning module — a small,
domain-independent ASP program.

6. Use a solver to compute the answer sets of the resulting
program.

7. A plan is a collection of facts formed by relation occurs which
belong to such an answer set.

Yulia Kahl College of Charleston

Artificial Intelligence 5



Representing the Domain Description

I We already know how to represent information about an
agent’s domain in AL and translate it to ASP.

I Representing the initial state is the same as representing σ0 in
the transition diagram. (We use relation holds(Fluent, 0).)

I Check off 1–3.

Yulia Kahl College of Charleston

Artificial Intelligence 6



Representing the Goal

Relation goal holds iff all fluent literals from the problem’s goal G
are satisfied at step I of the system’s trajectory:

goal(I) :- holds(f_1,I), ..., holds(f_m,I),

-holds(g_1,I), ..., -holds(g_n,I).

where G = {f1, . . . , fm} ∪ {¬g1, . . . ,¬gn}.

Yulia Kahl College of Charleston

Artificial Intelligence 7



Simple Planning Module — Achieving the Goal

% There must be a step in the system

% that satisfies the goal.

success :- goal(I).

% Failure is unacceptable;

% if a plan doesn’t exist, there is no answer set.

:- not success.

Yulia Kahl College of Charleston

Artificial Intelligence 8



Simple Planning Module — Action Generator

% An action either occurs at I or it doesn’t.

occurs(A,I) | -occurs(A,I) :- not goal(I).

%% Do not allow concurrent actions:

:- occurs(A1,I),

occurs(A2,I),

A1 != A2.

%% An action occurs at each step before

%% the goal is achieved:

something_happened(I) :- occurs(A,I).

:- goal(I), not goal(I-1),

J < I,

not something_happened(J).

Yulia Kahl College of Charleston

Artificial Intelligence 9



Alternative Simple Planning Module with Choice Rule

Currently, Clingo runs much faster than DLV if you use a choice
rule:

% There must be a step in the system

% that satisfies the goal.

success :- goal(I).

% Failure is unacceptable;

% if a plan doesn’t exist, there is no answer set.

:- not success.

% Select exacty one action to occur per step:

1{occurs(A,I): action(A)}1 :- step(I),

not goal(I),

I < n.

Yulia Kahl College of Charleston

Artificial Intelligence 10



That’s It!

I Since ASP solvers already exist,

I and we have a proof that answer sets of such a program
correspond to plans,

I we now have all the parts (1–7) we need to write a planner.

Yulia Kahl College of Charleston

Artificial Intelligence 11



The Horizon

I Our particular planning module requires a horizon — a limit
on the length of allowed plans.

I Constant n, which represents the limit on the number of steps
in our trajectory, is set to the horizon.

I In our code, we do not have to specify that I < n because it
is constrained by SPARC declarations, but it is there.

I If the plan is shorter than the horizon, the planner may
generate plans that contain unnecessary actions.

I There is no known way of finding minimal plans with straight
ASP unless you call the program with n = 1, 2, ... until you
get an answer set.

I However, there are extensions that we’ll talk about later that
can be used to find minimal plans.

Yulia Kahl College of Charleston

Artificial Intelligence 12



Example: Blocks World I

1. Use the AL description from before.

2. Translate to ASP (as before).

3. Add the initial state to the program; e.g.,:

holds(on(b0,t),0).

holds(on(b3,b0),0).

holds(on(b2,b3),0).

holds(on(b1,t),0).

holds(on(b4,b1),0).

holds(on(b5,t),0).

holds(on(b6,b5),0).

holds(on(b7,b6),0).

-holds(on(B,L),0) :- not holds(on(B,L),0).

Yulia Kahl College of Charleston

Artificial Intelligence 13



Example: Blocks World II

4. Add the goal to the program:

goal(I) :-

holds(on(b4,t),I), holds(on(b6,t),I),

holds(on(b1,t),I), holds(on(b3,b4),I),

holds(on(b7,b3),I), holds(on(b2,b6),I),

holds(on(b0,b1),I), holds(on(b5,b0),I).

5. Add the simple planning module. (Cut and paste.)

6. Use a solver to compute the answer sets of the resulting
program. (Not new.)

7. A plan is a collection of facts formed by relation occurs which
belong to such an answer set. (Display the occurs
statements.)

Yulia Kahl College of Charleston

Artificial Intelligence 14



Advantages

I Problem description is separate from the reasoning part so we
can change the initial state, the goal, and the horizon at will.

I We can write domain-specific rules describing actions that can
be ignored in the search.

I If a solver is improved, the planner is improved.

Yulia Kahl College of Charleston

Artificial Intelligence 15



Multiple Goal States

Suppose our goal is to have b3 on the table, but we don’t care
what happens to the other blocks. We write:

goal(I) :- holds(on(b3,t),I).

Naturally, multiple states will satisfy this condition, and plans will
vary accordingly.

Yulia Kahl College of Charleston

Artificial Intelligence 16



Using Defined Fluents in the Goal I

Suppose we had defined fluent occupied(Block) defined by

occupied(B) if on(B1,B)

We can add the translation of this rule to the blocks-world
program:

holds(occupied(B),I) :- #block(B),

holds(on(B1,B),I).

(We don’t need to add the CWA for occupied because we already
have the general CWA for defined fluents.)

Yulia Kahl College of Charleston

Artificial Intelligence 17



Using Defined Fluents in the Goal II

Now we can use this fluent to specify that we want some blocks to
be unoccupied:

goal(I) :- -holds(occupied(b0),I),

-holds(occupied(b1),I).

You can see how this could be useful.

Yulia Kahl College of Charleston

Artificial Intelligence 18



Defining Complex Goals

I Suppose we now wanted to describe a blocks-world domain in
which we cared about colors.

I We could add a new sort, color and a new fluent,
is colored(B,C ).

I Each block only has one color:

¬is colored(B,C1) if is colored(B,C2),C1 6= C2.

I New goal: all towers must have a red block on top.

Yulia Kahl College of Charleston

Artificial Intelligence 19



Red Blocks on Top

I We need a way to describe what we want.

I Let’s define a new defined fluent, wrong config , which is true
if we have towers that don’t have a red block on top:

wrong config if ¬occupied(B),¬is colored(B, red).

I Notice that it is often easier to define what we don’t want
than what we do.

I Now the goal can be written as:

goal(I) :- -holds(wrong_config,I).

Yulia Kahl College of Charleston

Artificial Intelligence 20



Igniting the Burner

I Here’s a completely new domain:

A burner is connected to a gas tank through a pipeline.
The gas tank is on the left-most end of the pipeline and the
burner is on the right-most end. The pipeline is made up
of sections connected with each other by valves. The pipe
sections can be either pressurized by the tank or unpressur-
ized. Opening a valve causes the section on its right side
to be pressurized if the section to its left is pressurized.
Moreover, for safety reasons, a valve can be opened only if
the next valve in the line is closed. Closing a valve causes
the pipe section on its right side to be unpressurized.

I The goal is to turn on the burner.

Yulia Kahl College of Charleston

Artificial Intelligence 21



Signature

I sort section = s1, s2, s3.

I sort valve = v1, v2.

I statics: connected to tank(S), connected to burner(S), and
connected(S1, V, S2).

I inertial fluents: opened(V) and burner on.

I defined fluent: pressurized(S).

I actions: open(V), close(V), and ignite.

Yulia Kahl College of Charleston

Artificial Intelligence 22



System Description

pressurized(S) if connected to tank(S).
pressurized(S2) if connected(S1,V ,S2),

opened(V ),
pressurized(S1).

¬burner on if connected to burner(S),
¬pressurized(S).

open(V ) causes opened(V ).
impossible open(V ) if opened(V ).
impossible open(V 1) if connected(S1,V 1,S2),

connected(S2,V 2, S3),
opened(V 2).

close(V ) causes ¬opened(V ).
impossible close(V ) if ¬opened(V ).
ignite causes burner on.
impossible ignite if connected to burner(S),

¬pressurized(S).
Yulia Kahl College of Charleston

Artificial Intelligence 23



State, Goal, Plan

I Example initial state:

{¬burner on,¬opened(v1), opened(v2)}.

I Example goal:
burner on.

I Translate into SPARC:
http://pages.suddenlink.net/ykahl/s_ignite.txt

I Example plan:

occurs(close(v2),0)

occurs(open(v1),1)

occurs(open(v2),2)

occurs(ignite,3)

Yulia Kahl College of Charleston

Artificial Intelligence 24

http://pages.suddenlink.net/ykahl/s_ignite.txt


Missionaries and Cannibals

Three missionaries and three cannibals come to a river
and find a boat that holds at most two people. If the
cannibals ever outnumber the missionaries on either bank,
the missionaries will be eaten. How can they all cross?

Yulia Kahl College of Charleston

Artificial Intelligence 25



What Are Our Objects?

I 3 missionaries

I 3 cannibals

I 1 boat

I 2 banks

Since we are interested in numbers of people and not specific
individuals, we will represent them with numbers 0–3.

It is also convenient to represent the boat with numbers 0 or 1.

Yulia Kahl College of Charleston

Artificial Intelligence 26



What Are the Fluents?

I Specifically, we are interested in the number of
missionaries/cannibals on a bank.

I We can represent this with inertial fluents:

m(#location,#num) % num missionaries at loc

c(#location,#num) % num cannibals at loc

b(#location,#num_boats) % num_boats at loc

% Examples:

% m(bank1, 3) -- 3 missionaries on bank1.

% b(bank1, 0) -- no boats on bank 1.

I We are also interested in there being no casualties, so we
introduce inertial fluent

casualties % True if the cannibals outnumber

% the missionaries.

Yulia Kahl College of Charleston

Artificial Intelligence 27



What Are the Actions?

I Movement changes the location of the people and the boat.

I Specifically, we want to know how many missionaries and
cannibals we are moving and where:

move(#num_cannibals, #num_missionaries, #loc).

Yulia Kahl College of Charleston

Artificial Intelligence 28



Here Are the Sorts in SPARC

#step = 0..n.

#numM = 0..3. % number of missionaries

#numC = 0..3. % number of cannibals

#num_boats = 0..1. % number of boats

#location = {bank1, bank2}.

#inertial_fluent =

m(#location,#numM) + % num missionaries at loc

c(#location,#numC) + % num cannibals at loc

b(#location,#num_boats) + % num_boats at location

{casualties}. % true if cannibals

% outnumber missionaries

% on the same bank:

#fluent = #inertial_fluent.

#action = move(#numC, #numM, #location).

Yulia Kahl College of Charleston

Artificial Intelligence 29



Practice: Write an AL system description

1. Moving objects increases the number of objects at the
destination by the amount moved. (3 laws)

2. The number of missionaries/cannibals at the opposite bank is
3 – number on this bank. The number of boats at the
opposite bank is 1 – number of boats on this bank. (3 laws)

3. There cannot be different numbers of the same type of person
at the same location. (2 laws)

4. A boat cannot be in and not in a location.

5. A boat cannot be in two places at once.

6. There will be casualties if cannibals outnumber missionaries.

7. It is impossible to move more than two people at the same
time; it is also impossible to move less than 1 person. (2 laws)

8. It is impossible to move people without a boat at the source.

9. It is impossible to move N people from a source if there are
not at least N people at the source in the first place. (2 laws)

Yulia Kahl College of Charleston

Artificial Intelligence 30



The Program

Here’s the SPARC program:
http://pages.suddenlink.net/ykahl/s_crossing.txt

Here’s a plan:

occurs(move(1,1,bank2),0)

occurs(move(0,1,bank1),1)

occurs(move(2,0,bank2),2)

occurs(move(1,0,bank1),3)

occurs(move(0,2,bank2),4)

occurs(move(1,1,bank1),5)

occurs(move(0,2,bank2),6)

occurs(move(1,0,bank1),7)

occurs(move(2,0,bank2),8)

occurs(move(0,1,bank1),9)

occurs(move(1,1,bank2),10)

Yulia Kahl College of Charleston

Artificial Intelligence 31

http://pages.suddenlink.net/ykahl/s_crossing.txt


Using Domain-Specific Knowledge

I The efficiency of ASP planners can be substantially improved
by expanding a planning module by domain dependent
heuristics represented by ASP rules.

I Example from blocks-world: Why pick up a block just to put
it back in the same location?

I We’ll ban such actions:

:- holds(on(B,L), I),

occurs(put(B,L), I).

Yulia Kahl College of Charleston

Artificial Intelligence 32



Heuristics Based on Subgoals I

I Suppose we have a heuristic that is based on knowledge of
subgoals.

I We need a way of separating this knowledge from the general
definition of a goal.

I Here’s a blocks-world example that can be easily generalized.

Yulia Kahl College of Charleston

Artificial Intelligence 33



Heuristics Based on Subgoals II
% This is our original goal:

goal(I) :-

holds(on(b4,t),I), holds(on(b6,t),I),

holds(on(b1,t),I), holds(on(b3,b4),I),

holds(on(b7,b3),I), holds(on(b2,b6),I),

holds(on(b0,b1),I), holds(on(b5,b0),I).

% This is how we add subgoal information:

subgoal(on(b4,t),true).

subgoal(on(b6,t),true).

subgoal(on(b1,t),true).

subgoal(on(b3,b4),true).

subgoal(on(b7,b3),true).

subgoal(on(b2,b6),true).

subgoal(on(b0,b1),true).

subgoal(on(b5,b0),true).

Yulia Kahl College of Charleston

Artificial Intelligence 34



Heuristics Based on Subgoals III

I Example heuristic: Only consider moving blocks that are out
of place:

in_place(B,I) :- subgoal(on(B,B1),true),

holds(on(B,B1),I),

in_place(B1,I).

in_place(t,I) :- step(I).

:- in_place(B,I),

occurs(put(B,L),I).

Yulia Kahl College of Charleston

Artificial Intelligence 35



Quality of Plans

I The last heuristic greatly improved the speed of the planner.

I However, if we don’t have the perfect horizon, we can get a
lot of non-optimal plans.

I (In many domains, even if we have plans of the same length,
some may be better than others.)

Yulia Kahl College of Charleston

Artificial Intelligence 36



Make Good Moves

Here’s a heuristic that eliminates a large number of nonoptimal
plans by considering only those moves which increase the number
of blocks placed in the right position:

good_move(B,L,I) :- subgoal(on(B,L),true),

in_place(L,I),

-occupied(L,I),

-occupied(B,I).

occupied(B,I) :- #block(B),

holds(on(B1,B),I).

-occupied(t,I).

-occupied(B,I) :- #block(B),

not occupied(B,I).

Yulia Kahl College of Charleston

Artificial Intelligence 37



Using the Heuristic: Prohibit Bad Moves

exists_good_move(I) :- good_move(B,L,I).

:- exists_good_move(I),

occurs(put(B,L),I),

not good_move(B,L,I).

Why can’t we just say:

occurs(put(B,L),I) :- good_move(B,L,I).

Yulia Kahl College of Charleston

Artificial Intelligence 38



Concurrent Planning

I For the module using the choice rule:

1 {occurs(Action,I): action(Action)} m :-

step(I),

not goal(I),

I < n.

Here m is the maximum number of actions which can be
performed simultaneously.

I If using the planning module with disjunction, simply remove
the rule prohibiting simultaneous actions.

Yulia Kahl College of Charleston

Artificial Intelligence 39



Minimal Plans with CR-Prolog (SPARC Version)

success :- goal(I).

:- not success.

% Consider occurrences of actions if necessary to resolve

% a contradiction. Use cardinality preferences.

occurs(A,I) :+.

% Don’t procrastinate:

something_happened(I) :- occurs(A,I).

:- not something_happened(I),

something_happened(I+1).

% No concurrency:

-occurs(A2,I) :- occurs(A1,I), A1 != A2.

Yulia Kahl College of Charleston

Artificial Intelligence 40



Minimal Plans with Clingo

I We can also compute minimal plans by using a special form of
the minimize statement in Clingo.

I Syntactically, the statement has the form

#minimize{q(X1, . . . ,Xn) : s1(X1) : · · · : sn(Xn)}

where s1, . . . , sn are sorts of parameters of q.

I Instructs the solver to compute only those answer sets of the
program which contain the smallest number of occurrences of
atoms formed by predicate symbol q.

I For planning, add statement:

#minimize{occurs(Action, K):action(Action):step(K)}.

Yulia Kahl College of Charleston

Artificial Intelligence 41


	Planning Agents
	Classical Planning with a Given Horizon
	Adding Planning to the Blocks World
	Multiple Goal States
	Complex Goals
	Example: Igniting the Burner
	Missionaries and Cannibals
	Heuristics
	Concurrent Planning
	Finding Minimal Plans


