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Reading

I Read Chapter 11, Probabilistic Reasoning, in the KRR book.
Don’t get caught up in the syntax. Do pay attention to new
constructs. Focus on the big concepts: random attributes,
causal probabilities, observations, intentions, dynamic range,
etc. It is important to understand what is being modeled, that
it can be modeled, and that the agent can use logical and
probabilistic reasoning together.
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Probabilistic Reasoning: A Finer Gradation of Unknowns

I Defaults allowed us to work with incomplete information.

I Multiple answer sets helped model different possibilities.

I Example 1:
p(a) or ¬p(a)

I Example 2:
q(a). q(b). p(b).

I In both cases, p(a) is unknown.

I In ASP, propositions could only have three truth values: true,
false, and unknown.

I How can we say that “we’re pretty sure p(a) is true” without
losing our ability to use defaults, nonmonotonicity, recursion,
etc. — everything gained by using ASP?
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Old Methods, New Reading, New Use

I Probability theory is a well-developed branch of mathematics.

I How do we use it for knowledge representation?

I If we do use it, what do we really mean?

I We will view probabilistic reasoning as commonsense
reasoning about the degree of an agent’s beliefs in the
likelihood of different events.

I “There’s a fifty-fifty chance.” “I’m 99% sure.”

I This is known as the Bayesian view.
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Consequences of the Bayesian View

I Example: the agent’s knowledge about whether a particular
bird flies will be based on what it knows of the bird, rather
than the statistics that apply to the whole population of birds
in general.

I A different agent’s measure may be different because its
knowledge of the bird is different.

I Note that this means that an agent’s belief about the
probability of an event can change based on the knowledge it
has.
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Lost in the Jungle

Imagine yourself lost in a dense jungle. A group of
natives has found you and offered to help you survive,
provided you can pass their test. They tell you they have
an Urn of Decision from which you must choose a stone
at random. (The urn is sufficiently wide for you to easily
get access to every stone, but you are blindfolded so you
cannot cheat.) You are told that the urn contains nine
white stones and one black stone. Now you must choose
a color. If the stone you draw matches the color you
chose, the tribe will help you; otherwise, you can take
your chances alone in the jungle. (The reasoning of the
tribe is that they do not wish to help the exceptionally
stupid, or the exceptionally unlucky.)

What is your reasoning about the color you should choose?
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Example Train of Thought

Suppose I choose white. What would be my chances of
getting help? They are the same as the chances of
drawing a white stone from the urn. There are nine white
stones out of a possible ten. Therefore, my chances of
picking a white stone and obtaining help are 9

10 .

The number 9
10 can be viewed as the degree of belief that help will

be obtained if you select white.
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Using a Probabilistic Model I

I Probabilistic models consist of a finite set Ω of possible
worlds and a probabilistic measure µ associated with each
world.

I Possible worlds correspond to possible outcomes of random
experiments we attempt to perform (like drawing a stone from
the urn).

I The probabilistic measure µ(W ) quantifies the agent’s
degree of belief in the likelihood of the outcomes of random
experiments represented by W .
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Using a Probabilistic Model II

I The probabilistic measure is a function µ from possible worlds
of Ω to the set of real numbers such that:

for all W ∈ Ω, µ(W ) ≥ 0 and∑
W∈Ω

µ(W ) = 1.
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Possible Worlds in Logic-Based Theory

I In logic-based probability theory, possible worlds are often
identified with logical interpretations.

I A set E of possible worlds is often represented by a formula F
such that W ∈ E iff W is a model of F .

I In this case the probability function may be defined on
propositions

P(F ) =def P({W : W ∈ Ω and W is a model of F}).
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Back to the Jungle

I How do we construct a mathematical model of the reasoning
behind the stone choice?

I We need to come up with a collection Ω of possible worlds
that correspond to possible outcomes of this random
experiment.

I Let’s enumerate the stone from 1 to 10 starting with the
black stone.
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Jungle: Possible Worlds

I The possible world describing the effect of the traveler
drawing stone number 1 from the urn looks like this:

W1 = {select color = white, draw = 1,¬help}.

I Drawing the second stone results in possible world

W2 = {select color = white, draw = 2, help}

etc.

I We have 10 possible worlds, 9 of which contain help.
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The Principle of Indifference

How do we define the probabilistic measure µ on these possible
worlds?

I Principle of Indifference is a commonsense rule which states
that possible outcomes of a random experiment are assumed
to be equally probable if we have no reason to prefer one of
them to any other.

I This rule suggest that µ(W ) = 1
10 = 0.1 for any possible

world W ∈ Ω.

I According to our definition of probability function P, the
probability that the outcome of the experiment contains help
is 0.9.

I A similar argument for the case in which the traveler selects
black gives 0.1.

I Thus, we get the expected result.
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Creating a Mathematical Model of the Argument

I The hard part of the reasoning is setting up a probabilistic
model, especially the selection of possible worlds.

I Key question: How can possible worlds of a probabilistic
model be found and represented?

I One solution is to use P-log — an extension of ASP and/or
CR-Prolog that allows us to combine logical and probabilistic
knowledge.

I Answer sets of a P-log program are identified with possible
worlds of the domain.
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Jungle Story in P-log: Signature

I P-log has a sorted signature.

I Program Πjungle has two sorts: stones and colors:

stones = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

colors = {black,white}.
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Jungle Story in P-log: Mapping Stones to Colors

color(1) = black.
color(X ) = white ← X 6= 1.

Note that the only difference between rules of P-log and ASP is
the form of the atoms.
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Jungle Story in P-log: Representing the Draw

draw : stones.
random(draw).

1. draw is a zero-arity function that takes its values from sort
stones.

2. random(draw) states that, normally, the values for draw are
selected at random. (random selection rule)
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Jungle Story in P-log: Tribal Laws

select color : colors

help : boolean

help ← draw = X ,
color(X ) = C ,
select color = C .

¬help ← draw = X ,
color(X ) = C ,
select color 6= C .

Here help and ¬help are used as shorthands for help = true and
help = false.
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Jungle Story in P-log: Selecting White

To ask

“Suppose I choose white. What would be my chances of getting
help?”

add the following statement to the program:

select color = white.
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Jungle Story in P-log: Possible Worlds

I Each possible outcome of random selection for draw defines
one possible world.

I If the result of our random selection were 1, then the relevant
atoms of this world would be

W1 = {draw = 1, select color = white,¬help}

I Since color(1) = black and select color = white are facts of
the program, the result follows immediately from the
definition of help.

I If the result of our random selection were 2, then the world
determined by this selection would be

W2 = {draw = 2, select color = white, help}.

I Similarly for stones 3 to 10.
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Jungle Story in P-log: Computing the Probability of an
Event

I The semantics of P-log uses the Indifference Principle to
automatically compute the probabilistic measure of every
possible world and hence the probabilities of the
corresponding events.

I Since in this case all worlds are equally plausible, the ratio of
possible worlds in which arbitrary statement F is true to the
number of all possible worlds gives the probability of F .

I Hence the probability of help defined by the program
Πjungle(white) is 9

10 .
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Semantics of P-log

I Any P-log program can be translated into a regular ASP
program.

I This translation gives us the logical semantics.

I τ(Π) stands for the “translation of P-log program Π into
ASP.”

I The probabilistic semantics is defined on the answer sets of
these programs.
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Translation of a P-log Program
For every attribute a(t) with range(a) = {y1, . . . , yn}, mapping τ

I represents the sort information by a corresponding set of
atoms; e.g.
s = {1, 2} is turned into facts s(1) and s(2);

I replaces every occurrence of an atom

a(t) = y

by
a(t, y),

and expands the program by rules of the form

¬a(t,Y2)← a(t,Y1),Y1 6= Y2;

I replaces every occurrence of a(t, true) and a(t, false) by a(t)
and ¬a(t) respectively, and removes double negation ¬¬,
which might have been introduced by this operation;
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Translation of a P-log Program, cont.

I replaces every rule of the form

random(a(t))← body

by

a(t, y1) or . . . or a(t, yn)← body , not intervene(a(t))

where intervene is a new predicate symbol;
(Note: P-log actually allows more-general random selection
rules which require one more rule.)

I grounds the resulting program by replacing variables with
elements of the corresponding sorts.

I P-log has a few more features. We’ll see their translation later.
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P-log: Computing Probabilities

I Collections of atoms from answer sets of τ(Π) are called
possible worlds of Π.

I The probabilistic measure in P-log is a real number from the
interval [0, 1], which represents the degree of a reasoner’s
belief that a possible world W matches a true state of the
world.

I Zero means that the agent believes that the possible world
does not correspond to the true state; one corresponds to the
certainty that it does.

I The probability of a set of possible worlds is the sum of the
probabilistic measures of its elements.

I The probability of a proposition is the sum of the
probabilistic measures of possible worlds in which this
proposition is true.
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Dice: The Problem

How do we define a probabilistic measure if there is more than one
random selection rule?

Mike and John each own a die. Each die is rolled once.
We would like to estimate the chance that the sum of the
rolls is high, i.e. greater than 6.

I Let’s construct program Πdice .

I What are our objects? dice, score, people.

I What are our relations? roll a die, get a random score, owner
of a die, high (boolean)
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Dice: Sort Declarations

The corresponding declarations look like this:

die = {d1, d2}.
score = {1, 2, 3, 4, 5, 6}.
person = {mike, john}.

roll : die → score.
random(roll(D)).

owner : die → person.
high : boolean.
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Dice: Rules

The regular part of the program consists of the following rules:

owner(d1) = mike.
owner(d2) = john.

high← roll(d1) = Y1,
roll(d2) = Y2,
(Y1 + Y2) > 6.

¬high← roll(d1) = Y1,
roll(d2) = Y2,
(Y1 + Y2) ≤ 6.
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Dice: Translation τ(Πdice)

die(d1).

die(d2).

score(1..6).

person(mike).

person(john).

roll(D,1) | roll(D,2) | roll(D,3) |

roll(D,4) | roll(D,5) | roll(D,6) :-

not intervene(roll(D)).

-roll(D,Y2) :- roll(D,Y1), Y1 != Y2.

owner(d1,mike).

owner(d2,john).

-owner(D,P2) :- owner(D,P1), P1 != P2.

high :- roll(d1, Y1), roll(d2,Y2), (Y1 + Y2) > 6.

-high :- roll(d1,Y1), roll(d2,Y2), (Y1 + Y2) <= 6.
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Dice: Possible Worlds from Answer Sets

By computing answer sets of τ(Πdice) we obtain 36 possible worlds
— each world corresponding to a possible selection of values for
random attributes roll(d1) and roll(d2); i.e.,

W1 = {roll(d1) = 1, roll(d2) = 1, high = false, . . . },
W2 = {roll(d1) = 1, roll(d2) = 2, high = false, . . . },

...
W35 = {roll(d1) = 6, roll(d2) = 5, high = true, . . . },
W36 = {roll(d1) = 6, roll(d2) = 6, high = true, . . . }.

(Atoms that are the same for all possible worlds are not shown.)
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A Review of Independence

I In probability theory two events A and B are called
independent if the occurrence of one does not affect the
probability of another.

I Mathematically, this intuition is captured by the following
definition: events A and B are independent (with respect to
probability function P) if P(A ∧ B) = P(A)× P(B).

I For example,
I the event d1 shows a 5 is independent of d2 shows a 5,
I the event the sum of the scores on both dice shows a 5 is

dependent on the event d1 shows a 5.
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Dice: Using Independence to Compute the Probabilistic
Measure

I The selection for d1 has six possible outcomes which, by the
principle of indifference, are equally likely. Similarly for d2.

I The mechanisms controlling the way the agent selects the
values of roll(d1) and roll(d2) during the construction of its
beliefs are independent from each other.

I This independence justifies the definition of the probabilistic
measure of a possible world containing roll(d1) = i and
roll(d2) = j as the product of the agent’s degrees of belief in
roll(d1) = i and roll(d2) = j .

I Hence the measure of a possible world containing roll(d1) = i
and roll(d2) = j for every possible i and j is 1

6 ×
1
6 = 1

36 .
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Dice: Bet on high

I The probability PΠdice
(high) is the sum of the measures of the

possible worlds which satisfy high.

I Since high holds in 21 worlds, the probability PΠdice
(high) of

high being true is 7
12 .

I Thus, if the reasoner associated with Πdice had to bet on the
outcome of the game, betting on high would be better.

I (Note that the jungle example did not require the use of the
product rule because it contained only one random selection
rule.)
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Modeling Bias

Suppose now that we learned from a reliable source that
while the die owned by John is fair, the die owned by
Mike is biased. On average, Mike’s die rolls a 6 in 1 out
of 4 rolls.

We need a new construct to encode such knowledge.
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Causal Probability Statements

prr (a(t) = y |c B) = v

where a(t) is a random attribute, B is a conjunction of literals, r is
the name of the random selection rule used to generate the values
of a(t), v ∈ [0, 1], and y is a possible value of a(t).

It is read as:
if the value of a(t) is generated by rule r , and B holds, then the
probability of the selection of y for the value of a(t) is v .

In addition, it indicates the potential existence of a direct causal
relationship between B and the possible value of a(t).
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Biased Dice: Pr-atom

pr(roll(D) = 6 |c owner(D) = mike) =
1

4
.

“The probability of Mike’s die rolling a 6 is 1
4 .”

I The possible worlds of the two stories about rolling dice are
the same, but now P-log can compute probabilistic measures
adjusting for this new information.

I Briefly, to compute the measure of a possible world in which
roll(d1) = 6, we use 1

4 ∗
1
6 instead of 1

6 ∗
1
6 .

I For worlds where roll(d1) 6= 6, our belief in such outcomes is
(1− 1

4
)

5 = 3
20 . So the measure of each such world is

3

20
× 1

6
=

1

40
.
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Observations and Intentions
P-log also allows us to record observations of the results of random
experiments:

obs(a(t) = y)

obs(a(t) 6= y)

and the results of deliberate intervention in experiments:

do(a(t) = y)

For example:

I obs(roll(d1) = 6) says that the random experiment consisting
of rolling the first die shows 6

I do(roll(d1) = 6) says that, instead of throwing the die at
random, it was deliberately put on the table showing 6
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Incorporating the Knowledge: Formal Semantics
Translating the Atoms:

obs(a(t, y))

¬obs(a(t, y))

do(a(t, y)).

New Rules:
I Eliminate worlds that do not correspond to observations:

← obs(a(t, y)),¬a(t, y)

← ¬obs(a(t, y)), a(t, y)

I Set values for intervened-on attributes:

a(t, y)← do(a(t, y))

I Break the indifference default to cancel randomness:

intervene(a(t))← do(a(t, y))
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Dynamic Range

I Sometimes our experiments are such that our sample changes.

I Example: What is the probability of drawing two aces in
succession?

I If we draw a card from a deck and then draw another card
without replacing the first, our sample has changed.

I This means that we need to be able to represent a dynamic
range.
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Aces in Succession

card = {1 . . . 52}.

ace = {1, 2, 3, 4}.

try = {1, 2}.

draw : try → card

Can’t use random(draw(T )) because we are not drawing from the
same deck in the first draw as we are in the second. Instead, we use

random(draw(T ) : {C : available(C ,T )}).
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Aces in Succession: Defining the Range

available(C ,T ) changes based on the try:

available(C , 1) ← card(C ).
available(C ,T + 1) ← available(C ,T ),

draw(T ) 6= C .
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Aces in Succession: Defining the Attribute of Interest

Defining two aces will allow us to get the probabilistic measure
that we’re after:

two aces ← draw(1) = Y 1,
draw(2) = Y 2,
1 ≤ Y 1 ≤ 4,
1 ≤ Y 2 ≤ 4.

Note that because of the dynamic range of our selection, the two
cards chosen by the two draws can not be the same.

Possible worlds of the program are of the form

Wk = {draw(1) = c1, draw(2) = c2, . . . }

where c1 6= c2.
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Representing Knowledge in P-log

I Q: Why P-log? After all, we can compute the probabilities of
these simple examples without it.

I A: The use of P-log can substantially clarify the modeling
process.
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The Monty Hall Problem

Monty’s show involves a player who is given the
opportunity to select one of three closed doors, behind
one of which there is a prize. Behind the other two doors
are empty rooms. Once the player has made a selection,
Monty is obligated to open one of the remaining closed
doors which does not contain the prize, showing that the
room behind it is empty. He then asks the player if she
would like to switch her selection to the other unopened
door, or stay with her original choice. Does it matter if
she switches?
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Representing the General Knowledge of the Domain

doors = {1, 2, 3}.
open, selected , prize : doors.

¬can open(D)← selected = D.
¬can open(D)← prize = D.
can open(D)← not ¬can open(D).

random(prize).
random(selected).
random(open : {X : can open(X )})
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Recording What Happened

obs(selected = 1).
obs(open = 2).
obs(prize 6= 2).
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Computing the Probabilistic Measures

I Knowing the laws and the observations, the player must now
decide whether to switch.

I To decide, compute the probability of the prize being behind
door 1 and of the prize being behind door 3.

I To do that, consider the possible worlds of the program and
their measures. Then sum up the measures of the worlds in
which the prize is behind door 1. Do the same for those with
prize behind door 3.
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Possible Worlds Given the Observations

W1 = {selected = 1, prize = 1, open = 2, can open(2), can open(3)}.

W2 = {selected = 1, prize = 3, open = 2, can open(2)}.

In W1 the player would lose if she switched; in W2 she would win.

Note that the possible worlds contain information not only about
where the prize is, but which doors Monty can open.

This is the key to correct calculation!
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The probabilistic measure of a possible world is the product of
likelihoods of the random events it is comprised of. It follows that

µ̂(W1) = 1
3 ×

1
3 ×

1
2 = 1

18

µ̂(W2) = 1
3 ×

1
3 × 1 = 1

9 .

Normalization gives us:

µ(W1) =
1/18

1/18 + 1/9
=

1

3

µ(W2) =
1/9

1/18 + 1/9
=

2

3
.

Finally, since prize = 1 is true in only W1,

PΠmonty1(prize = 1) = µ(W1) =
1

3
.

Similarly for prize = 3:

PΠmonty1(prize = 3) = µ(W2) =
2

3
.

Changing doors doubles the player’s chance to win.
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Death of a Rat

Consider the following program Πrat representing knowledge about
whether a certain rat will eat arsenic today, and whether it will die
today.

arsenic , death : boolean.
random(arsenic).
random(death).
pr(arsenic) = 0.4.
pr(death |c arsenic) = 0.8.
pr(death |c ¬arsenic) = 0.01.

I The rat is more likely to die if it eats arsenic.

I Eating arsenic has a causal link with death.
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Intuition

I Seeing the rat die raises our suspicion that it has eaten arsenic.

I Killing the rat (with a gun) does not affect our degree of
belief that it ate arsenic.

I Does this play out in P-log?
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Death of a Rat: Possible Worlds

W1 : {arsenic , death}. µ̂(W1) = 0.4× 0.8 = 0.32
W2 : {arsenic ,¬death}. µ̂(W2) = 0.4× 0.2 = 0.08
W3 : {¬arsenic , death}. µ̂(W3) = 0.6× 0.01 = 0.006
W4 : {¬arsenic ,¬death}. µ̂(W4) = 0.6× 0.99 = 0.594

Since the unnormalized probabilistic measures add up to 1, they
are the same as the normalized measures. Hence,

PΠrat (arsenic) = µ(W1) + µ(W2) = 0.32 + 0.08 = 0.4.
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Death of a Rat: Computing Probabilities with obs(death)

I Program Πrat ∪ {obs(death)} has two possible worlds, W1 and
W3, with unnormalized probabilistic measures as above.

I Normalization yields

PΠrat∪{obs(death)}(arsenic) =
0.32

0.32 + 0.006
= 0.982.

I The observation of death raised our degree of belief that the
rat had eaten arsenic.
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Death of a Rat: Computing Probabilities with do(death)

I Program Πrat ∪ {do(death)} has the same possible worlds.

I However, do(death) defeats the randomness of death.

I W1 has unnormalized probabilistic measure 0.4 and W3 has
unnormalized probabilistic measure 0.6. (Same if normalized.)

I Thus,
PΠrat∪{do(death)}(arsenic) = 0.4.
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The Spider Bite

I Two kinds of poisonous spiders in Stan’s location: creeper
and spinner.

I Equally common bites locally; spinner bites more common
worldwide.

I Experimental antivenom treats both bites, but effectiveness
questionable.

I Stan notices bite but not spider.

I Doctor decides based on bite that it’s a creeper or spinner and
turns to data on antivenom.
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Antivenom Data

I Of 416 people bitten by creeper worldwide, 312 received
antivenom and 104 did not.

I Of those who received it, 187 survived. Of those who didn’t,
73 survived.

I The spinner is more deadly and tends to inhabit areas where
the treatment is less available.

I Of 924 people bitten by spinner, 168 received the antivenom,
34 of whom survived.

I Of the 756 spinner victims who did not get antivenom, 227
survived.

I Should Stan take the antivenom?
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Formalizing the Story for the Doctor

I Boolean attribute survive — a random patient survived.

I Boolean attribute antivenom — a random patient was
administered antivenom

I Attribute spider where spider = creeper or spider = spinner
indicates which spider bit the person.

I Thus, we have:

survive, antivenom : boolean.
spider : {creeper , spinner}.

random(spider).
random(survive).
random(antivenom).
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Formalization, cont.

I Bites from the two spiders are equally common in the area, so
the doctor assumes:

pr(spider = creeper) = 0.5.

I Statistical info from the story:

pr(antivenom |c spider = creeper) = 312/416 = 0.75
pr(antivenom |c spider = spinner) = 168/924 = 0.18
pr(survive |c spider = creeper , antivenom) = 187/312 = 0.6
pr(survive |c spider = creeper ,¬antivenom) = 73/104 = 0.7
pr(survive |c spider = spinner , antivenom) = 34/168 = 0.2
pr(survive |c spider = spinner ,¬antivenom) = 227/756 = 0.3
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Conditioning on Intentions vs. Observations

I How should the doctor decide whether to administer the
antivenom?

I Compare the results of survival with and without antivenom.

I Is the administration of antivenom by the doctor random?
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I To calculate the probability of survival with intentional
administration of antivenom, add do(antivenom) to our
program.

I This gives us the following possible worlds and measures:

W1 = {spider = creeper , antivenom, survive}

W2 = {spider = creeper , antivenom,¬survive}

W3 = {spider = spinner , antivenom, survive}

W4 = {spider = spinner , antivenom,¬survive}

µ(W1) = 0.5× 0.6 = 0.3 � survive

µ(W2) = 0.5× 0.4 = 0.2

µ(W3) = 0.5× 0.2 = 0.1 � survive

µ(W4) = 0.5× 0.8 = 0.4

I Probability of survival with intentional antivenom is 0.4.
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I Now calculate the probability of survival with intentionally not
administrating antivenom by do(¬antivenom) to our program
instead.

I This gives us the following possible worlds and measures:

W5 = {spider = creeper ,¬antivenom, survive}

W6 = {spider = creeper ,¬antivenom,¬survive}

W7 = {spider = spinner ,¬antivenom, survive}

W8 = {spider = spinner ,¬antivenom,¬survive}

µ(W5) = 0.5× 0.7 = 0.35 � survive

µ(W6) = 0.5× 0.3 = 0.15

µ(W7) = 0.5× 0.3 = 0.15 � survive

µ(W8) = 0.5× 0.7 = 0.35

I Probability of survival without antivenom is 0.5.
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Conditioning on Observations

I Our calculations show that antivenom should not be
administered.

I Now suppose the doctor decided to treat himself as an
observer, instead of a deliberate actor.

I It is common, and wrong, to used the statistics on the
chances of something being administered in the calculation
when you are acting deliberately.

I The possible worlds do not change, but the measures of
antivenom/¬antivenom are no longer 1, but taken from the
likelihood that antivenom is administered.

I If you use these calculations, you will come to the wrong
conclusion!
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Bayesian Learning

I Common learning problem: Select from a set of models of a
random phenomenon by observing repeated occurrences of
that phenomenon.

I Bayesian approach to this problem:
I Begin with a “prior density” on the set of candidate models;

i.e., you assume a likelihood.
I Update it in light of new observations.
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The Bayesian Squirrel

I Example from Ray Hilborn and Marc Mangel, The Ecological
Detective, Princeton University Press 1997.

I A squirrel has hidden its acorns in one of two patches, but can
not remember which.

I The squirrel is 80% certain that the food is hidden in Patch 1.

I It knows there is a 20% chance of finding food per day when
it is looking in the right patch (and, of course, a 0% chance if
it’s looking in the wrong patch).
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P-log Bayesian Squirrel

I Sorts:
patch = {p1, p2}.
day = {1 . . . n}.

(where n is some constant, say, 5)

I Attributes:
hidden in : patch.
found : day → boolean.
look : day → patch.
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Which Attributes Are Random?

I Attribute hidden in is always random:

random(hidden in).

I Attribute found is random only if the squirrel is looking for
food in the right patch:

random(found(D))← hidden in = P,
look(D) = P.

Otherwise we have:

¬found(D)← hidden in = P1,
look(D) = P2,
P1 6= P2.

I Attribute look(D) is not random because it is decided by the
squirrel’s deliberation.
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Probabilistic Information

pr(hidden in = p1) = 0.8.
pr(found(D)) = 0.2.
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Compute Possible Outcomes of the Next Search for Food

I Add look(1) = p1 to the program.

I Possible worlds and their measures:

W 1
1 = {look(1) = p1, hidden in = p1, found(1), . . . }

W 1
2 = {look(1) = p1, hidden in = p1,¬found(1), . . . }

W 1
3 = {look(1) = p1, hidden in = p2,¬found(1), . . . }

µ(W 1
1 ) = 0.16

µ(W 1
2 ) = 0.64

µ(W 1
3 ) = 0.2

I

PΠsq1(hidden in = p1) = 0.16 + 0.64 = 0.8

PΠsq1(found(1)) = 0.16.
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It’s a New Day

I Suppose the squirrel didn’t find the nut on day 1.

I This time, it should be a bit less sure that it is in Patch 1.

I We add its observations and intention to the first program:

obs(¬found(1)).
look(2) = p1.
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Possible Worlds for Day 2, Looking in Patch 1

W 2
1 = {look(1) = p1,¬found(1), hidden in = p1, look(2) = p1, found(2) . . . }

W 2
2 = {look(1) = p1,¬found(1), hidden in = p1, look(2) = p1,¬found(2) . . . }

W 2
3 = {look(1) = p1,¬found(1), hidden in = p2, look(2) = p1,¬found(2) . . . }

µ(W 2
1 ) = 0.128/0.84 = 0.152

µ(W 2
2 ) = 0.512/0.84 = 0.61

µ(W 2
3 ) = 0.2/0.84 = 0.238

Consequently,

PΠsq2(hidden in = p1) = 0.762

and
PΠsq2(found(2)) = 0.152
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Probabilistic Nonmonotonicity

I Notice that the squirrel is now less certain that the nut is in
patch 1.

I The only changes to the program were the additions of
actions and observations.

I P-log enables this kind of learning because it can represent
I observations,
I actions, and
I conditional randomness.
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Advantages of P-log

I P-log probabilities are defined with respect to an explicitly
stated knowledge base. In many cases this greatly facilitates
creation of probabilistic models.

I In addition to logical nonmonotonicity, P-log is
“probabilistically nonmonotonic” — addition of new
information can add new possible worlds and substantially
change the original probabilistic model, allowing for Bayesian
learning.

I Possible knowledge base updates include defaults, rules
introducing new terms, observations, and deliberate actions in
the sense of Pearl.
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Summary

You have been introduced to a large variety of approaches to AI:

I Neural Nets and their use in machine learning of pattern
recognition.

I Genetic Algorithms and their application to search.

I Logic Programming and its application to modeling
nonmonotonic reasoning.

I Action Languages and their application to:
I reasoning about actions and change
I planning
I diagnostics

I Hidden Markov Models and the Viterbi Algorithm and their
use in Natural Language Processing.

I P-log, which combines probabilistic and logical reasoning, and
its application to modeling Bayesian reasoning and learning.
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