Encoding of a System Description

The encoding $\Pi(\mathcal{SD})$ of system description \mathcal{SD} consists of the encoding of the signature of \mathcal{SD} and rules obtained from statements of \mathcal{SD}.

- Encoding of the Signature
 We start with the encoding $\text{sig}(\mathcal{SD})$ of the signature of \mathcal{SD}.
 - For each constant symbol c of sort sort_name other than fluent, static or action, $\text{sig}(\mathcal{SD})$ contains
 $$\text{sort_name}(c) \quad (1)$$
 - For every static g of \mathcal{SD}, $\text{sig}(\mathcal{SD})$ contains
 $$\text{static}(g) \quad (2)$$
 - For every inertial fluent f of \mathcal{SD}, $\text{sig}(\mathcal{SD})$ contains
 $$\text{fluent(inertial, } f) \quad (3)$$
 - For every defined fluent f of \mathcal{SD}, $\text{sig}(\mathcal{SD})$ contains
 $$\text{fluent(defined, } f) \quad (4)$$
 - For every action a of \mathcal{SD}, $\text{sig}(\mathcal{SD})$ contains
 $$\text{action}(a) \quad (5)$$

- Encoding of Statements of \mathcal{SD}
 For this encoding we only need two steps, 0 and 1, which stand for the beginning and the end of a transition. This is sufficient for describing a single transition; however, later, we describe longer chains of events and let steps range over $[0, n]$ for some constant n. To allow an easier generalization of the program we encode steps by using constant n for the maximum number of steps, as follows:
 $$\#\text{const } n = 1. \quad (6)$$
 $$\text{step}(0..n). \quad (7)$$

As in our blocks-world example, we introduce a relation $\text{holds}(f, i)$ which says that fluent f is true at step i. To simplify the description of the encoding, we also introduce a new notation, $h(l, i)$ where l is a domain literal and i is a step. If f is a fluent then by $h(l, i)$ we denote $\text{holds}(f, i)$ if $l = f$ or $\neg\text{holds}(f, i)$ if $l = \neg f$. If l is a static literal then $h(l, i)$ is simply l. We also need relation $\text{occurs}(a, i)$ which says that action a occurred at step i; $\text{occurs}(\{a_0, \ldots, a_k\}, i) =_{\text{def}} \{\text{occurs}(a_j, i) : 0 \leq j \leq k\}$.

We use this notation to encode statements of \mathcal{SD} as follows:
- For every causal law

\[a \text{ causes } l \text{ if } p_0, \ldots, p_m \]

\[\Pi(SD) \text{ contains} \]

\[h(l, I + 1) \leftarrow h(p_0, I), \ldots, h(p_m, I), \]

\[\text{occurs}(a, I), \quad I < n. \quad (8) \]

- For every state constraint

\[l \text{ if } p_0, \ldots, p_m \]

\[\Pi(SD) \text{ contains} \]

\[h(l, I) \leftarrow h(p_0, I), \ldots, h(p_m, I). \quad (9) \]

- \(\Pi(SD) \) contains the CWA for defined fluents:

\[\neg \text{holds}(F, I) \leftarrow \text{fluent}(\text{defined}, F), \text{not holds}(F, I). \quad (10) \]

- For every executability condition

\[\text{impossible } a_0, \ldots, a_k \text{ if } p_0, \ldots, p_m \]

\[\Pi(SD) \text{ contains} \]

\[\neg \text{occurs}(a_0, I) \text{ or } \ldots \text{ or } \neg \text{occurs}(a_k, I) \leftarrow h(p_0, I), \ldots, h(p_m, I). \quad (11) \]

- \(\Pi(SD) \) contains the Inertia Axiom:

\[\text{holds}(F, I + 1) \leftarrow \text{fluent}(\text{inertial}, F), \text{holds}(F, I), \text{not } \neg \text{holds}(F, I + 1), \quad I < n. \quad (12) \]

\[\neg \text{holds}(F, I + 1) \leftarrow \text{fluent}(\text{inertial}, F), \neg \text{holds}(F, I), \text{not holds}(F, I + 1), \quad I < n. \quad (13) \]

- \(\Pi(SD) \) contains CWA for actions:

\[\neg \text{occurs}(A, I) \leftarrow \text{not occurs}(A, I). \quad (14) \]