Encoding of a System Description

The encoding $\Pi(\mathcal{SD})$ of system description \mathcal{SD} consists of the encoding of the signature of \mathcal{SD} and rules obtained from statements of \mathcal{SD}.

- **Encoding of the Signature**

 We start with the encoding $\text{sig}(\mathcal{SD})$ of the signature of \mathcal{SD}.

 - For each constant symbol c which has a sort sort_name other than fluent, static or action, $\text{sig}(\mathcal{SD})$ contains $\text{sort_name}(c)$ (1)

 - For every static g of \mathcal{SD}, $\text{sig}(\mathcal{SD})$ contains $\text{static_name}(g)$ (2)

 - For every inertial fluent f of \mathcal{SD}, $\text{sig}(\mathcal{SD})$ contains $\text{fluent}(\text{inertial}, f)$ (3)

 - For every defined fluent f of \mathcal{SD}, $\text{sig}(\mathcal{SD})$ contains $\text{fluent}(\text{defined}, f)$ (4)

 - For every action a of \mathcal{SD}, $\text{sig}(\mathcal{SD})$ contains $\text{action}(a)$ (5)

- **Encoding of Statements of \mathcal{SD}**

 For this encoding we only need two steps, 0 and 1, which stand for the beginning and the end of a transition. This is sufficient for describing a single transition; however, later, we describe longer chains of events and let steps range over $[0,n]$ for some constant n. To allow an easier generalization of the program we encode steps by using constant n for the maximum number of steps, as follows:

 $\#\text{const_n} = 1$.

 $\text{step}(0..n)$. (7)

 As in our blocks-world example, we introduce a relation $\text{holds}(f,i)$ which says that fluent f is true at step i. To simplify the description of the encoding, we also introduce a new notation, $h(l,i)$ where l is a domain literal and i is a step. If f is a fluent then by $h(l,i)$ we denote $\text{holds}(f,i)$ if $l = f$ or $\neg\text{holds}(f,i)$ if $l = \neg f$. If l is a static literal then $h(l,i)$ is simply l. We also need relation $\text{occurs}(a,i)$ which says that action a occurred at step i; $\text{occurs}([a_0,\ldots,a_k],i) = \text{def} \{ \text{occurs}(a_j,i) : 0 \leq j \leq k \}$.

 We use this notation to encode statements of \mathcal{SD} as follows:
– For every causal law

\[a \text{ causes } l \text{ if } p_0, \ldots, p_m \]

\(\Pi(\mathcal{D}) \) contains

\[h(l, I+1) \leftarrow h(p_0, I), \ldots, h(p_m, I), \]
\[\text{occurs}(a, I), \]
\[I < n. \]

(8)

– For every state constraint

\[l \text{ if } p_0, \ldots, p_m \]

\(\Pi(\mathcal{D}) \) contains

\[h(l, I) \leftarrow h(p_0, I), \ldots, h(p_m, I). \]

(9)

– \(\Pi(\mathcal{D}) \) contains the CWA for defined fluents:

\[\neg \text{holds}(F, I) \leftarrow \text{fluent}(\text{defined}, F), \]
\[\text{not holds}(F, I). \]

(10)

– For every executability condition

\[\text{impossible } a_0, \ldots, a_k \text{ if } p_0, \ldots, p_m \]

\(\Pi(\mathcal{D}) \) contains

\[\neg \text{occurs}(a_0, I) \text{ or } \ldots \text{ or } \neg \text{occurs}(a_k, I) \leftarrow h(p_0, I), \ldots, h(p_m, I). \]

(11)

– \(\Pi(\mathcal{D}) \) contains the Inertia Axiom:

\[\text{holds}(F, I+1) \leftrightarrow \text{fluent}(\text{inertial}, F), \]
\[\text{holds}(F, I), \]
\[\neg \text{not holds}(F, I+1), \]
\[I < n. \]

(12)

\[\neg \text{holds}(F, I+1) \leftrightarrow \text{fluent}(\text{inertial}, F), \]
\[\neg \text{holds}(F, I), \]
\[\text{not holds}(F, I+1), \]
\[I < n. \]

(13)

– \(\Pi(\mathcal{D}) \) contains CWA for actions:

\[\neg \text{occurs}(A, I) \leftarrow \text{not occurs}(A, I). \]

(14)